Package ‘SimReg’

October 15, 2016

Type Package
Title Similarity Regression
Version 3.0
Date 2016-09-17
Author Daniel Greene
Maintainer Daniel Greene <dg333@cam.ac.uk>

Description Functions for performing Bayesian similarity regression, and evaluating the probability of association between sets of ontological terms and binary response vector. A random model is compared with one in which the log odds of a true response is linked to the semantic similarity between terms and a latent characteristic ontological profile.

License GPL (>= 2)
Imports Rcpp (>= 0.11.1), ontologyIndex (>= 2.0), ontologySimilarity (>= 2.0), ontologyPlot
LinkingTo Rcpp
Depends R (>= 3.0.0)
Suggests knitr
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-10-15 18:51:56

R topics documented:

- SimReg3-package .. 2
- get_terms .. 3
- get_term_marginals ... 3
- log_BF .. 4
- plot.sim_reg_summary ... 4
Functions for performing Bayesian similarity regression, and evaluating the probability of association between sets of ontological terms and binary response vector. A random model is compared with one in which the log odds of a true response is linked to the semantic similarity between terms and a latent characteristic ontological profile.

Key functions include sim_reg, for similarity regression of binary response variable against an ontologically encoded predictor. An example application would be inferring the probability of association between the presence of a rare genetic variant conditional on an ontologically encoded phenotype.

Author(s)
Daniel Greene <dg333@cam.ac.uk>
Maintainer: Daniel Greene <dg333@cam.ac.uk>

References
get_terms

Get full set of terms to use in inference procedure based on similarity function arguments

Description
Get full set of terms to use in inference procedure based on similarity function arguments

Usage
get_terms(args)

Arguments
args Named list of named arguments which gets passed to ontological similarity function by sim_reg.

Value
Character vector of term IDs.

get_term_marginals
Calculate marginal probability of terms inclusion in phi from sim_reg_out object

Description
Calculate marginal probability of terms inclusion in phi from sim_reg_out object

Usage
get_term_marginals(sim_reg_out)

Arguments
sim_reg_out Object of class sim_reg_output.

Value
Numeric vector of probabilities, named by term ID.
log_BF

Calculate log Bayes factor for similarity the model, gamma=1 and baseline model, gamma=0.

Description

Calculate log Bayes factor for similarity the model, gamma=1 and baseline model, gamma=0.

Usage

```r
log_BF(x, 
```

default S3 method:
```
log_BF(x, 
```

S3 method for class 'sim_reg_output'
```
log_BF(x, 
```

Arguments

- **x**
 - list of term sets or sim_reg_output object.
- **...**
 - If x is a list term sets, other arguments to pass to sim_reg, otherwise this is not used.

Value

Numeric value.

plot.sim_reg_summary

Plot summary of sim_reg_output object

Description

Plot summary of sim_reg_output object

Usage

```r
## S3 method for class 'sim_reg_summary'
plot(x, 
```

S3 method for class 'sim_reg_output'
```
plot(x, 
```

Arguments

- **x**
 - Object of class sim_reg_summary.
- **...**
 - Additional arguments to pass to plot_term_marginals.
plot_term_marginals

Create ontological plot of marginal probabilities of terms

Usage

```r
plot_term_marginals(ontology, term_marginals, max_terms = 10, min_probability = 0.01, ...)
```

Arguments

- `ontology`: ontology_index object.
- `term_marginals`: Numeric vector of marginal probabilities of inclusion in \(\phi \) for individual terms, named by the term IDs.
- `max_terms`: Maximum number of terms to include in plot. Note that additional terms may be included when terms have the same marginal probability, and common ancestor terms are included.
- `min_probability`: Threshold probability of inclusion in \(\phi \) for triggering inclusion in plot.
- `...`: Additional arguments to pass to `onto_plot`

print.sim_reg_output

Print `sim_reg_output` object

Usage

```r
## S3 method for class 'sim_reg_output'
print(x, ...)
```

Arguments

- `x`: Object of class `sim_reg_output`.
- `...`: Non-used arguments.
print.sim_reg_summary *Print sim_reg_summary object*

Description

Print sim_reg_summary object

Usage

```r
## S3 method for class 'sim_reg_summary'
print(x, ...)
```

Arguments

- `x` Object of class `sim_reg_summary`.
- `...` Non-used arguments.

prob_association *Calculate probability of association between y and x*

Description

Calculate probability of association between y and x

Usage

```r
prob_association(..., prior = 0.05)
```

Arguments

- `...` Arguments to pass to `log_BF`.
- `prior` Numeric value determining prior probability that gamma=1.

