Package ‘SpatMCA’

November 21, 2023

Title Regularized Spatial Maximum Covariance Analysis
Version 1.0.4
URL https://github.com/egpivo/SpatMCA
BugReports https://github.com/egpivo/SpatMCA/issues
Description Provide regularized maximum covariance analysis incorporating smoothness,
sparseness and orthogonality of couple patterns by using the alternating direction method
of multipliers algorithm. The method can be applied to either regularly or irregularly
spaced data, including 1D, 2D, and 3D (Wang and Huang, 2017 <doi:10.1002/env.2481>).
License GPL-3
Depends R (>= 3.4.0)
Imports Rcpp, RcppParallel (>= 0.11.2), MASS, ggplot2, scales
LinkingTo Rcpp, RcppArmadillo, RcppParallel
Suggests testthat (>= 2.1.0), RColorBrewer, plot3D, pracma, spTimer,
fields, maps, covr, V8
SystemRequirements GNU make
NeedsCompilation yes
Maintainer Wen-Ting Wang <egpivo@gmail.com>
Encoding UTF-8
RoxygenNote 7.2.3
Config/testthat/edition 3
Author Wen-Ting Wang [aut, cre] (<https://orcid.org/0000-0003-3051-7302>),
Hsin-Cheng Huang [aut] (<https://orcid.org/0000-0002-5613-349X>)
Repository CRAN
Date/Publication 2023-11-21 14:10:12 UTC

R topics documented:

SpatMCA-package ... 2
plot.spatmca ... 2
spatmca ... 3
plot.spatmca

SpatMCA-package

Description

A new regularization approach to estimate the leading coupled patterns via smoothness and sparseness penalties for spatial bivariate data that may be irregularly located in space.

Details

Package: SpatMCA
Type: Package
Version: 1.0.4
Date: 2023-11-20
License: GPL version 2 or newer

Author(s)

Wen-Ting Wang <egpivo@gmail.com> and Hsin-Cheng Huang <hchuang@stat.sinica.edu.tw>

plot.spatmca

Description

Display the cross-validation results

Usage

```r
## S3 method for class 'spatmca'
plot(x, ...)
```

Arguments

- `x`: An spatmca class object for `plot` method
- `...`: Not used directly

Value

NULL
spatmca

Regularized spatial MCA

Description

Produce spatial coupled patterns at the designated locations according to the specified tuning parameters or the tuning parameters selected by M-fold cross-validation.

Usage

```r
spatmca(
  x1,
  x2,
  Y1,
  Y2,
  M = 5,
  K = NULL,
  is_K_selected = ifelse(is.null(K), TRUE, FALSE),
  tau1u = NULL,
  tau2u = NULL,
  tau1v = NULL,
  tau2v = NULL,
  x1New = NULL,
  x2New = NULL,
  center = TRUE,
)```

Examples

