Package ‘SoftBart’

October 29, 2022

Type Package

Title Implements the SoftBart Algorithm

Version 1.0.1

Date 2022-10-28

Encoding UTF-8

Description Implements the SoftBart model of described by Linero and Yang (2018) [doi:10.1111/rssb.12293], with the optional use of a sparsity-inducing prior to allow for variable selection. For usability, the package maintains the same style as the ‘BayesTree’ package.

License GPL (>= 2)

Imports Rcpp (>= 0.12.9), glmnet (>= 4.0.0), scales (>= 1.1.1), methods, caret, truncnorm, progress, MASS

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.2.1

NeedsCompilation yes

Author Antonio R. Linero [aut, cre]

Maintainer Antonio R. Linero <antonio.linero@austin.utexas.edu>

Repository CRAN

Date/Publication 2022-10-29 07:00:17 UTC

R topics documented:

- contr.ltrf ... 2
- gsoftbart_regression .. 2
- Hypers ... 5
- MakeForest .. 6
- OptS ... 8
- partial_dependence_probit .. 9
- partial_dependence_regression 10
- pdsoftbart ... 11
- posterior_probs ... 12

1
Create a Full Set of Dummy Variables

Description

Used with dummyVars in the caret package to create a full set of dummy variables (i.e. less than full rank parameterization).

Usage

contr.ltfr(...)

Arguments

... A list of arguments.

Value

A matrix produced containing full sets of dummy variables.

gsoftbart_regression General SoftBart Regression

Description

Fits the general (Soft) BART (GBART) model, which combines the BART model with a linear predictor. That is, it fits the semiparametric Gaussian regression model

\[Y = r(X) + Z^T \beta + \epsilon \]

where the function \(r(x) \) is modeled using a BART ensemble.
Usage

gsoftbart_regression(
 formula,
 linear_formula,
 data,
 test_data,
 num_tree = 20,
 k = 2,
 hypers = NULL,
 opts = NULL,
 remove_intercept = TRUE,
 verbose = TRUE,
 warn = TRUE
)

Arguments

formula A model formula with a numeric variable on the left-hand-side and non-linear predictors on the right-hand-side.
linear_formula A model formula with the linear variables on the right-hand-side (left-hand-side is not used).
data A data frame consisting of the training data.
test_data A data frame consisting of the testing data.
num_tree The number of trees used in the ensemble.
k Determines the standard deviation of the leaf node parameters, which is given by \(\frac{3}{k}\sqrt{\text{num_tree}} \).
hypers A list of hyperparameters constructed from the Hypers() function (\text{num_tree}, k, and sigma_mu are overridden by this function).
opts A list of options for running the chain constructed from the Opts() function (update_sigma is overridden by this function).
remove_intercept If TRUE then any intercept term in the linear formula will be removed, with the overall location of the outcome captured by the nonparametric function.
verbose If TRUE, progress of the chain will be printed to the console.
warn If TRUE, remind the user that they probably don’t want the linear predictors to be included in the formula for the nonlinear part.

Value

Returns a list with the following components

- \text{r_train}: samples of the nonparametric function evaluated on the training set.
- \text{r_test}: samples of the nonparametric function evaluated on the test set.
- \text{eta_train}: samples of the linear predictor on the training set.
- \text{eta_test}: samples of the linear predictor on the test set.
• mu_train: samples of the prediction on the training set.
• mu_test: samples of the prediction on the test set.
• beta: samples of the regression coefficients.
• sigma: samples of the error standard deviation.
• sigma_mu: samples of the standard deviation of the leaf node parameters.
• var_counts: a matrix with a column for each nonparametric predictor containing the number of times that predictor is used in the ensemble at each iteration.
• opts: the options used when running the chain.
• formula: the formula specified by the user.
• ecdfs: empirical distribution functions, used by the predict function.
• mu_Y, sd_Y: used with the predict function to transform predictions.
• forest: a forest object for the nonlinear part; see the MakeForest() documentation for more details.

