Package ‘SpatialGraph’

October 12, 2022

Version 1.0-2
Type Package
Title SpatialGraph Class
Date 2018-11-27
Imports igraph, methods, rgeos, shape, sp, splancs
Author Javier Garcia-Pintado
Maintainer Javier Garcia-Pintado <jgarciapintado@marum.de>
Description Provision of the S4 SpatialGraph class built on top of objects provided by ‘igraph’ and ‘sp’ packages, and associated utilities. See the documentation of the SpatialGraph-class within this package for further description. An example of how from a few points one can arrive to a SpatialGraph is provided in the function sl2sg().
License GPL (>= 2)
URL https://github.com/garciapintado/SpatialGraph
NeedsCompilation no
Repository CRAN
Date/Publication 2018-11-27 10:30:03 UTC

R topics documented:

SpatialGraph-package .. 2
attSGe ... 3
distSGv ... 4
explodeSLDF .. 4
pointLineD .. 5
pointOnLine ... 6
pointOnSegment .. 6
pointPolylineD ... 7
pointsToLines ... 8
polylineChainage ... 9
polylineLength ... 9
revSGe ... 10
Description

Provision of the S4 SpatialGraph class built on top of objects provided by 'igraph' and 'sp' packages, and associated utilities. See the documentation of the SpatialGraph-class within this package for further description. An example of how from a few points one can arrive to a SpatialGraph is provided in the function sl2sg().

Details

The DESCRIPTION file:

Package: SpatialGraph
Version: 1.0-2
Type: Package
Title: SpatialGraph Class
Date: 2018-11-27
Imports: igraph, methods, rgeos, shape, sp, splancs
Author: Javier Garcia-Pintado
Maintainer: Javier Garcia-Pintado <jgarcia@marum.de>
Description: Provision of the S4 SpatialGraph class built on top of objects provided by 'igraph' and 'sp' packages, and associated utilities.
License: GPL (>=2)
URL: https://github.com/garcia-pintado/SpatialGraph

Index of help topics:

SpatialGraph Create a SpatialGraph object
SpatialGraph-class Class "SpatialGraph"
SpatialGraph-package SpatialGraph Class
attSGe Add or Modify attributes in SpatialGraph edges
distSGv Calculate the distance slot in a SpatialGraph
explodeSLDF Explode Lines in a SpatialLinesDataFrame
pointLineD Euclidean distance from a set of points to a line segment
pointOnLine Snap a points to a line
pointOnSegment Snap a points to a segment
pointPolylineD closest points in a polyline to a set of points
pointsToLines Snap a set of points to a set of lines
polylineChainage Obtain the chainage of nodes along a polyline
polylineLength Obtain the length of a polyline
revSGe Reverse Lines in a SpatialGraph
rotation Rotate 2D points
routeSDG Accumulate sources/sinks along a directed SpatialGraph
sg2igraph Map a SpatialGraph into an igraph
sgChVIDs Change vertex IDs in a SpatialGraph
sl2sg map a SpatialLinesDataFrame into a SpatialGraph
splitPolyline Split a polyline into a number of transects
splitSLDF Split 1-Line Lines in a SpatialLines or a SpatialLinesDataFrame by intersection with a point dataset
textSGe Label edges in a SpatialGraph plot

see the documentation of the function sl2sg in this package to get a start

Author(s)
Javier Garcia-Pintado
Maintainer: Javier Garcia-Pintado <jgarciapintado@marum.de>

References

attSGe Add or Modify attributes in SpatialGraph edges

Description
Add or Modify attributes in SpatialGraph edges

Usage
attSGe(SG, att, eID, val, default)
explodeSLDF

Description

Explode Lines in a SpatialLinesDataFrame, so that each single Line, within each Lines slot, is upgraded as a new 1-Line Lines slot.

Usage

```r
explodeSLDF(SLDF, FID)
```

Arguments

- `SLDF`: SpatialLinesDataFrame
- `FID`: A character vector, identifying the Lines slot to be exploded

Value

A SpatialLinesDataFrame with the slots exploded

distSGv

Calculate the distance slot in a SpatialGraph

Description

Calculate the distance slot in a SpatialGraph. This is done via a call to the library igraph, which does the calculation. Distances are undirected.

