Package ‘SpNMF’

October 12, 2022

Type Package

Title Supervised NMF

Version 0.1.1

Description Non-negative Matrix Factorization (NMF) is a powerful tool for identifying the key features of microbial communities and a dimension-reduction method. When we are interested in the differences between the structures of two groups of communities, supervised NMF (Yun Cai, Hong Gu and Tobby Kenney (2017),<doi:10.1186/s40168-017-0323-1>) provides a better way to do this, while retaining all the advantages of NMF -- such as interpretability, and being based on a simple biological intuition.

Depends R (>= 3.2.3),

Imports NMF, stats

License GPL-3

Encoding UTF-8

LazyData true

NeedsCompilation no

Maintainer Yun Cai <Yun.Cai@dal.ca>

Author Yun Cai [aut, cre],
Hong Gu [aut],
Toby Kenney [aut]

Repository CRAN

Date/Publication 2018-10-03 07:50:03 UTC

R topics documented:

chtv ... 2
getT .. 3
spdata .. 4
spnmf ... 4

Index 6
chtyn is used to get number of types for the data.

Usage

```r
chtyn(data, y, k, maxr)
```

Arguments

- `data`: an optional n by p count data matrix. The p columns of the matrix are different variables and the n rows are samples. Each column should contain at least one non-zero entry. When n = 1, it is a row vector.
- `y`: a binary variable contains classification information of the data. Usually one group is labelled as "0" and the other as "1".
- `k`: a value gives the number of folds used in cross validation when choosing number of types.
- `maxr`: a number gives the upper bound of the number of types.

Value

- `r1`: the suggested number of types for class labeled as 1.
- `r2`: the suggested number of types for class labeled as 0.

Author(s)

Yun Cai, Hong Gu and Toby Kenney

References

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization

Examples

```r
## we use the simulated data spdata here
## the spdata is simulated from feature matrix combined by 2
## 3 types features from one group and 3 types from the other.
## choose number of types using our function
## # 2-folds cross validation is used here
## # the upper bound of number of types for both classes is 2
## # remove all zero variables from the data
spdata.rm = spdata[!colSums(spdata) == 0]
```
```r
y = c(rep(1,4),rep(0,4))
types = chty(spdata.rm,y,2,2)
# number of types for class labeled as 1
nmb1 = types$r1
# number of types for class labeled as 0
nmb2 = types$r2
```

getT

Description

getT is used to calculate the combined feature matrix.

Usage

getT(data, y, Tr1, Tr2)

Arguments

- `data` - an optional n by p count data matrix. The p columns of the matrix are different variables and the n rows are samples. Each column should contain at least one non zero entry. When n = 1, it is a row vector.
- `y` - a binary variable contains classification information of the data. Usually one group is labelled as "0" and the other as "1".
- `Tr1` - a value gives the number of types for class labeled as 1. The appropriate Tr1 can also be estimated from function `chty`.
- `Tr2` - a value gives the number of types for class labeled as 0. The appropriate Tr2 can also be estimated from function `chty`.

Details

getT is used to calculate the combined feature matrix. The data used in getT should contain samples from both classes. If feature matrix is needed for only one class, `basis(NMF(data; Tr; "KL"))` can be used.

Value

- `T` - a feature matrix in dimension p by r. It is a combined feature matrix contains information from both classes.

Author(s)

Yun Cai, Hong Gu and Tobby Kenney

References

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization
Examples

get feature matrix with rank 2 for one group and rank 3 for the other of the simulated spdata
y = c(rep(1,4), rep(0,4))
T.eg = getT(spdata, y, 2, 3)

Description

The spdata is simulated from poisson distribution with mean as the product of feature and weight matrix. The feature matrix has 2804 variables and is combined by 2 types features from one group and 3 types from the other. The weight matrix is generated from uniform distribution on 0, 1.

Format

The format is: int [1:80, 1:2804] 5 12 7 10 14 1 12 18 4 26 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:80] "ibd.old0" "ibd.old0" "ibd.old0" "ibd.old0"$: NULL

Details

The spdata has a dimension of 80 by 2804, 40 labeled as class one and the left labeled as class two.

Examples

data(spdata)

Description

The spnmf is used to fit supervised Non-negative Matrix Factorization model on data when the combined feature matrix is known.

Usage

spnmf(data, Tp)

Arguments

data
 an optional n by p count data matrix. The p columns of the matrix are different variables and the n rows are samples. Each column should contain at least one non zero entry. When n = 1, it is a row vector.

Tp
 a combined feature matrix in dimension p by r. p is the number of variables and r is the number of types. Tp can also be calculated from function getT.
spnmf

Details

The function is based on R package NMF.

Value

\[W \]
the supervised weight matrix in dimension \(n \) by \(r \). \(n \) is the number of observations. \(r \) is the number of type for the data. It is the coefficients of the feature matrix.

\[\log lh \]
the log-likelihood of the supervised NMF model.

Author(s)

Yun Cai, Hong Gu and Toby Kenney

References

Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization

Examples

```r
# an example of classification based on supervised nmf results
# spdata consists of two classes, the first 40 samples are from class 1 and the left from class 2
# label each observation's class as 1 or 0
y = c(rep(1, 4), rep(0, 4))
# split the data half as training data the other half as test data
y.train = y.test = c(rep(1, 2), rep(0, 2))
spdata.train = spdata[c(1:2, 41:42), ]
spdata.test = spdata[c(21:22, 61:62), ]
# remove all zero columns
spdata.train.rm = spdata.train[, colSums(spdata.train) != 0]
# remove the same variables from test data
spdata.test.rm = spdata.test[, colSums(spdata.train) != 0]

# get feature matrix with rank 2 and 3 for the two groups
T.eg = getT(spdata.train.rm, y.train, 2, 3)
# get weight matrix
rs.train = spnmf(spdata.train.rm, T.eg)
w.train = rs.train$W
rs.test = spnmf(spdata.test.rm, T.eg)
w.test = rs.test$W
# the weight matrix can be used to do classification
md.train = glm(y.train ~ ., data = data.frame(w.train), family = binomial(link = logit))
# predict the test data
pred = predict(md.train, newdata = data.frame(w.test), type = "response")
```
Index

* datasets
 spdata, 4

chtty, 2
getT, 3
spdata, 4
spnnmf, 4