Examples

NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE

num_burn <- 10 ## Should be ~ 5000
num_save <- 10 ## Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 +
10 * x[,4] + 5 * x[,5]
gen_data <- function(n_train, n_test, P, sigma) {
 X <- matrix(runif(n_train * P), nrow = n_train)
 mu <- f_fried(X)
 X_test <- matrix(runif(n_test * P), nrow = n_test)
 mu_test <- f_fried(X_test)
 Y <- mu + sigma * rnorm(n_train)
 Y_test <- mu + sigma * rnorm(n_test)
 return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test,
 mu_test = mu_test))
}

Simulate dataset
sim_data <- gen_data(250, 250, 100, 1)
df <- data.frame(X = sim_data$X, Y = sim_data$Y)
df_test <- data.frame(X = sim_data$X_test, Y = sim_data$Y_test)

Fit the model
opts <- Opts(num_burn = num_burn, num_save = num_save)
fitted_reg <- gsoftbart_regression(Y ~ . ~ X.4 ~ X.5, df, df_test, opts = opts)
Plot results

```r
plot(colMeans(fitted_reg$mu_test), sim_data$mu_test)
abline(a = 0, b = 1)
plot(fitted_reg$beta[,1])
plot(fitted_reg$beta[,2])
```

Hypers

Create a list of hyperparameter values

Description

Creates a list which holds all the hyperparameters for use with the model-fitting functions and with the `MakeForest` functionality.

Usage

```r
Hypers(
  X,
  Y,
  group = NULL,
  alpha = 1,
  beta = 2,
  gamma = 0.95,
  k = 2,
  sigma_hat = NULL,
  shape = 1,
  width = 0.1,
  num_tree = 20,
  alpha_scale = NULL,
  alpha_shape_1 = 0.5,
  alpha_shape_2 = 1,
  tau_rate = 10,
  num_tree_prob = NULL,
  temperature = 1,
  weights = NULL,
  normalize_Y = TRUE
)
```

Arguments

- **X**: A matrix of training data covariates.
- **Y**: A vector of training data responses.
- **group**: Allows for grouping of covariates with shared splitting proportions, which is useful for categorical dummy variables. For each column of `X`, `group` gives the associated group.
- **alpha**: Positive constant controlling the sparsity level.
beta Parameter penalizing tree depth in the branching process prior.
gamma Parameter penalizing new nodes in the branching process prior.
k Related to the signal-to-noise ratio, \(\sigma_{\mu} = 0.5 / (\sqrt{\text{num}_\text{tree}} \times k) \).
BART defaults to \(k = 2 \) after applying the max/min normalization to the outcome.
sigma_hat A prior guess at the conditional variance of \(Y \) given \(X \). If not provided, this is estimated empirically by linear regression.
shape Shape parameter for gating probabilities.
width Bandwidth of gating probabilities.
num_tree Number of trees in the ensemble.
alpha_scale Scale of the prior for \(\alpha \); if not provided, defaults to the number of predictors.
alpha_shape_1 Shape parameter for prior on \(\alpha \); if not provided, defaults to 0.5.
alpha_shape_2 Shape parameter for prior on \(\alpha \); if not provided, defaults to 1.0.
tau_rate Rate parameter for the bandwidths of the trees with an exponential prior; defaults to 10.
num_tree_prob Parameter for geometric prior on number of tree.
temperature The temperature applied to the posterior distribution; set to 1 unless you know what you are doing.
weights Only used by the function softbart, this is a vector of weights to be used in heteroskedastic regression models, with the variance of an observation given by \(\sigma^2 / \text{weight} \).
normalize_Y Do you want to compute sigma_hat after applying the standard BART max/min normalization to \((-0.5, 0.5)\) for the outcome? If FALSE, no normalization is applied. This might be useful for fitting custom models where the outcome is normalized by hand.

Value

Returns a list containing the function arguments.

MakeForest

Create an Rcpp_Forest Object

Description

Make an object of type Rcpp_Forest, which can be used to embed a soft BART model into other models. Some examples are given in the package vignette.

Usage

MakeForest(hypers, opts, warn = TRUE)
MakeForest

Arguments

hypers A list of hyperparameter values obtained from Hypers() function
opts A list of MCMC chain settings obtained from Opts() function
warn If TRUE, reminds the user to normalize their design matrix when interacting with a forest object.

Value

Returns an object of type Rcpp_Forest. If forest is an Rcpp_Forest object then it has the following methods.

