Package ‘SpatPCA’

November 13, 2023

Title Regularized Principal Component Analysis for Spatial Data

Version 1.3.5

Description Provide regularized principal component analysis incorporating smoothness, sparseness and orthogonality of eigen-functions by using the alternating direction method of multipliers algorithm (Wang and Huang, 2017, <DOI:10.1080/10618600.2016.1157483>). The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D.

License GPL-3

BugReports https://github.com/egpivo/SpatPCA/issues

Depends R (>= 3.4.0)

Imports Rcpp (>= 1.0.10), RcppParallel (>= 5.1.7), ggplot2

LinkingTo Rcpp, RcppArmadillo, RcppParallel

Suggests knitr, rmarkdown, testthat (>= 2.1.0), dplyr (>= 1.0.3), gifski, tidyr, fields, scico, plot3D, pracma, RColorBrewer, maps, covr, styler, V8

SystemRequirements GNU make

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/egpivo/SpatPCA

Config/testthat/edition 3

NeedsCompilation yes

Author Wen-Ting Wang [aut, cre] (https://orcid.org/0000-0003-3051-7302), Hsin-Cheng Huang [aut] (https://orcid.org/0000-0002-5613-349X)

Maintainer Wen-Ting Wang <egpivo@gmail.com>

Repository CRAN

Date/Publication 2023-11-13 09:33:19 UTC
R topics documented:

- SpatPCA-package ... 2
- plot.spatpca .. 2
- predict .. 3
- predictEigenfunction 4
- spatpca .. 5
- thinPlateSplineMatrix 8

Index 9

SpatPCA-package

Regularized Principal Component Analysis for Spatial Data

Description

A new regularization approach to estimate the leading spatial patterns via smoothness and sparseness penalties, and spatial predictions for spatial data that may be irregularly located in space (including 1D, 2D and 3D), and obtain the spatial prediction at the designated locations.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>SpatPCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.3.3.4</td>
</tr>
<tr>
<td>Date:</td>
<td>2021-02-11</td>
</tr>
<tr>
<td>License:</td>
<td>GPL version 3</td>
</tr>
</tbody>
</table>

Author(s)

Wen-Ting Wang <egpivo@gmail.com> and Hsin-Cheng Huang <hchuang@stat.sinica.edu.tw>

plot.spatpca

Display the cross-validation results

Description

Display the M-fold cross-validation results

Usage

```r
## S3 method for class 'spatpca'
plot(x, ...)
```
predict

Arguments

- `x`
 An spatpca class object for `plot` method

- ...
 Not used directly

Value

NULL.

See Also

`spatpca`

Examples

```r
x_1D <- as.matrix(seq(-5, 5, length = 10))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %>% t(Phi_1D) + matrix(rnorm(n = 100 * 10), 100, 10)
cv_1D <- spatpca(x = x_1D, Y = Y_1D, num_cores = 2)
plot(cv_1D)
```

predict
Spatial predictions on new locations

Description

Predict the response on new locations with the estimated spatial structures.

Usage

```r
predict(spatpca_object, x_new, eigen_patterns_on_new_site = NULL)
```

Arguments

- `spatpca_object`
 An spatpca class object

- `x_new`
 New location matrix.

- `eigen_patterns_on_new_site`
 Eigen-patterns on `x_new`

Value

A prediction matrix of `Y` at the new locations, `x_new`.

See Also

`spatpca`
Examples

1D: artificial irregular locations
x_1D <- as.matrix(seq(-5, 5, length = 10))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D) + matrix(rnorm(n = 100 * 10), 100, 10)
removed_location <- sample(1:10, 3)
removed_x_1D <- x_1D[-removed_location]
removed_Y_1D <- Y_1D[, -removed_location]
ew_x_1D <- as.matrix(seq(-5, 5, length = 20))
cv_1D <- spatpca(x = removed_x_1D, Y = removed_Y_1D, tau2 = 1:100, num_cores = 2)
predictions <- predict(cv_1D, x_new = new_x_1D)

predictEigenfunction Spatial dominant patterns on new locations

Description

Estimate K eigenfunctions on new locations

Usage

predictEigenfunction(spatpca_object, x_new)

Arguments

spatpca_object An spatpca class object
x_new New location matrix.

Value

A matrix with K Eigenfunction values on new locations.

See Also

spatpca

Examples

1D: artificial irregular locations
x_1D <- as.matrix(seq(-5, 5, length = 10))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D) + matrix(rnorm(n = 100 * 10), 100, 10)
rm_loc <- sample(1:10, 2)
x_1Drm <- x_1D[-rm_loc]
Y_1Drm <- Y_1D[, -rm_loc]
Y_1Dnew <- as.matrix(seq(-5, 5, length = 20))
spatpca

```r
library(spatpca) # Load the spatpca package
cv_1D <- spatpca(x = x_1Drm, Y = Y_1Drm, tau2 = 1:100, num_cores = 2)
dominant_patterns <- predictEigenfunction(cv_1D, x_new = x_1Dnew)
```

spatpca

Regularized PCA for spatial data

Description

Produce spatial dominant patterns and spatial predictions at the designated locations according to the specified tuning parameters or the selected tuning parameters by the M-fold cross-validation.