Usage

```r
distSGv(SG, getpath = FALSE)
```

Arguments

- `SG`: SpatialGraph
- `getpath`: boolean. Whether to calculate the `SG@path` slot

Value

A SpatialGraph with the slot `dist` (and `path` if requested) recalculated

Arguments

- **SG**: SpatialGraph
- **att**: name of the field [column] in the edge dataframe to be added/modified
- **eID**: edge identifiers [row.names of the edge data.frame]
- **val**: values corresponding the `eID` above
- **default**: default values for edges not considered in `eID` above

Value

A SpatialGraph
pointLineD

Arguments

- **SLDF**: a SpatialLinesDataFrame
- **FID**: if not NULL, field name, within the attribute table considered as additional unique identifier, so that incremental numeric values will added to this field to avoid duplicate values

Value

- a SpatialLinesDataFrame

pointLineD
Euclidean distance from a set of points to a line segment

Description

pointLineD returns a list with a number of components from a points to line segment analysis

Usage

`pointLineD(xy, xyp)`

Arguments

- **xy**: 2 x 2 [x,y] matrix defining the start and end of the segment
- **xyp**: p x 2 [x,y] matrix with a point set

Details

pointLineD conduct a detailed points to segment distance analysis, returned as a list

Value

A list with the input components `xy` and `xyp`, and the aditional components: `d`, point-line distance (distance between the points in `xyp` and their perpendicular projections of the line); `dc`, differential chainage over [x0,y0] (> 0 if the projection goes in the segment direction); `cross`, boolean vector indicating whether the perpendicular projection of the points crosses the segment, or not

See Also

[Spatial-class](#)
pointOnLine
Snap a points to a line

Description
This function snaps a point to a line based on the minimum distance between the point and the line.

Usage
`pointOnLine(cool, coop)`

Arguments
- `cool`
 2-col matrix giving the coordinates of the line
- `coop`
 2-length vector representing the point

Value
A 4-length vector, with 'x','y' [coordinates of the point snapped to the line], 'd' [distance from the input point to the new snapped point], and 'chain' [accumulated along-line distance from the starting of the line to the snapped point]

Author(s)
Javier Garcia-Pintado

See Also
- `Spatial-class`

pointOnSegment
Snap a points to a segment

Description
This function snaps a point to a segment based on the minimum distance between the point and the segment.

Usage
`pointOnSegment(s, p)`

Arguments
- `s`
 [2,2] matrix giving the coordinates of the line, one point per row
- `p`
 2-length vector representing the point
pointPolylineD

Value
A 4-length vector, with ‘x’, ‘y’ [coordinates of the point snapped to the segment], ‘d’ [distance from the input point to the new snapped point], and ‘chain’ [distance from the starting of the segment to the snapped point]

Author(s)
Javier Garcia-Pintado

See Also
Spatial-class

pointPolylineD closest points in a polyline to a set of points

Description
pointPolylineD returns a list with a number of components from a points to polyline analysis

Usage
pointPolylineD(xy, xyp)

Arguments
xy n x 2 [x,y] matrix defining the polyline
xyp p x 2 [x,y] matrix with a point set

Details
pointPolylineD conducts a detailed points to polyline distance analysis. First the distance from the set of points to the lines defined by every single segment in the polyline is obtained by successive calls to pointLineD, then the distance to every single node in the polyline are also obtained. The lower distance is chosen.