- forest$do_gibbs(X, Y, X_test, i) runs i iterations of the Bayesian backfitting algorithm and predicts on the test set X_test. The state of forest is also updated.
- forest$do_gibbs_weighted(X, Y, weights X_test, i) runs i iterations of the Bayesian backfitting algorithm and predicts on the test set X_test; assumes that Y is heteroskedastic with known weights. The state of forest is also updated.
- forest$do_predict(X) returns the predictions from a matrix X of predictors.
- forest$get_counts() returns the number of times each variable has been used in a splitting rule at the current state of forest.
- forest$get_s() returns the splitting probabilities of the forest.
- forest$get_sigma() returns the error standard deviation of the forest.
- forest$get_sigma_mu() returns the standard deviation of the leaf node parameters.
- forest$get_tree_counts() returns a matrix with a column for each predictor and a row for each tree that counts the number of times each predictor is used in each tree at the current state of forest.
- forest$predict_iteration(X, i) returns the predictions from a matrix X of predictors at iteration i. Requires that opts$cache_trees = TRUE in MakeForest(hypers, opts).
- forest$set_s(s) sets the splitting probabilities of the forest to s.
- forest$set_sigma(x) sets the error standard deviation of the forest to x.
- forest$num_gibbs returns the number of iterations in total that the Gibbs sampler has been run.

Examples

X <- matrix(runif(100 * 10), nrow = 100, ncol = 10)
Y <- rowSums(X) + rnorm(100)
my_forest <- MakeForest(Hypers(X,Y), Opts())
mu_hat <- my_forest$do_gibbs(X,Y,X,200)
opts

MCMC options for SoftBart

Description

Creates a list that provides the parameters for running the Markov chain.

Usage

opts(
 num_burn = 2500,
 num_thin = 1,
 num_save = 2500,
 num_print = 100,
 update_sigma_mu = TRUE,
 update_s = TRUE,
 update_alpha = TRUE,
 update_beta = FALSE,
 update_gamma = FALSE,
 update_tau = TRUE,
 update_tau_mean = FALSE,
 update_sigma = TRUE,
 cache_trees = TRUE
)

Arguments

num_burn Number of warmup iterations for the chain.
num_thin Thinning interval for the chain.
num_save The number of samples to collect; in total, num_burn + num_save * num_thin iterations are run.
num_print Interval for how often to print the chain’s progress.
update_sigma_mu If TRUE, sigma_mu is updated, with a half-Cauchy prior on sigma_mu centered at the initial guess.
update_s If TRUE, s is updated using the Dirichlet prior s ∼ D(α/P,...,α/P) where P is the number of covariates.
update_alpha If TRUE, alpha is updated using a scaled beta prime prior.
update_beta If TRUE, beta is updated using a normal prior with mean 0 and variance 4.
update_gamma If TRUE, gamma is updated using a Uniform(0.5, 1) prior.
update_tau If TRUE, the bandwidth tau is updated for each tree
update_tau_mean If TRUE, the mean of tau is updated
update_sigma: If TRUE, sigma is updated, with a half-Cauchy prior on sigma centered at the initial guess.
cache_trees: If TRUE, we save the trees for each MCMC iteration when using the MakeForest interface.

Value

Returns a list containing the function arguments.

Description

Computes the partial dependence function for a given covariate at a given set of covariate values for the probit model.

Usage

partial_dependence_probit(fit, test_data, var_str, grid)

Arguments

fit: A fitted model of type softbart_probit.
test_data: A data set used to form the baseline distribution of covariates for the partial dependence function.
var_str: A string giving the variable name of the predictor to compute the partial dependence function for.
grid: The values of the predictor to compute the partial dependence function at.

Value

Returns a list with the following components:

- pred_df: a data frame containing columns for a MCMC iteration ID (sample), the value on the grid, and the partial dependence function value.
- p: a matrix containing the same information as pred_df, with the rows corresponding to iterations and columns corresponding to grid values.
- grid: the grid used as input.
partial_dependence_regression

Partial Dependence Function for SoftBART Regression

Description

Computes the partial dependence function for a given covariate at a given set of covariate values.

Usage

partial_dependence_regression(fit, test_data, var_str, grid)

Arguments

- **fit**: A fitted model of type softbart_regression.
- **test_data**: A data set used to form the baseline distribution of covariates for the partial dependence function.
- **var_str**: A string giving the variable name of the predictor to compute the partial dependence function for.
- **grid**: The values of the predictor to compute the partial dependence function at.

Value

Returns a list with the following components:

- `pred_df`: a data.frame containing columns for a MCMC iteration ID (`sample`), the value on the grid, and the partial dependence function value.
- `mu`: a matrix containing the same information as `pred_df`, with the rows corresponding to iterations and columns corresponding to grid values.
- `grid`: the grid used as input.

