Package ‘SoftClustering’

February 4, 2019

Type Package
Title Soft Clustering Algorithms
Description It contains soft clustering algorithms, in particular approaches derived from rough set theory: Lingras & West original rough k-means, Peters' refined rough k-means, and PI rough k-means. It also contains classic k-means and a corresponding illustrative demo.
Version 1.1902.2
Author G. Peters (Ed.)
Maintainer G. Peters <peters.projects@outlook.com>
Depends R (>= 3.5)
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-02-03 23:13:55 UTC

R topics documented:

createLowerMShipMatrix .. 2
datatypeInteger .. 2
DemoDataC2D2a .. 3
HardKMeans ... 3
HardKMeansDemo .. 4
initializeMeansMatrix .. 5
initMeansC2D2a ... 6
initMeansC3D2a ... 7
initMeansC4D2a ... 7
initMeansC5D2a ... 8
normalizeMatrix .. 8
plotRoughKMeans ... 9
createLowerMShipMatrix

Create Lower Approximation

Description

Creates a lower approximation out of an upper approximation.

Usage

createLowerMShipMatrix(upperMShipMatrix)

Arguments

upperMShipMatrix

An upper approximation matrix.

Value

Returns the corresponding lower approximation.

Author(s)

G. Peters.

datatypeInteger

Rough k-Means Plotting

Description

Checks for integer.

Usage

datatypeInteger(x)

Arguments

x As a replacement for is.integer(). is.integer() delivers FALSE when the variable is numeric (as superset for integer etc.)
DemoDataC2D2a

Value

TRUE if x is integer otherwise FALSE.

Author(s)

G. Peters.

DemoDataC2D2a

A small two-dimensional dataset with two clusters for demonstration purposes. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Description

A small two-dimensional dataset with two clusters for demonstration purposes. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Usage

data(DemoDataC2D2a)

Format

Rows: objects, columns: features

Examples

data(DemoDataC2D2a)

HardKMeans

Hard k-Means

Description

HardKMeans performs classic (hard) k-means.

Usage

HardKMeans(dataMatrix, meansMatrix, nClusters, maxIterations)
Arguments

- **dataMatrix**: Matrix with the objects to be clustered. Dimension: \([nObjects \times nFeatures]\).
- **meansMatrix**: Select means derived from 1 = random (unity interval), 2 = maximum distances,\n matrix \([nClusters \times nFeatures]\) = self-defined means. Default: 2 = maximum\n distances.
- **nClusters**: Number of clusters: Integer in \([2, nObjects]\). Note, nCluster must be set even\n when meansMatrix is a matrix. For transparency, nClusters will not be overrid-\n den by the number of clusters derived from meansMatrix. Default: nClusters=2.
- **maxIterations**: Maximum number of iterations. Default: maxIterations=100.

Value

- \$upperApprox\$: Obtained upper approximations \([nObjects \times nClusters]\). Note: Apply function\n createLowerMShipMatrix() to obtain lower approximations; and for the boundary: boundary = upperApprox * lowerApprox.
- \$cClusterMeans\$: Obtained means \([nClusters \times nFeatures]\).
- \$nIterations\$: Number of iterations.

Author(s)

References

Examples

```r
# An illustrative example clustering the sample data set DemoDataC2D2a.txt
HardKMeans(DemoDataC2D2a, 2, 2, 100)
```

HardKMeansDemo

Hard k-Means Demo

Description

HardKMeansDemo shows how hard k-means performs stepwise. The number of features is set to 2\nand the maximum number of iterations is 100.

Usage

```r
HardKMeansDemo(dataMatrix, meansMatrix, nClusters)
```
initializeMeansMatrix

Description

`initializeMeansMatrix` delivers an initial means matrix.

Arguments

- **dataMatrix**: Matrix with the objects to be clustered. Dimension: [nObjects x nFeatures]. Default: no default set.
- **nClusters**: Number of clusters: Integer in [2, min(5, nObjects-1)]. Note, nCluster must be set even when meansMatrix is a matrix. For transparency, nClusters will not be overridden by the number of clusters derived from meansMatrix. Default: nClusters=2.

Value

None.