Value
A data.frame with the columns: inode is the index of the first node in the closest segment to each point, x0 and y0 are the corresponding coordinates of those nodes, xc and yc are the coordinates of the point in the polyline closest to each point in xyp, these may be but are not necessarily one the polyline nodes, dis is the distance from each point tho the polyline, chain0 is the chainage of x0, y0 with the polyline, and dc is the differential chainage from xc, yc to x0, y0

See Also
Spatial-class
pointsToLines

Snap a set of points to a set of lines

Description

This function snaps a set of points to a set of lines based on the minimum distance of each point to any of the lines

Usage

pointsToLines(points, lines, withAttrs = TRUE, withDis = TRUE, withChain = TRUE)

Arguments

points
An object of the class SpatialPoints or SpatialPointsDataFrame, or a 2-col matrix of [x,y] coordinates

lines
An object of the class SpatialLines or SpatialLinesDataFrame

withAttrs
Boolean value for preserving (TRUE) or getting rid (FALSE) of the original point attributes. Default: TRUE. This parameter is optional

withDis
Boolean value for including distance from source points to snapped-to-lines points

withChain
Boolean value for including the chainage of the snapped points in their corresponding lines

Value

A SpatialPointsDataFrame object as defined by the R package 'sp'. This object contains the snapped points, therefore all of them lie on the lines. The returned object contains the fields 'lid', 'eID', and 'chain', providing information about the relationship between the source data points, the snapped data points, and its location within the network: 'lid', and 'eID' are the line index and line ID, respectively, of the lines in which the new snapped points lie; 'dis' is the distance between the input points and the snapped points, and 'chain' is the chainage of the snapped point within the corresponding line

Author(s)

Javier Garcia-Pintado

See Also

Spatial-class
polylineChainage

Obtain the chainage of nodes along a polyline

Description
Obtain the chainage of nodes along a polyline [2-col matrix]

Usage
polylineChainage(xy)

Arguments
xy a 2-column matrix representing the polyline nodes

Details
polylineChainage calculates a vector of chainage values [along-polyline distances] from each node in a polyline to the initial node

Value
A vector

See Also
polylineLength

polylineLength

Obtain the length of a polyline

Description
Obtain the length a polyline [2-col matrix]

Usage
polylineLength(xy)

Arguments
xy a 2-column matrix representing the polyline nodes

Details
polylineLength calculates the [along-polyline] length of the polyline
revSGe

Value

A scalar

See Also

polylineChainage

revSGe
Reverse Lines in a SpatialGraph

Description

A SpatialGraph contains a SpatialLinesDataFrame, describing the network topology. The input eID indicates the identifiers of a set of lines (edges) in the network to be reversed. Note eID does not refer to the line index within SG@e, but to the Feature Identifiers, as extracted from row.names(SG@e@data).

Usage

`revSGe(SG, eID)`

Arguments

- **SG**: SpatialGraph
- **eID**: vector of Feature Identifiers for lines to be reversed

Details

Note eID does not refer to the line index within SG@e, but to the Feature Identifiers, as extracted from row.names(SG@e@data). Accordingly to the reversed coordinates, the corresponding fields ["v0","v1"], are interchanged.

Value

A SpatialGraph
rotation

Description
rotate points, counterclockwise for positive angles, and clockwise for negative ones

Usage
rotation(coords, radian)

Arguments
- coords: 2-col matrix of [x,y] coordinates
- radian: rotation angle

Value
a 2-col matrix with the points rotated around [0,0]

routeSDG

Description
Assume a SpatialGraph is directed and conduct an accumulation of source/sink values at nodes across the network. The accumulation assumes no delay in transmission

Usage
routeSDG(SDG, FUN='cumsum', ifld='inflow')

Arguments
- SDG: SpatialGraph, assumed as directed
- FUN: name of a function to be applied for the routing
- ifld: name on the field in the SpatialPointDataFrame vertex slot to be used used as source/sink

Details
The SpatialGraph, used as input, must have the ifld field to be used as input, in the vertices slot v (a SpatialPointsDataFrame). The accumulated output is provided as the new field ofld in v. The edges slot e serves to route the input across the network
Value

A SpatialGraph with the added ofld field in the vertex slot

sg2igraph

Map a SpatialGraph into an igraph

Description

The vertex and edge information in a SpatialGraph is mapped into an igraph object

Usage

sg2igraph(sg, directed=FALSE)