Examples

```r
## NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE
num_burn <- 10  ## Should be ~ 5000
num_save <- 10  ## Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 + 10 * x[,4] + 5 * x[,5]

gen_data <- function(n_train, n_test, P, sigma) {
  X <- matrix(runif(n_train * P), nrow = n_train)
  mu <- f_fried(X)
  X_test <- matrix(runif(n_test * P), nrow = n_test)
  mu_test <- f_fried(X_test)
```
Y <- mu + sigma * rnorm(n_train)
Y_test <- mu + sigma * rnorm(n_test)

return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test,
mu_test = mu_test))
}

Simulate dataset
sim_data <- gen_data(250, 250, 10, 1)
df <- data.frame(X = sim_data$X, Y = sim_data$Y)
df_test <- data.frame(X = sim_data$X_test, Y = sim_data$Y_test)

Fit the model
opts <- Opts(num_burn = num_burn, num_save = num_save)
fitted_reg <- softbart_regression(Y ~ ., df, df_test, opts = opts)

Compute PDP and plot
grid <- seq(from = 0, to = 1, length = 10)
pdp_x4 <- partial_dependence_regression(fitted_reg, df_test, "X.4", grid)
plot(pdp_x4$grid, colMeans(pdp_x4$mu))

pdsoftbart

Partial dependence plots for SoftBart

Description

Modified version of the pdbart function from the BayesTree package; largely supplanted by the softbart_regression and partial_dependence_regression functions. Runs softbart at test observations constructed so that a plot can be created displaying the effect of a single variable or pair of variables.

Usage

```r
pdsoftbart(
  X,
  Y,
  xind = NULL,
  levs = NULL,
  levquants = c(0.05, (1:9)/10, 0.95),
  pl = FALSE,
  plquants = c(0.05, 0.95),
  ...
)
```
Arguments

X Training data covariates.
Y Training data response.
xind Variables to create the partial dependence plots for.
levs List of levels of the covariates to evaluate at.
levquants Used if levs is not supplied; takes levs to be quantiles of associated predictors.
pl Create a plot?
plquants Quantiles for the partial dependence plot.
... Additional arguments passed to softbart or plot.

Value

Returns a list with components given below.

- `fd`: A matrix whose (i,j)th value is the ith draw of the partial dependence function for the jth level.
- `levs`: The list of levels used, each component corresponding to a variable. If the argument levs was supplied it is unchanged. Otherwise, the levels in levs are constructed using the argument levquants.

posterior_probs

BART Posterior Inclusion Probabilities

Description

Computes the posterior inclusion probabilities (PIPs) for the fitted SoftBART model, as well as variable importances and the median probability model (MPM).

Usage

posterior_probs(fit)

Arguments

fit An object of class softbart, softbart_regression, or softbart_probit.

Value

A list containing the following:

- `varimp`: a vector containing the average number of times a predictor was used in a splitting rule.
- `post_probs`: the posterior inclusion probabilities for each predictor.
- `median_probability_model`: a vector containing the indices of the variables included in at least 50 percent of the samples.
Examples

```r
# NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE

num_burn <- 10  ## Should be ~ 5000
num_save <- 10  ## Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 +
    10 * x[,4] + 5 * x[,5]
gen_data <- function(n_train, n_test, P, sigma) {
  X <- matrix(runif(n_train * P), nrow = n_train)
mu <- f_fried(X)
  X_test <- matrix(runif(n_test * P), nrow = n_test)
mu_test <- f_fried(X_test)
  Y <- mu + sigma * rnorm(n_train)
  Y_test <- mu_test + sigma * rnorm(n_test)
  return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test, mu_test = mu_test))
}

## Simulate dataset
sim_data <- gen_data(250, 100, 1000, 1)

## Fit the model
fit <- softbart(X = sim_data$X, Y = sim_data$Y, X_test = sim_data$X_test,
    hypers = Hypers(sim_data$X, sim_data$Y, num_tree = 50, temperature = 1),
    opts = Opts(num_burn = num_burn, num_save = num_save, update_tau = TRUE))

## Variable selection
post_probs <- posterior_probs(fit)
plot(post_probs$post_probs)
print(post_probs$median_probability_model)
```

predict.softbart_probit

Predict for SoftBart Probit Regression

Description

Computes predictions from a `softbart_probit` object for new data.

Usage

```r
# S3 method for class 'softbart_probit'
predict(object, newdata, iterations = NULL, ...)
```
Arguments

object A softbart_probit object obtained as output of the softbart_probit function.

newdata A dataset to construct predictions on.

iterations The iterations to get predictions on; includes all of iterations including burn-in and thinning iterations. Defaults to the saved iterations, running from \((\text{num_burn} + \text{num_thin}) : (\text{num_burn} + \text{num_thin} \times \text{num_save})\).