Author(s)

G. Peters.

References

Examples

```
# Clustering the data set DemoDataC2D2a.txt (nClusters=2, random initial means)
HardKMeansDemo(DemoDataC2D2a,1,2)
# Clustering the data set DemoDataC2D2a.txt (nClusters=2,3,4; initially set means)
HardKMeansDemo(DemoDataC2D2a,initMeansC2D2a,2)
HardKMeansDemo(DemoDataC2D2a,initMeansC3D2a,3)
HardKMeansDemo(DemoDataC2D2a,initMeansC4D2a,4)
# Clustering the data set DemoDataC2D2a.txt (nClusters=5, initially set means)
# It leads to an empty cluster: a (rare) case for an abnormal termination of k-means.
HardKMeansDemo(DemoDataC2D2a,initMeansC5D2a,5)
```
Usage

initializeMeansMatrix(dataMatrix, nClusters, meansMatrix)

Arguments

dataMatrix Matrix with the objects as basis for the means matrix.
nClusters Number of clusters.
meansMatrix Select means derived from 1 = random (unity interval), 2 = maximum distances, matrix [nClusters x nFeatures] = self-defined means (will be returned unchanged). Default: 2 = maximum distances.

Value

Initial means matrix [nClusters x nFeatures].

Author(s)

initMeansC2D2a

Two-dimensional dataset with two initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Description

Two-dimensional dataset with two initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Usage

data(initMeansC2D2a)

Format

Rows: objects, columns: features

Examples

data(initMeansC2D2a)
initMeansC3D2a

Two-dimensional dataset with three initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Description

Two-dimensional dataset with three initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Usage

data(initMeansC3D2a)

Format

Rows: objects, columns: features

Examples

data(initMeansC3D2a)

initMeansC4D2a

Two-dimensional dataset with four initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Description

Two-dimensional dataset with four initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Usage

data(initMeansC4D2a)

Format

Rows: objects, columns: features

Examples

data(initMeansC4D2a)
initMeansC5D2a Two-dimensional dataset with five initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Description

Two-dimensional dataset with five initial cluster means for the dataset DemoDataC2D2a. See examples in the Help/Description of a function, e.g. for HardKMeansDemo().

Usage

data(initMeansC5D2a)

Format

Rows: objects, columns: features

Examples

data(initMeansC5D2a)

normalizeMatrix Matrix Normalization

Description

normalizeMatrix delivers a normalized matrix.

Usage

normalizeMatrix(dataMatrix, normMethod, bycol)

Arguments

dataMatrix Matrix with the objects to be normalized.
normMethod 1 = unity interval, 2 = normal distribution (sample variance), 3 = normal distribution (population variance). Any other value returns the matrix unchanged. Default: meansMatrix = 1 (unity interval).
bycol TRUE = columns are normalized, i.e., each column is considered separately (e.g., in case of the unity interval and a column colA: max(colA)=1 and min(colA)=0). For bycol = FALSE rows are normalized. Default: bycol = TRUE (columns are normalized).
plotRoughKMeans

Value

Normalized matrix.

Author(s)

plotRoughKMeans

Rough k-Means Plotting

Description

plotRoughKMeans plots the rough clustering results in 2D. Note: Plotting is limited to a maximum of 5 clusters.

Usage

plotRoughKMeans(dataMatrix, upperMShipMatrix, meansMatrix, plotDimensions, colouredPlot)

Arguments

- **dataMatrix**: Matrix with the objects to be plotted.
- **upperMShipMatrix**: Corresponding matrix with upper approximations.
- **meansMatrix**: Corresponding means matrix.
- **plotDimensions**: An integer vector of the length 2. Defines the to be plotted feature dimensions, i.e., \(\text{max(plotDimensions = c(1:2))} \leq \text{nFeatures} \). Default: \(\text{plotDimensions = c(1:2)} \).
- **colouredPlot**: Select TRUE = colouredPlot plot, FALSE = black/white plot.

Value

2D-plot of clustering results. The boundary objects are represented by stars (*).

Author(s)

G. Peters.
RoughKMeans_LW

Lingras & West's Rough k-Means

Description

RoughKMeans_LW performs Lingras & West's k-means clustering algorithm. The commonly accepted relative threshold is applied.