Arguments

sg SpatialGraph

directed whether the resulting igraph is directed

Details

It is assumed that the SpatialGraph, used as input, is correct (i.e. all records in sg@e@data have the two first field correctly identifying the field 'ID' in sg@v. It is also assumed that the sg@e@data data.frame has the fields div and len. These two are highly useful to conduct network operations on the resulting igraph

Value

An igraph

sgChVIDs

Change vertex IDs in a SpatialGraph

Description

Change the field "ID" in the vertex slot, v, of a SpatialGraph. The fields v0 and v1 of the edge slot, e, are accordingly updated

Usage

sgChVIDs(obj, IDa, IDp = NULL)
sl2sg

Arguments

obj A SpatialGraph object
IDA A vector indicating the updated vertex IDs
IDp A vector indicating the prior vertex IDs

Details

If IDp is not provided, it is assumed that the vector of updated indexes is sorted equally to the order in which the vertices are stored in the slot v of the SpatialGraph. If IDp is provided, the mapping IDp -> IDa is used for reclassifying the vertices.

Value

A SpatialGraph object

Description

This function is the major workhorse to map an input SpatialLinesDataFrame, as defined in the package sp, into a SpatialGraph by using the spatial connectivity. Input is first exploded by using explodeSLDF, and then all vertices in the SpatialGraph are automatically generated according to crossings in the input polylines.

Usage

sl2sg(SL, clipd = NULL, getdist = TRUE, getpath = FALSE)

Arguments

SL SpatialLinesDataFrame as defined in package sp
clipd distance threshold for clipping features, If NULL, a value of 1.0E-04 of the domain side size is used
getdist calculate the dist slot in the returned SpatialGraph
getpath calculate the path slot in the returned SpatialGraph

Details

A SpatialGraph is generated

Value

A SpatialGraph
Examples

```r
# x  y
# create list of Line objects
if (1 > 2) {
  library(sp)
  library(SpatialGraph)
  zz <- list()
  zz[[1]] <- Line(matrix(
    c(661750, 4229150,
     662650, 4229450,
     663550, 4227650,
     663550, 4226850), ncol=2, byrow=TRUE))
  zz[[2]] <- Line(matrix(
    c(660250, 4229650,
     661050, 4226450,
     662550, 4225350,
     664850, 4225850,
     664650, 4229150,
     662350, 4228850), ncol=2, byrow=TRUE))
  # upgrade Line as Lines
  for (i in 1:length(zz)) {
    zz[[i]] <- Lines(list(zz[[i]]), ID=i)
  }
  # as SpatialLines
  SL <- sp::SpatialLines(zz)
  # as SpatialGraph including path calculation
  SG <- sl2sg(SL, getpath=TRUE)
  plot(SL, axes=TRUE)
  points(SG$v, cex=2)
  lines(SG$e, lwd=2)
  points(SG$v, cex=2, col='grey', pch=19)
  text(SG$v, labels=SG$v$ID)
  # label edges and directions
  textSGe(SG)
  # show a distance matrix between nodes
  SG@dist
  # show path from node 1 to 3
  SG@path[1,3]
}
```

SpatialGraph

Create a SpatialGraph object

Description

A SpatialGraph object is created
SpatialGraph-class

Usage

SpatialGraph(v, e, dist = NULL, path = NULL)

Arguments

v SpatialPointsDataFrame
e SpatialLinesDataFrame
dist along-network (symmetric) distance matrix
path matrix of lists with paths corresponding to dist. While distances between vertex
couples are symmetric, the path matrix is not symmetric as individual path to
from source vertex to destination vertex. Each list in the matrix has two S3
components (v,e) describing vertices (including bounds) and edges along the
path. Thus it is always one less edge than then number of vertices in the path

Value

SpatialGraph returns an object of class SpatialGraph-class

SpatialGraph-class Class "SpatialGraph"

Description

Class for spatial networks

Objects from the Class

Objects can be created by calls to the function SpatialGraph

Slots

v: Object of class "SpatialPointsDataFrame", whose data.frame must contain the "ID" field as
unique identifier
e: Object of class "SpatialLinesDataFrame", whose data.frame must contain the fields v0 and
v1 matching the unique identifiers "ID" in the slot v data.frame
dist: Matrix, representing the undirected along-graph distance between all vertices in the network
path: list with variable length arrays describing the minimum distance path between vertices

Author(s)

Javier Garcia-Pintado, e-mail: <j.garcia-pintado@reading.ac.uk>
splitPolyline

Description

splitPolyline returns a list with a number of transects along a polyline.