... Other arguments passed to predict.

Value

A list containing

- \(\mu\): samples of the nonparametric function for each observation, where \(\text{pnorm}(\mu)\) is the success probability.
- \(\mu_\text{mean}\): posterior mean of \(\mu\).
- \(\mathbf{p}\): samples of the success probability \(\text{pnorm}(\mu)\) for each observation.
- \(\mathbf{p}_\text{mean}\): posterior mean of \(\mathbf{p}\).

predict.softbart_regression

Predict for SoftBart Regression

Description

Computes predictions from a softbart_regression object on new data.

Usage

```r
## S3 method for class 'softbart_regression'
predict(object, newdata, iterations = NULL, ...)
```

Arguments

object A softbart_regression object obtained as output of the softbart_regression function.

newdata A dataset to construct predictions on.

iterations The iterations to get predictions on; includes all of iterations including burn-in and thinning iterations. Defaults to the saved iterations, running from \((\text{num_burn} + \text{num_thin}) : (\text{num_burn} + \text{num_thin} \times \text{num_save})\).

... Other arguments passed to predict.
preprocess_df

Value
A list containing

- \(\mu \): samples of the predicted value for each observation and iteration.
- \(\mu_{\text{mean}} \): posterior predicted values for each observation.

Description
Preprocesses a data frame for use with \texttt{softbart}; not needed with other model fitting functions, but may also be useful when designing custom methods with \texttt{MakeForest}. Returns a data matrix \(X \) that will work with categorical predictors, and a vector of group indicators; this is required to get sensible variable selection for categorical variables, and should be passed in as the group argument to \texttt{Hypers}.

Usage
\begin{verbatim}
preprocess_df(X)
\end{verbatim}

Arguments
\begin{verbatim}
X A data frame, possibly containing categorical variables stored as factors.
\end{verbatim}

Value
A list containing two elements.

- \(X \): a matrix consisting of the columns of the input data frame, with separate columns for the different levels of categorical variables.
- group: a vector of group memberships of the predictors in \(X \), to be passed as an argument to \texttt{Hypers}.

Examples
\begin{verbatim}
data(iris)
preprocess_df(iris)
\end{verbatim}
quantile_normalize_bart

Quantile normalization for predictors

Description

Performs a quantile normalization to each column of the matrix X.

Usage

quantile_normalize_bart(X)

Arguments

X

A design matrix, should not include a column for the intercept.

Value

A matrix X_norm such that each column gives the associated empirical quantile of each observation for each predictor.

Examples

X <- matrix(rgamma(100 * 10, shape = 2), nrow = 100)
X <- quantile_normalize_bart(X)
summary(X)

rmse

Root mean squared error

Description

Computes the root mean-squared error between y and yhat, given by sqrt(mean((y - yhat)^2)).

Usage

rmse(y, yhat)

Arguments

y the realized outcomes
yhat the predicted outcomes

Value

Returns the root mean-squared error.
Examples

\[\text{rmse(c(1,1,1), c(1,0,2))} \]

Fits the SoftBart model

Description

Runs the Markov chain for the semiparametric Gaussian model

\[Y = r(X) + \epsilon \]

and collects the output, where \(r(x) \) is modeled using a soft BART model.

Usage

```
softbart(X, Y, X_test, hypers = NULL, opts = Opts(), verbose = TRUE)
```

Arguments

- `X`: A matrix of training data covariates.
- `Y`: A vector of training data responses.
- `X_test`: A matrix of test data covariates.
- `hypers`: A list of hyperparameter values obtained from `Hypers` function.
- `opts`: A list of MCMC chain settings obtained from `Opts` function.
- `verbose`: If TRUE, progress of the chain will be printed to the console.

Value

Returns a list with the following components:

- `y_hat_train`: predicted values for the training data for each iteration of the chain.
- `y_hat_test`: predicted values for the test data for each iteration of the chain.
- `y_hat_train_mean`: predicted values for the training data, averaged over iterations.
- `y_hat_test_mean`: predicted values for the test data, averaged over iterations.
- `sigma`: posterior samples of the error standard deviations.
- `sigma_mu`: posterior samples of `sigma_mu`, the standard deviation of the leaf node parameters.
- `s`: posterior samples of `s`.
- `alpha`: posterior samples of `alpha`.
- `beta`: posterior samples of `beta`.
- `gamma`: posterior samples of `gamma`.
- `k`: posterior samples of \(k = 0.5 / (\sqrt{\text{num_tree}} \times \text{sigma_mu}) \).
- `num_leaves_final`: the number of leaves for each tree at the final iteration.
Examples

```
# NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE

num_burn <- 10  # Should be ~ 5000
num_save <- 10  # Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 +
10 * x[,4] + 5 * x[,5]

gen_data <- function(n_train, n_test, P, sigma) {
  X <- matrix(runif(n_train * P), nrow = n_train)
  mu <- f_fried(X)
  X_test <- matrix(runif(n_test * P), nrow = n_test)
  mu_test <- f_fried(X_test)
  Y <- mu + sigma * rnorm(n_train)
  Y_test <- mu_test + sigma * rnorm(n_test)

  return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test, mu_test = mu_test))
}

# Simulate dataset
sim_data <- gen_data(250, 100, 1000, 1)

# Fit the model
fit <- softbart(X = sim_data$X, Y = sim_data$Y, X_test = sim_data$X_test,
                hypers = Hypers(sim_data$X, sim_data$Y, num_tree = 50, temperature = 1),
                opts = Opts(num_burn = num_burn, num_save = num_save, update_tau = TRUE))

# Plot the fit (note: interval estimates are not prediction intervals,
# so they do not cover the predictions at the nominal rate)
plot(fit)

# Look at posterior model inclusion probabilities for each predictor.
plot(posterior_probs(fit)["post_probs"],
     col = ifelse(posterior_probs(fit)["post_probs"] > 0.5, scales::muted("blue"),
                 scales::muted("green")),
     pch = 20)

rmse(fit$y_hat_test_mean, sim_data$mu_test)
rmse(fit$y_hat_train_mean, sim_data$mu)
```
softbart_probit

Description
Fits a nonparametric probit regression model with the nonparametric function modeled using a SoftBart model. Specifically, the model takes \(\Pr(Y = 1 \mid X = x) = \Phi(a + r(x)) \) where \(a \) is an offset and \(r(x) \) is a Soft BART ensemble.

Usage
```
softbart_probit(
  formula,
  data,
  test_data,
  num_tree = 20,
  k = 1,
  hypers = NULL,
  opts = NULL,
  verbose = TRUE
)
```

Arguments
- `formula`: A model formula with a binary factor on the left-hand-side and predictors on the right-hand-side.
- `data`: A data frame consisting of the training data.
- `test_data`: A data frame consisting of the testing data.
- `num_tree`: The number of trees in the ensemble to use.
- `k`: Determines the standard deviation of the leaf node parameters, which is given by \(3 / k / \sqrt{\text{num_tree}} \).
- `hypers`: A list of hyperparameters constructed from the Hyper{} function (num_tree, k, and sigma_mu are overridden by this function).
- `opts`: A list of options for running the chain constructed from the Opt{} function (update_sigma is overridden by this function).
- `verbose`: If TRUE, progress of the chain will be printed to the console.

Value
Returns a list with the following components:
- `sigma_mu`: samples of the standard deviation of the leaf node parameters
- `var_counts`: a matrix with a column for each predictor group containing the number of times each predictor is used in the ensemble at each iteration.
- `mu_train`: samples of the nonparametric function evaluated on the training set; \(\text{pnorm}(\text{mu_train}) \) gives the success probabilities.
- `mu_test`: samples of the nonparametric function evaluated on the test set; \(\text{pnorm}(\text{mu_train}) \) gives the success probabilities.
- `p_train`: samples of probabilities on training set.
• p_test: samples of probabilities on test set.
• mu_train_mean: posterior mean of mu_train.
• mu_test_mean: posterior mean of mu_test.
• p_train_mean: posterior mean of p_train.
• p_test_mean: posterior mean of p_test.
• offset: we fit model of the form (offset + BART), with the offset estimated empirically prior to running the chain.
• pnorm_offset: the pnorm of the offset, which is chosen to match the probability of the second factor level.
• formula: the formula specified by the user.
• ecdfs: empirical distribution functions, used by the predict function.
• opts: the options used when running the chain.
• forest: a forest object; see the MakeForest documentation for more details.