Usage

RoughKMeans_LW(dataMatrix, meansMatrix, nClusters, maxIterations, threshold, weightLower)

Arguments

- **dataMatrix**: Matrix with the objects to be clustered. Dimension: [nObjects x nFeatures].
- **meansMatrix**: Select means derived from 1 = random (unity interval), 2 = maximum distances, matrix [nClusters x nFeatures] = self-defined means. Default: 2 = maximum distances.
- **nClusters**: Number of clusters: Integer in [2, nObjects). Note, nCluster must be set even when meansMatrix is a matrix. For transparency, nClusters will not be overridden by the number of clusters derived from meansMatrix. Default: nClusters=2.
- **maxIterations**: Maximum number of iterations. Default: maxIterations=100.
- **threshold**: Relative threshold in rough k-means algorithms (threshold >= 1.0). Default: threshold = 1.5.
- **weightLower**: Weight of the lower approximation in rough k-means algorithms (0.0 <= weightLower <= 1.0). Default: weightLower = 0.7.

Value

- **upperApprox**: Obtained upper approximations [nObjects x nClusters]. Note: Apply function createLowerMShipMatrix() to obtain lower approximations; and for the boundary: boundary = upperApprox - lowerApprox.
- **clusterMeans**: Obtained means [nClusters x nFeatures].
- **nIterations**: Number of iterations.

Author(s)

References

Examples

An illustrative example clustering the sample data set DemoDataC2D2a.txt
RoughKMeans_LW(DemoDataC2D2a, 2, 2, 100, 1.5, 0.7)

Description

RoughKMeans_PE performs Peters’ k-means clustering algorithm.

Usage

RoughKMeans_PE(dataMatrix, meansMatrix, nClusters, maxIterations, threshold, weightLower)

Arguments

- **dataMatrix**: Matrix with the objects to be clustered. Dimension: [nObjects x nFeatures].
- **meansMatrix**: Select means derived from 1 = random (unity interval), 2 = maximum distances, matrix [nClusters x nFeatures] = self-defined means. Default: 2 = maximum distances.
- **nClusters**: Number of clusters: Integer in [2, nObjects). Note, nCluster must be set even when meansMatrix is a matrix. For transparency, nClusters will not be overridden by the number of clusters derived from meansMatrix. Default: nClusters=2.
- **maxIterations**: Maximum number of iterations. Default: maxIterations=100.
- **threshold**: Relative threshold in rough k-means algorithms (threshold >= 1.0). Default: threshold = 1.5.
- **weightLower**: Weight of the lower approximation in rough k-means algorithms (0.0 <= weight-Lower <= 1.0). Default: weightLower = 0.7.
Value

$upper\text{Approx}$: Obtained upper approximations [nObjects x nClusters]. Note: Apply function createLowerMShipMatrix\text{()}} to obtain lower approximations; and for the boundary: $boundary = upper\text{Approx} - lower\text{Approx}$.

$cluster\text{Means}$: Obtained means [nClusters x nFeatures].

$n\text{Iterations}$: Number of iterations.

Author(s)

References

Examples

An illustrative example clustering the sample data set DemoDataC2D2a.txt
RoughKMeans_PE(DemoDataC2D2a, 2, 2, 100, 1.5, 0.7)

RoughKMeans_PI \hspace{1cm} PI \hspace{1cm} Rough k-Means

Description

RoughKMeans_PI performs pi k-means clustering algorithm in its standard case. Therefore, weights are not required.

Usage

RoughKMeans_PI(dataMatrix, meansMatrix, nClusters, maxIterations, threshold)
Arguments

dataMatrix Matrix with the objects to be clustered. Dimension: [nObjects x nFeatures].
meansMatrix Select means derived from 1 = random (unity interval), 2 = maximum distances, matrix [nClusters x nFeatures] = self-defined means. Default: 2 = maximum distances.
nClusters Number of clusters: Integer in [2, nObjects). Note, nCluster must be set even when meansMatrix is a matrix. For transparency, nClusters will not be overridden by the number of clusters derived from meansMatrix. Default: nClusters=2.
maxIterations Maximum number of iterations. Default: maxIterations=100.
threshold Relative threshold in rough k-means algorithms (threshold >= 1.0). Default: threshold = 1.5.