Value

Numeric value.
Similarity regression

Description

Performs Bayesian ‘similarity regression’ on given logical response vector \(y \) against list of ontological term sets \(x \). It returns an object of class \texttt{sim_reg_output}. Of particular interest are the probability of an association, which can be calculated with \texttt{prob_association}, and the characteristic ontological profile \(\phi \), which can be visualised using the functions \texttt{plot_term_marginals}, and \texttt{term_marginals}). The results can be summarised with \texttt{summary}.

Usage

\begin{verbatim}
sim_reg(ontology, x, y, information_content = get_term_info_content(ontology, x), sim_params = list(ontology = ontology, information_content = information_content), using_terms = get_terms(sim_params), term_weights = rep(0, length(using_terms)), prior = discrete.gamma(using_terms), min_BF = -Inf, max_select = 2000L, max.phi_count = 200L, two_way = TRUE, selection_fn = fg_step, lik_method = NULL, lik_method_args = list(), gamma@ml = bg_rate, min_ratio = 1e-04, ...)
\end{verbatim}

Arguments

- \texttt{ontology}:	ontology_index object.
- \texttt{x}:	list of character vectors of ontological terms.
- \texttt{y}:	logical response vector.
- \texttt{information_content}:	Numeric vector of information contents of terms named by term ID. Defaults to information content based on frequencies of annotation in \(x \).
- \texttt{sim_params}:	List of arguments to pass to \texttt{get_asym_sim_grid}.
- \texttt{using_terms}:	Character vector of term IDs giving the complete set of terms to include in the \(\phi \) parameter space.
- \texttt{term_weights}:	Numeric vector of prior weights for individual terms.
- \texttt{prior}:	Function for computing the unweighted prior probability of a \(\phi \) value.
- \texttt{min_BF}:	Bayes factor threshold below which to terminate computation, enabling faster execution time at the expense of accuracy and precision.
- \texttt{max_select}:	Upper bound for number of \(\phi \) values to sample.
- \texttt{max.phi_count}:	Upper bound for number of \(\phi \) values to include in final likelihood sum.
- \texttt{two_way}:	Boolean value determining whether to calculate semantic similarity ‘in both directions’ (i.e. compute \(s_x \) and \(s_{\phi} \) or just \(s_{\phi} \)).
- \texttt{selection_fn}:	Function for selecting values of \(\phi \) with high posterior mass.
- \texttt{lik_method}:	Function for calculating marginal likelihood conditional on values of \(\phi \).
lik_method_args
List of additional arguments to pass to lik_method.

gamma0_ml
Function for computing marginal likelihood of data under baseline model gamma=0.

min_ratio
Lower bound on ratio below which to discard phi values.

... Additional arguments to pass to selection_fn.

Examples

```r
## not run:
setNseedHPI
dataHhpoI
disease_terms <- c(HP:0005537, HP:0000729, HP:0001873)
all_terms <- get_ancestorsHhpoI
c(disease_terms, sampleHhpo$id, size=50))
y <- c(rep(FALSE, 96), rep(TRUE, 3))
x <- lapplyHyI functionHNyI minimal_setH
hpo, if H!yI sampleHall_terms, size=3) else
 c(sample(all_terms, size=1), disease_termsHrunif(n=3 < 0.8)])
sim_reg_out <- sim_regHontologyI xHxI yHyI
## endHnot runI
```

summary.sim_reg_output

Get summary of sim_reg_output object

Description

Get summary of sim_reg_output object

Usage

```r
## S3 method for class 'sim_reg_output'
summary(object, prior = 0.05, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Object of class sim_reg_output.</td>
</tr>
<tr>
<td>prior</td>
<td>Prior probability of association.</td>
</tr>
<tr>
<td>...</td>
<td>Non-used arguments.</td>
</tr>
</tbody>
</table>
sum_log_probs

Description
Calculate sum of log probabilities on log scale without over/under-flow

Usage
`sum_log_probs(log_probs)`

Arguments
- `log_probs`: Numeric vector of probabilities on log scale.

Value
Numeric value on log scale.

term_marginals

Description
Calculate marginal probability of terms inclusion in phi

Usage
`term_marginals(...)`

Arguments
- `...`: Arguments to pass to `sim_reg`.

Value
Numeric vector of probabilities, named by term ID.
Index

*Topic HPO, MCMC, ontology
 SimReg3-package, 2

get_term_marginals, 3
get_terms, 3

log_BF, 4, 6

plot.sim_reg_output
 (plot.sim_reg_summary), 4
plot.sim_reg_summary, 4
plot_term_marginals, 4, 5, 7
print.sim_reg_output, 5
print.sim_reg_summary, 6
prob_association, 6, 7

sim_reg, 4, 7, 9
SimReg3 (SimReg3-package), 2
SimReg3-package, 2
sum_log_probs, 9
summary.sim_reg_output, 8

term_marginals, 7, 9