Examples

NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE

```r
num_burn <- 10 ## Should be ~ 5000
num_save <- 10 ## Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 + 10 * x[,4] + 5 * x[,5]

gen_data <- function(n_train, n_test, P, sigma) {
  X <- matrix(runif(n_train * P), nrow = n_train)
  mu <- (f_fried(X) - 14) / 5
  X_test <- matrix(runif(n_test * P), nrow = n_test)
  mu_test <- (f_fried(X_test) - 14) / 5
  Y <- factor(rbinom(n_train, 1, pnorm(mu)), levels = c(0,1))
  Y_test <- factor(rbinom(n_test, 1, pnorm(mu_test)), levels = c(0,1))
  return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test, mu_test = mu_test))
}

## Simulate dataset
sim_data <- gen_data(250, 250, 100, 1)
df <- data.frame(X = sim_data$X, Y = sim_data$Y)
df_test <- data.frame(X = sim_data$X_test, Y = sim_data$Y_test)

## Fit the model
opts <- Opts(num_burn = num_burn, num_save = num_save)
fitted_probit <- softbart_probit(Y ~ ., df, df_test, opts = opts)
```
Plot results

```r
plot(fitted_probit$mu_test_mean, sim_data$mu_test)
abline(a = 0, b = 1)
```

softbart_regression
SoftBart Regression

Description

Fits a semiparametric regression model with the nonparametric function modeled using a SoftBart model.

Usage

```r
softbart_regression(
  formula,
  data,
  test_data,
  num_tree = 20,
  k = 2,
  hypers = NULL,
  opts = NULL,
  verbose = TRUE
)
```

Arguments

- `formula`: A model formula with a numeric variable on the left-hand-side and predictors on the right-hand-side.
- `data`: A data frame consisting of the training data.
- `test_data`: A data frame consisting of the testing data.
- `num_tree`: The number of trees in the ensemble to use.
- `k`: Determines the standard deviation of the leaf node parameters, which is given by `3 / k / sqrt(num_tree)`.
- `hypers`: A list of hyperparameters constructed from the `Hypers()` function (`num_tree`, `k`, and `sigma_mu` are overridden by this function).
- `opts`: A list of options for running the chain constructed from the `Opts()` function (`update_sigma` is overridden by this function).
- `verbose`: If TRUE, progress of the chain will be printed to the console.
Value

Returns a list with the following components:

- **sigma_mu**: samples of the standard deviation of the leaf node parameters.
- **sigma**: samples of the error standard deviation.
- **var_counts**: a matrix with a column for each predictor group containing the number of times each predictor is used in the ensemble at each iteration.
- **mu_train**: samples of the nonparametric function evaluated on the training set.
- **mu_test**: samples of the nonparametric function evaluated on the test set.
- **mu_train_mean**: posterior mean of mu_train.
- **mu_test_mean**: posterior mean of mu_test.
- **formula**: the formula specified by the user.
- **ecdfs**: empirical distribution functions, used by the predict function.
- **opts**: the options used when running the chain.
- **mu_Y, sd_Y**: used with the predict function to transform predictions.
- **forest**: a forest object; see the MakeForest documentation for more details.

Examples

```r
## NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE

num_burn <- 10  # Should be ~ 5000
num_save <- 10  # Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 + 10 * x[,4] + 5 * x[,5]
gen_data <- function(n_train, n_test, P, sigma) {
  X <- matrix(runif(n_train * P), nrow = n_train)
mu <- f_fried(X)
X_test <- matrix(runif(n_test * P), nrow = n_test)
mu_test <- f_fried(X_test)
Y <- mu + sigma * rnorm(n_train)
Y_test <- mu + sigma * rnorm(n_test)

  return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test, mu_test = mu_test))
}

## Simulate dataset
sim_data <- gen_data(250, 250, 100, 1)
df <- data.frame(X = sim_data$X, Y = sim_data$Y)
df_test <- data.frame(X = sim_data$X_test, Y = sim_data$Y_test)
```
Fit the model

```r
opts <- Opts(num_burn = num_burn, num_save = num_save)
fitted_reg <- softbart_regression(Y ~ ., df, df_test, opts = opts)
```

Plot results

```r
plot(colMeans(fitted_reg$mu_test), sim_data$mu_test)
abline(a = 0, b = 1)
```

vc_softbart_regression

SoftBart Varying Coefficient Regression

Description

Fits a semiparametric varying coefficient regression model with the nonparametric slope and intercept

\[Y = \alpha(X) + Z\beta(X) + \epsilon \]

using a soft BART model.