Usage

```r
spatpca(
  x, 
  Y, 
  M = 5, 
  K = NULL, 
  is_K_selected = ifelse(is.null(K), TRUE, FALSE), 
  tau1 = NULL, 
  tau2 = NULL, 
  gamma = NULL, 
  is_Y_detrended = FALSE, 
  maxit = 100, 
  thr = 1e-04, 
  num_cores = NULL
)
```

Arguments

- `x` Location matrix ($p \times d$). Each row is a location. d is the dimension of locations.
- `Y` Data matrix ($n \times p$) stores the values at p locations with sample size n.
- `M` Optional number of folds for cross validation; default is 5.
- `K` Optional user-supplied number of eigenfunctions; default is NULL. If K is NULL or is_K_selected is TRUE, K is selected automatically.
- `is_K_selected` If TRUE, K is selected automatically; otherwise, is_K_selected is set to be user-supplied K. Default depends on user-supplied K.
- `tau1` Optional user-supplied numeric vector of a non-negative smoothness parameter sequence. If NULL, 10 tau1 values in a range are used.
- `tau2` Optional user-supplied numeric vector of a non-negative sparseness parameter sequence. If NULL, none of tau2 is used.
- `gamma` Optional user-supplied numeric vector of a non-negative tuning parameter sequence. If NULL, 10 values in a range are used.
- `is_Y_detrended` If TRUE, center the columns of Y. Default is FALSE.
Details

An ADMM form of the proposed objective function is written as

\[
\min_{\Phi} \| Y - Y\Phi\Phi^T \|_F^2 + \tau_1 \text{tr}(\Phi^T\Omega\Phi) + \tau_2 \sum_{k=1}^{K} \sum_{j=1}^{P} |\phi_{jk}|,
\]

subject to \(\Phi^T\Phi = I_K \), where \(Y \) is a data matrix, \(\Omega \) is a smoothness matrix, and \(\Phi = \{ \phi_{jk} \} \).

Value

A list of objects including

- `eigenfn`: Estimated eigenfunctions at the new locations, \(x_{\text{new}} \).
- `selected_K`: Selected K based on CV. Execute the algorithm when \(\text{is_K_selected} \) is TRUE.
- `selected_tau1`: Selected tau1.
- `selected_tau2`: Selected tau2.
- `selected_gamma`: Selected gamma.
- `cv_score_tau1`: cv scores for tau1.
- `cv_score_tau2`: cv scores for tau2.
- `cv_score_gamma`: cv scores for gamma.
- `tau1`: Sequence of tau1-values used in the process.
- `tau2`: Sequence of tau2-values used in the process.
- `gamma`: Sequence of gamma-values used in the process.
- `detrended_Y`: If \(\text{is_Y_detrended} \) is TRUE, \(\text{detrended_Y} \) means \(Y \) is detrended; else, \(\text{detrended_Y} \) is equal to \(Y \).
- `scaled_x`: Input location matrix. Only scale when it is one-dimensional

Author(s)

Wen-Ting Wang and Hsin-Cheng Huang

References

See Also

predict
Examples

The following examples only use two threads for parallel computing.
1D: regular locations
x_1D <- as.matrix(seq(-5, 5, length = 50))
Phi_1D <- exp(-x_1D^2) / norm(exp(-x_1D^2), "F")
set.seed(1234)
Y_1D <- rnorm(n = 100, sd = 3) %*% t(Phi_1D)

cv_1D <- spatpca(x = x_1D, Y = Y_1D, num_cores = 2)
plot(x_1D, cv_1D$eigenfn[, 1], type = "l", main = "1st eigenfunction")

2D: Daily 8-hour ozone averages for sites in the Midwest (USA)
library(fields)
library(pracma)
library(maps)
data(ozone2)
x <- ozone2$lon.lat
Y <- ozone2$y
date <- as.Date(ozone2$date, format = "%y%m%d")
rmna <- !colSums(is.na(Y))
YY <- matrix(Y[, rmna], nrow = nrow(Y))
YY <- detrend(YY, "linear")
xx <- x[rmna,]
cv <- spatpca(x = xx, Y = YY)
quilt.plot(xx, cv$eigenfn[, 1])

3D: regular locations
d <- expand.grid(x, y, z)
Phi_3D <- rowSums(exp(-d^2)) / norm(as.matrix(rowSums(exp(-d^2))), "F")
Y_3D <- rnorm(n = 100, sd = 3) * t(Phi_3D) + matrix(rnorm(n = 100 * p^3), 100, p^3)
cv_3D <- spatpca(x = d, Y = Y_3D, tau2 = seq(0, 1000, length = 10))
library(plot3D)
library(RColorBrewer)
cols <- colorRampPalette(brewer.pal(9, "Blues"))(p)
isosurf3D(x, y, z,
colvar = array(cv_3D$eigenfn[, 1], c(p, p, p)),
level = seq(min(cv_3D$eigenfn[, 1]), max(cv_3D$eigenfn[, 1]), length = p),
ticktype = "detailed",
colkey = list(side = 1),
col = cols)

thinPlateSplineMatrix
Thin-plane spline matrix

Description

Produce a thin-plane spline matrix based on a given location matrix

Usage

`thinPlateSplineMatrix(location)`

Arguments

- `location`
 A location matrix

Value

A thin-plane spline matrix

Examples

```r
pesudo_sequence <- seq(-5, 5, length = 5)
two_dim_location <- as.matrix(expand.grid(x = pesudo_sequence, y = pesudo_sequence))
thin_plate_matrix <- thinPlateSplineMatrix(two_dim_location)
```
Index

plot.spatpca, 2
predict, 3, 6
predictEigenfunction, 4

spatpca, 3, 4, 5
SpatPCA-package, 2

thinPlateSplineMatrix, 8