Package ‘Sojourn.Data’

May 3, 2019

Type Package
Title Supporting Objects for Sojourn Accelerometer Methods
Version 0.1.0
Depends R (>= 3.1.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
URL https://github.com/paulhibbing/Sojourn.Data
BugReports https://github.com/paulhibbing/Sojourn.Data/issues
Imports caret, nnet
NeedsCompilation no
Author Paul R. Hibbing [aut, cre], Kate Lyden [aut]
Maintainer Paul R. Hibbing <paulhibbing@gmail.com>
Repository CRAN
Date/Publication 2019-05-03 15:40:03 UTC

R topics documented:

ALL.reg.nn ... 2
cent ... 2
cent.1 ... 3
Description

Uniaxial neural network for use in original triaxial Sojourn method

Usage

```
ALL.reg.nn
```

Format

From `print(ALL.reg.nn)`:

- A 6-25-1 network with 207 weights
- Inputs: X10. X25. X50. X75. X90. acf
- Output(s): oxy.METS.calculated options were - skip-layer connections linear output units

Description

Centering coefficients for uniaxial nnetinputs

Usage

```
cent
```

Format

A named numeric vector
Centering coefficients for triaxial nnetinputs

Description

Centering coefficients for triaxial nnetinputs

Usage

cent.1

Format

A named numeric vector

class.nnn.6

Triaxial neural network for original Sojourn method

Description

Triaxial neural network for original Sojourn method

Usage

class.nnn.6

Format

From print(class.nnn.6):
a 22-25-4 network with 767 weights inputs: X50. X75. X90. acf X10.2 X25.2 X50.2 X75.2 X90.2 acf.2 X25.3 X50.3 X75.3 X90.3 acf.3 X10.vm X25.vm X50.vm X75.vm X90.vm acf.vm inact.durations output(s): train.6$act.type options were - skip-layer connections softmax modelling decay=0.03
Description

Uniaxial neural network for use in the original uniaxial Sojourn method

Usage

reg.nn

Format

From print(reg.nn): a 6-25-1 network with 207 weights inputs: X10. X25. X50. X75. X90. acf output(s): oxy.METS.calculated options were - skip-layer connections linear output units

Description

Scaling coefficients for uniaxial nnetinputs

Usage

scal

Format

numeric vector of size 6

Description

Scaling coefficients for triaxial nnetinputs

Usage

scal.1

Format

numeric vector of size 25
Sojourn.Data: Models for Sojourn Accelerometer Methods

Description

Sojourn methods rely on large objects, which take up too much space in an ordinary package. Thus, the objects are stored in this data-only package, meant to complement the Sojourn package.

youth_grids

Data frame containing grid values for the youth Sojourn method

Description

Data frame containing grid values for the youth Sojourn method

Usage

youth_grids

Format

data frame with 4 rows and 14 columns

youth_hipCounts

Neural network for youth Sojourn method, taking activity count data from hip-worn monitors

Description

Neural network for youth Sojourn method, taking activity count data from hip-worn monitors

Usage

youth_hipCounts

Format

From print(youth_hipCounts):
a 9-15-3 network with 198 weights inputs: Age SexM BMI VM_Q10 VM_Q25 VM_Q50 VM_Q75 VM_Q90 VM_lag1 output(s): .outcome options were - softmax modelling
youth_hipRaw *Neural network for youth Sojourn method, taking raw accelerometer data from hip-worn monitors*

Description

Neural network for youth Sojourn method, taking raw accelerometer data from hip-worn monitors

Usage

`youth_hipRaw`

Format

From `print(youth_hipRaw)`:

a 9-20-3 network with 263 weights inputs: Age SexM BMI ENMO_Q10 ENMO_Q25 ENMO_Q50 ENMO_Q75 ENMO_Q90 ENMO_lag1 output(s): .outcome options were - softmax modelling decay=0.1

youth_wristCounts *Neural network for youth Sojourn method, taking activity count data from non-dominant-wrist-worn monitors*

Description

Neural network for youth Sojourn method, taking activity count data from non-dominant-wrist-worn monitors

Usage

`youth_wristCounts`

Format

From `print(youth_wristCounts)`:
a 9-15-3 network with 198 weights inputs: Age SexM BMI VM_Q10 VM_Q25 VM_Q50 VM_Q75 VM_Q90 VM_lag1 output(s): .outcome options were - softmax modelling decay=0.1
Neural network for youth Sojourn method, taking raw accelerometer data from non-dominant-wrist-worn monitors

Description

Neural network for youth Sojourn method, taking raw accelerometer data from non-dominant-wrist-worn monitors

Usage

`youth_wristRaw`

Format

From `print(youth_wristRaw)`: a 9-15-3 network with 198 weights inputs: Age SexM BMI ENMO_Q10 ENMO_Q25 ENMO_Q50 ENMO_Q75 ENMO_Q90 ENMO_lag1 output(s): .outcome options were - softmax modelling decay=0.1
Index

*Topic **datasets**

- ALL.reg.nn, 2
- cent, 2
- cent.1,3
- class.nnn.6, 3
- reg.nn, 4
- scal, 4
- scal.1,4
- youth_grids, 5
- youth_hipCounts, 5
- youth_hipRaw, 6
- youth_wristCounts, 6
- youth_wristRaw, 7

ALL.reg.nn, 2

- cent, 2
- cent.1,3
- class.nnn.6, 3

reg.nn, 4

- scal, 4
- scal.1,4

Sojourn.Data, 5
Sojourn.Data-package (Sojourn.Data), 5

- youth_grids, 5
- youth_hipCounts, 5
- youth_hipRaw, 6
- youth_wristCounts, 6
- youth_wristRaw, 7