Usage

```r
vc_softbart_regression(
  formula,
  linear_var_name,
  data,
  test_data,
  num_tree = 20,
  k = 2,
  hypers_intercept = NULL,
  hypers_slope = NULL,
  opts = NULL,
  verbose = TRUE,
  warn = TRUE
)
```

Arguments

- **formula**: A model formula with a numeric variable on the left-hand-side and non-linear predictors on the right-hand-side.
- **linear_var_name**: A string containing the variable in the data that is to be treated linearly.
- **data**: A data frame consisting of the training data.
- **test_data**: A data frame consisting of the testing data.
- **num_tree**: The number of trees in the ensemble to use.
k

Determines the standard deviation of the leaf node parameters, which is given by $3 / k / \sqrt{\text{num_tree}}$ (intercept) and defaults to $1/k/\sqrt{\text{num_tree}}$ (slope). This can be modified for the slope by specifying your own hyperparameter.

hypers_intercept

A list of hyperparameters constructed from the Hypers() function (num_tree, k, and sigma_mu are overridden by this function).

hypers_slope

A list of hyperparameters constructed from the Hypers() function (num_tree is overridden by this function).

opts

A list of options for running the chain constructed from the Opts() function (update_sigma is overridden by this function).

verbose

If TRUE, progress of the chain will be printed to the console.

warn

If TRUE, remind the user that they probably don’t want the linear term to be included in the formula for the nonlinear part.

Value

Returns a list with the following components

- sigma_mu_alpha: samples of the standard deviation of the leaf node parameters for the intercept.
- sigma_mu_beta: samples of the standard deviation of the leaf node parameters for the slope.
- sigma: samples of the error standard deviation.
- var_counts_alpha: a matrix with a column for each predictor group containing the number of times each predictor is used in the ensemble at each iteration for the intercept.
- var_counts_beta: a matrix with a column for each predictor group containing the number of times each predictor is used in the ensemble at each iteration for the slope.
- alpha_train: samples of the nonparametric intercept evaluated on the training set.
- alpha_test: samples of the nonparametric intercept evaluated on the test set.
- beta_train: samples of the nonparametric slope evaluated on the training set.
- beta_test: samples of the nonparametric slope evaluated on the test set.
- mu_train: samples of the predictions evaluated on the training set.
- mu_test: samples of the predictions evaluated on the test set.
- formula: the formula specified by the user.
- ecdfs: empirical distribution functions, used by the predict function.
- opts: the options used when running the chain.
- mu_Y, sd_Y: used with the predict function to transform predictions.
- alpha_forest: a forest object for the intercept; see the MakeForest documentation for more details.
- beta_forest: a forest object for the slope; see the MakeForest documentation for more details.
Examples

```
# NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE

num_burn <- 10 # Should be ~ 5000
num_save <- 10 # Should be ~ 5000

set.seed(1234)
f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 + 10 * x[,4] + 5 * x[,5]
gen_data <- function(n_train, n_test, P, sigma) {
  X <- matrix(runif(n_train * P), nrow = n_train)
  Z <- rnorm(n_train)
  r <- f_fried(X)
  mu <- Z * r
  X_test <- matrix(runif(n_test * P), nrow = n_test)
  Z_test <- rnorm(n_test)
  r_test <- f_fried(X_test)
  mu_test <- Z_test * r_test
  Y <- mu + sigma * rnorm(n_train)
  Y_test <- mu + sigma * rnorm(n_train)

  return(list(X = X, Y = Y, Z = Z, r = r, mu = mu, X_test = X_test, Y_test = Y_test, Z_test = Z_test, r_test = r_test, mu_test = mu_test))
}

# Simulate dataset
sim_data <- gen_data(250, 250, 100, 1)
df <- data.frame(X = sim_data$X, Y = sim_data$Y, Z = sim_data$Z)
df_test <- data.frame(X = sim_data$X_test, Y = sim_data$Y_test, Z = sim_data$Z_test)

# Fit the model
opts <- Opts(num_burn = num_burn, num_save = num_save)
fitted_vc <- vc_softbart_regression(Y ~ . -Z, "Z", df, df_test, opts = opts)

# Plot results
plot(colMeans(fitted_vc$mu_test), sim_data$mu_test)
abline(a = 0, b = 1)
```
Index

contr.ltfr, 2

gsoftbart_regression, 2

Hypers, 5

MakeForest, 6

Opts, 8

partial_dependence_probit, 9
partial_dependence_regression, 10
pdsoftbart, 11
posterior_probs, 12
predict.softbart_probit, 13
predict.softbart_regression, 14
preprocess_df, 15

quantile_normalize_bart, 16

rmse, 16

softbart, 17
softbart_probit, 18
softbart_regression, 21

vc_softbart_regression, 23