```r
p <- q <- 5
n <- 50
x1 <- matrix(seq(-7, 7, length = p), nrow = p, ncol = 1)
x2 <- matrix(seq(-7, 7, length = q), nrow = q, ncol = 1)
u <- exp(-x1^2) / norm(exp(-x1^2), "F")
v <- exp(-(x2 - 2)^2) / norm(exp(-(x2 - 2)^2), "F")
Sigma <- array(0, c(p + q, p + q))
Sigma[1:p, 1:p] <- diag(p)
Sigma[(p + 1):(p + q), (p + 1):(p + q)] <- diag(q)
Sigma[(p + 1):(p + q), 1:p] <- u %*% t(v)
oise <- MASS::mvrnorm(n, mu = rep(0, p + q), Sigma = 0.001 * diag(p + q))
Y <- MASS::mvrnorm(n, mu = rep(0, p + q), Sigma = Sigma) + noise
Y1 <- Y[, 1:p]
Y2 <- Y[, -(1:p)]
cv_1D <- spatmca(x1, x2, Y1, Y2, num_cores = 2)
plot(cv_1D)
```
maxit = 100,
thr = 1e-04,
are_all_tuning_parameters_selected = FALSE,
num_cores = NULL
)

Arguments

x1 Location matrix \((p \times d)\) corresponding to Y1. Each row is a location. \(d = 1, 2\)
is the dimension of locations.

x2 Location matrix \((q \times d)\) corresponding to Y2. Each row is a location.

Y1 Data matrix \((n \times p)\) of the first variable stores the values at \(p\) locations with
sample size \(n\).

Y2 Data matrix \((n \times q)\) of the second variable stores the values at \(q\) locations with
sample size \(n\).

M Optional number of folds; default is 5.

K Optional user-supplied number of coupled patterns; default is NULL. If K is
NULL or is_K_selected is TRUE, K is selected automatically.

is_K_selected If TRUE, K is selected automatically; otherwise, is_K_selected is set to be user-
supplied K. Default depends on user-supplied K.

tau1u Optional user-supplied numeric vector of a nonnegative smoothness parameter
sequence corresponding to Y1. If NULL, 10 tau1u values in a range are used.

tau2u Optional user-supplied numeric vector of a nonnegative smoothness parameter
sequence corresponding to Y1. If NULL, 10 tau2u values in a range are used.

tau1v Optional user-supplied numeric vector of a nonnegative smoothness parameter
sequence corresponding to Y2. If NULL, 10 tau1v values in a range are used.

tau2v Optional user-supplied numeric vector of a nonnegative smoothness parameter
sequence corresponding to Y2. If NULL, 10 tau2v values in a range are used.

x1New New location matrix corresponding to Y1. If NULL, it is x1.

x2New New location matrix corresponding to Y2. If NULL, it is x2.

center If TRUE, center the columns of Y. Default is FALSE.

maxit Maximum number of iterations. Default value is 100.

thr Threshold for convergence. Default value is \(10^{-4}\).

are_all_tuning_parameters_selected
If TRUE, the K-fold CV performs to select 4 tuning parameters simultaneously.
Default value is FALSE.

num_cores Number of cores used to parallel computing. Default value is NULL (See
RcppParallel::defaultNumThreads())

Details

The optimization problem is

\[
\max_{U, V} \frac{1}{n} \text{tr}(U'Y_1'Y_2V) - \tau_{1u} \text{tr}(U'\Omega_1 U) - \tau_{2u} \sum_{k=1}^{K} \sum_{j=1}^{p} |u_{jk}| - \tau_{1v} \text{tr}(V'\Omega_2 V) - \tau_{2v} \sum_{k=1}^{K} \sum_{j=1}^{q} |v_{jk}|,
\]
subject to \( U'U = V'V = I_K \), where \( Y_1 \) and \( Y_2 \) are two data matrices, \( \Omega_1 \) and \( \Omega_2 \) are two smoothness matrix, \( V = \{ v_{jk} \} \), and \( U = \{ u_{jk} \} \).

**Value**

A list of objects including

- \( \text{Uestfn} \): Estimated patterns for \( Y_1 \) at the new locations, \( x_{1\text{New}} \).
- \( \text{Vestfn} \): Estimated patterns for \( Y_2 \) at the new locations, \( x_{2\text{New}} \).
- \( \text{Dest} \): Estimated singular values.
- \( \text{crosscov} \): Estimated cross-covariance matrix between \( Y_1 \) and \( Y_2 \).
- \( \text{stau1u} \): Selected \( \tau_{1u} \).
- \( \text{stau2u} \): Selected \( \tau_{2u} \).
- \( \text{stau1v} \): Selected \( \tau_{1v} \).
- \( \text{stau2v} \): Selected \( \tau_{2v} \).
- \( \text{cv1} \): \( \text{cv} \) scores for \( \tau_{1u} \) and \( \tau_{1v} \) when \( \text{are_all_tuning_parameters_selected} \) is \( \text{FALSE} \).
- \( \text{cv2} \): \( \text{cv} \) scores for \( \tau_{2u} \) and \( \tau_{2v} \) when \( \text{are_all_tuning_parameters_selected} \) is \( \text{FALSE} \).
- \( \text{cvall} \): \( \text{cv} \) scores for \( \tau_{1u} \), \( \tau_{2u} \), \( \tau_{1v} \) and \( \tau_{2v} \) when \( \text{are_all_tuning_parameters_selected} \) is \( \text{TRUE} \).
- \( \text{tau1u} \): Sequence of \( \tau_{1u} \)-values used in the process.
- \( \text{tau2u} \): Sequence of \( \tau_{2u} \)-values used in the process.
- \( \text{tau1v} \): Sequence of \( \tau_{1v} \)-values used in the process.
- \( \text{tau2v} \): Sequence of \( \tau_{2v} \)-values used in the process.

**Author(s)**

Wen-Ting Wang and Hsin-Cheng Huang

**References**


**Examples**