Usage

splitPolyline(xy, xyp, dmax)

Arguments

xy 2-column [x,y] matrix defining the polyline nodes
xyp 2-column [x,y] matrix with a point set
dmax maximum distance between points in xy and the polyline, for these to be considered for polyline splitting

Details

splitPolyline obtain the closest points in a polyline to a given input set of points. Those closest points are used to divide the polyline in a number of transects. The individual transects are clipped to the input point dataset, so the different transects are continuous in space. Note that if the input points is quite apart from the polyline, the output sequence of transect may substantially differ form the input polyline at rupture zones.

Value

A list in which each element is a matrix representing an individual polyline.

See Also

Spatial-class

splitSLDF

Description

splitSLDF divides the 1-Line Lines in the SpatialLines or the SpatialLinesDataFrame at intersections with the input point dataset.

Usage

splitSLDF(SLDF, SPDF, dmax=NULL)
splitPolyline obtain the closest points in the SpatialLinesDataFrame to a given input set of points. Those closest points are used to divide the polylines in a number of transects. The individual transects are clipped to the input point dataset, so the different transects are continuous in space. Note that if the input points is quite apart from the polyline, the output sequence of transects may substantially differ form the input polyline at rupture zones. The input parameter dmax is provided as a mean to avoid too strange splitting results. Setting dmax to a ver low value will reduce the spureous results, but also the input points need to be closer to the lines for the adequate recognition of splitting points.

Value

A SpatialLinesDataFrame or a SpatialLines, according to the input

See Also

Spatial-class

textSGe(SG, acol='wheat', tcol='navyblue', arr.length=0.4)

Description

A SpatialGraph contains a SpatialLinesDataFrame, describing the network topology. This function adds line IDs and direction arrows to an existing plot of a SpatialGraph.

Usage

Arguments

SG SpatialGraph
acol color of the graph direction arrows
tcol color of the text for graph edge IDs
arr.length length of the direction arrows

Value

Arrows and edge IDs added to a SpatialGraph plot
Index

* **classes**
 SpatialGraph, 14
 SpatialGraph-class, 15

* **package**
 SpatialGraph-package, 2

* **spatial**
 attSGe, 3
 distSGv, 4
 explodeSLDF, 4
 pointLineD, 5
 pointOnLine, 6
 pointOnSegment, 6
 pointPolylineD, 7
 pointsToLines, 8
 polylineChainage, 9
 polylineLength, 9
 revSGe, 10
 routeSDG, 11
 sg2igraph, 12
 sgChVIDs, 12
 sl2sg, 13
 splitPolyline, 16
 splitSLDF, 16
 textSGe, 17
 routeSDG, 11
 sg2igraph, 12
 sgChVIDs, 12
 sl2sg, 13
 splitPolyline, 16
 splitSLDF, 16
 textSGe, 17

* **utilities**
 attSGe, 3
 distSGv, 4
 explodeSLDF, 4
 pointLineD, 5
 pointOnLine, 6
 pointOnSegment, 6
 pointPolylineD, 7
 pointsToLines, 8
 polylineChainage, 9
 polylineLength, 9
 revSGe, 10
 rotation, 11
 routeSDG, 11
 routeSDG, 11
 sg2igraph, 12
 sgChVIDs, 12
 sl2sg, 13
 SpatialGraph, 4, 10, 12, 13, 14, 15, 17
 SpatialGraph-class, 15, 15
 SpatialGraph-package, 2
 splitPolyline, 16
 splitSLDF, 16
 textSGe, 17

18