Value

$upperApprox$: Obtained upper approximations [nObjects x nClusters]. Note: Apply function createLowerMShipMatrix() to obtain lower approximations; and for the boundary: boundary = upperApprox - lowerApprox.

$clusterMeans$: Obtained means [nClusters x nFeatures].
$nIterations$: Number of iterations.

Author(s)

References

Examples

An illustrative example clustering the sample data set DemoDataC2D2a.txt
RoughKMeans_PI(DemoDataC2D2a, 2, 2, 100, 1.5)
RoughKMeans_SHELL

Description

RoughKMeans_SHELL performs rough k-means algorithms with options for normalization and a 2D-plot of the results.

Usage

`RoughKMeans_SHELL(clusterAlgorithm, dataMatrix, meansMatrix, nClusters, normalizationMethod, maxIterations, plotDimensions, colouredPlot, threshold, weightLower)`

Arguments

- `clusterAlgorithm`: Select 0 = classic k-means, 1 = Lingras & West’s rough k-means, 2 = Peters’ rough k-means, 3 = π rough k-means. Default: `clusterAlgorithm = 3` (π rough k-means).
- `dataMatrix`: Matrix with the objects to be clustered. Dimension: \([nObjects \times nFeatures]\).
- `meansMatrix`: Select means derived from 1 = random (unity interval), 2 = maximum distances, matrix \([nClusters \times nFeatures]\) = self-defined means. Default: 2 = maximum distances.
- `nClusters`: Number of clusters: Integer in \([2, nObjects)\). Note, `nCluster` must be set even when `meansMatrix` is a matrix. For transparency, `nClusters` will not be overridden by the number of clusters derived from `meansMatrix`. Default: `nClusters=2`. Note: Plotting is limited to a maximum of 5 clusters.
- `normalizationMethod`: 1 = unity interval, 2 = normal distribution (sample variance), 3 = normal distribution (population variance). Any other value returns the matrix unchanged. Default: `meansMatrix = 1` (unity interval).
- `maxIterations`: Maximum number of iterations. Default: `maxIterations=100`.
- `plotDimensions`: An integer vector of the length 2. Defines the to be plotted feature dimensions, i.e., `max(plotDimensions = c(1:2)) <= nFeatures`. Default: `plotDimensions = c(1:2)`.
- `colouredPlot`: Select TRUE = colouredPlot plot, FALSE = black/white plot.
- `threshold`: Relative threshold in rough k-means algorithms (threshold >= 1.0). Default: `threshold = 1.5`. Note: It can be ignored for classic k-means.
- `weightLower`: Weight of the lower approximation in rough k-means algorithms (0.0 <= weightLower <= 1.0). Default: `weightLower = 0.7`. Note: It can be ignored for classic k-means and π rough k-means.
Value

2D-plot of clustering results. The boundary objects are represented by stars (*).

$\text{upper}\text{Approx}$: Obtained upper approximations $[n\text{Objects} \times n\text{Clusters}]$. Note: Apply function $\text{createLowerMShipMatrix()}$ to obtain lower approximations; and for the boundary: $\text{boundary} = \text{upper}\text{Approx} - \text{lower}\text{Approx}$.

$\text{cluster}\text{Means}$: Obtained means $[n\text{Clusters} \times n\text{Features}]$.

$n\text{Iterations}$: Number of iterations.

Author(s)

References

Examples

An illustrative example clustering the sample data set DemoDataC2D2a.txt
RoughKMeans_SHELL(3, DemoDataC2D2a, 2, 2, 1, 100, c(1:2), TRUE, 1.5, 0.7)
Index

*Topic datasets

 *DemoDataC2D2a, 3
 *initMeansC2D2a, 6
 *initMeansC3D2a, 7
 *initMeansC4D2a, 7
 *initMeansC5D2a, 8

createLowerMShipMatrix, 2

datatypeInteger, 2
demoDataC2D2a, 3

HardKMeans, 3
HardKMeansDemo, 4

initializeMeansMatrix, 5
initMeansC2D2a, 6
initMeansC3D2a, 7
initMeansC4D2a, 7
initMeansC5D2a, 8

normalizeMatrix, 8

plotRoughKMeans, 9

RoughKMeans_LW, 10
RoughKMeans_PE, 11
RoughKMeans_PI, 12
RoughKMeans_SHELL, 14