```r
originalPar <- par(no.readonly = TRUE)
The following examples only use two threads for parallel computing.
10: regular locations
p <- q <- 10
n <- 100
x1 <- matrix(seq(-7, 7, length = p), nrow = p, ncol = 1)
x2 <- matrix(seq(-7, 7, length = q), nrow = q, ncol = 1)
u <- exp(-x1^2) / norm(exp(-x1^2), "F")
v <- exp(-(x2 - 2)^2) / norm(exp(-(x2 - 2)^2), "F")
Sigma <- array(0, c(p + q, p + q))
Sigma[1:p, 1:p] <- diag(p)
```
Sigma[(p + 1):(p + q), (p + 1):(p + q)] <- diag(p)
Sigma[1:p, (p + 1):(p + q)] <- u %*% t(v)
Sigma[(p + 1):(p + q), 1:p] <- t(Sigma[1:p, (p + 1):(p + q)])
noise <- MASS::mvrnorm(n, mu = rep(0, p + q), Sigma = 0.001 * diag(p + q))
Y <- MASS::mvrnorm(n, mu = rep(0, p + q), Sigma = Sigma) + noise
Y1 <- Y[, 1:p]
Y2 <- Y[, -(1:p)]
cv1 <- spatmca(x1, x2, Y1, Y2, num_cores = 2)

par(mfrow = c(2, 1))
plot(x1, cv1$Uestfn[, 1], type="l", main = "1st pattern for Y1")
plot(x1, cv1$Vestfn[, 1], type="l", main = "1st pattern for Y2")
## Avoid changing the global environment
par(originalPar)

# The following examples will be executed more than 5 secs or including other libraries.
## 1D: artificial irregular locations
rmLoc1 <- sample(1:p, 3)
rmLoc2 <- sample(1:q, 4)
x1Rm <- x1[-rmLoc1]
x2Rm <- x2[-rmLoc2]
Y1Rm <- Y1[, -rmLoc1]
Y2Rm <- Y2[, -rmLoc2]
x1New <- as.matrix(seq(-7, 7, length = 100))
x2New <- as.matrix(seq(-7, 7, length = 50))
cv2 <- spatmca(x1 = x1Rm,
               x2 = x2Rm,
               Y1 = Y1Rm,
               Y2 = Y2Rm,
               x1New = x1New,
               x2New = x2New)
par(mfrow = c(2, 1))
plot(x1New, cv2$Uestfn[, 1], type='l', main = "1st pattern for Y1")
plot(x2New, cv2$Vestfn[, 1], type='l', main = "1st pattern for Y2")
par(originalPar)

## 2D real data
## Daily 8-hour ozone averages and maximum temperature obtained from 28 monitoring 
## sites of NewYork, USA. It is of interest to see the relationship between the ozone 
## and the temperature through the coupled patterns.

library(spTimer)
library(pracma)
library(fields)
library(maps)
data(NYdata)
NYsite <- unique(cbind(NYdata[, 1:3]))
date <- as.POSIXct(seq(as.Date("2006-07-01"), as.Date("2006-08-31"), by = 1))
cMAXTMP <- matrix(NYdata[,8], 62, 28)
oz <- matrix(NYdata[,7], 62, 28)
rmNa <- !colSums(is.na(oz))
temp <- detrend(matrix(cMAXTMP[, rmNa], nrow = nrow(cMAXTMP)), "linear")
```r
ozone <- detrend(matrix(oz[, rmNa], nrow = nrow(oz)), "linear")
x1 <- NYsite[, rmNa, 2:3]
cv <- spatmca(x1, x1, temp, ozone)
par(mfrow = c(2, 1))
quilt.plot(x1, cv$Uestfn[, 1],
xlab = "longitude",
ylab = "latitude",
main = "1st spatial pattern for temperature")
map(database = "state", regions = "new york", add = TRUE)
quilt.plot(x1, cv$Vestfn[, 1],
xlab = "longitude",
ylab = "latitude",
main = "1st spatial pattern for ozone")
map(database = "state", regions = "new york", add = TRUE)
par(originalPar)

Time series for the coupled patterns
tstemp <- temp %*% cv$Uestfn[,1]
tsozone <- ozone %*% cv$Vestfn[,1]
corr <- cor(tstemp, tsozone)
plot(date, tstemp / sd(tstemp), type="l", main = "Time series", ylab="", xlab="month")
lines(date, tsozone / sd(tsozone), col=2)
legend("bottomleft", c("Temperature (standardized)", "Ozone (standardized)"), col = 1:2, lty = 1:1)
mtext(paste("Pearson's correlation = ", round(corr, 3)), 3)

newP <- 50
xLon <- seq(-80, -72, length = newP)
xLat <- seq(41, 45, length = newP)
xxNew <- as.matrix(expand.grid(x = xLon, y = xLat))
cvNew <- spatmca(x1 = x1,
x2 = x1,
Y1 = temp,
Y2 = ozone,
K = cv$Khat,
tau1u = cv$tau1u,
tau1v = cv$tau1v,
tau2u = cv$tau2u,
tau2v = cv$tau2v,
x1New = xxNew,
x2New = xxNew)
par(mfrow = c(2, 1))
quilt.plot(xxNew, cvNew$Uestfn[, 1],
 nx = newP,
 ny = newP,
 xlab = "longitude",
 ylab = "latitude",
 main = "1st spatial pattern for temperature")
map(database = "county", regions = "new york", add = TRUE)
map.text("state", regions = "new york", cex = 2, add = TRUE)
quilt.plot(xxNew, cvNew$Vestfn[, 1],
 nx = newP,
 ny = newP,
 xlab = "longitude",
 ylab = "latitude",
 main = "1st spatial pattern for ozone")
map(database = "state", regions = "new york", add = TRUE)
```
ylab = "latitude",
main = "2nd spatial pattern for ozone")
map(database = "county", regions = "new york", add = TRUE)
map.text("state", regions = "new york", cex = 2, add = TRUE)
par(originalPar)

## 3D: regular locations
n <- 200
x <- y <- z <- as.matrix(seq(-7, 7, length = 8))
d <- expand.grid(x, y, z)
p <- q <- 8^3
Sigma3D <- array(0, c(p + q, p + q))
Sigma3D[1:p, 1:p] <- diag(p)
Sigma3D[(p + 1):(p + q), (p + 1):(p + q)] <- diag(p)
Sigma3D[1:p, (p + 1):(p + q)] <- u3D %*% t(v3D)
Sigma3D[(p + 1):(p + q), 1:p] <- t(Sigma3D[1:p, (p + 1):(p + q)])

noise3D <- MASS::mvrnorm(n, mu = rep(0, p + q), Sigma = 0.001 * diag(p + q))
Y3D <- MASS::mvrnorm(n, mu = rep(0, p + q), Sigma = Sigma3D) + noise3D
Y13D <- Y3D[, 1:p]
Y23D <- Y3D[, -(1:p)]
cv3D <- spatmca(d, d, Y13D, Y23D)

library(plot3D)
library(RColorBrewer)
cols <- colorRampPalette(brewer.pal(9, 'Blues'))(10)
isosurf3D(x, y, z,
colvar = array(cv3D$Uestfn[, 1], c(8, 8, 8)),
level = seq(min(cv3D$Uestfn[, 1]), max(cv3D$Uestfn[, 1]), length = 10),
ticktype = "detailed",
colkey = list(side = 1),
col = cols,
main = "1st estimated pattern for Y1")
isosurf3D(x, y, z,
colvar = array(cv3D$Vestfn[, 1], c(8, 8, 8)),
level = seq(min(cv3D$Vestfn[, 1]), max(cv3D$Vestfn[, 1]), length = 10),
ticktype = "detailed",
colkey = list(side = 1),
col = cols,
main = "1st estimated pattern for Y2"
Index

plot.spatmca, 2

spatmca, 3, 3
SpatMCA-package, 2