Package ‘SpatialPack’

September 22, 2020

Type Package
Title Tools for Assessment the Association Between Two Spatial Processes
Version 0.3-8196
Date 2020-09-21
Author Felipe Osorio [aut, cre] (<https://orcid.org/0000-0002-4675-5201>),
Ronny Vallejos [aut] (<https://orcid.org/0000-0001-5519-0946>),
Francisco Cuevas [ctb],
Diego Mancilla [ctb]
Maintainer Felipe Osorio <felipe.osorios@usm.cl>
Description Tools to assess the association between two spatial processes. Currently,
several methodologies are implemented: A modified t-test to perform hypothesis testing
about the independence between the processes, a suitable nonparametric correlation
coefficient, the codispersion coefficient, and an F test for assessing the multiple
correlation between one spatial process and several others. Functions for image
processing and computing the spatial association between images are also provided.
Depends R(>= 3.5.0), fastmatrix
LinkingTo fastmatrix
Imports stats, graphics
License GPL-3
URL http://spatialpack.mat.utfsm.cl
NeedsCompilation yes
LazyLoad yes
Repository CRAN
Date/Publication 2020-09-22 10:50:11 UTC

R topics documented:

clipping ... 2
codisp ... 3
clipping

Description

This function returns the image which restricts pixel value from the specified range.

Usage

clipping(img, low = 0, high = 1)

Arguments

- **img**: input grayscale image matrix.
- **low**: lowest value.
- **high**: highest value.

Value

grayscale image matrix with the same size as 'img'.

Examples

data(texmos2)
plot(as.raster(texmos2))

the appearance of next one doesn't change because of normalization
x <- normalize(2 * texmos2)
plot(as.raster(x))
title(main = "Doubled pixel value with normalization", font.main = 1)

the next one is saturated as expected
x <- clipping(2 * texmos2)
plot(as.raster(x))
title(main = "Doubled pixel value with clipping", font.main = 1)
cor.spatial

Tjostheim’s Coefficient

Description

Computes Tjostheim’s coefficient for two spatial sequences observed over the same locations on the plane.

Usage

```
cor.spatial(x, y, coords)
```
Arguments

- `x`: an n-dimensional vector of data values.
- `y`: an n-dimensional vector of data values.
- `coords`: an n-by-2 matrix containing coordinates of the n data locations in each row.

Details

The implemented technique is a nonparametric coefficient that summarizes the association between two spatial variables. This coefficient was first introduced by Tjostheim (1978) and later generalized by Hubert and Golledge (1992). The computation of the coefficient is based on the construction of ranks associated to suitable modifications of the coordinates. Tjostheim’s coefficient is a variant of the correlation coefficient (\(\text{cor}\)) to be used in a spatial statistics context.

Value

Tjostheim’s coefficient. The variance is returned as the attribute "variance".

References

Examples

```r
# Murray Smelter site dataset
data(murray)

# defining the arsenic (As) and lead (Pb) variables from the murray dataset
x <- murray$As
y <- murray$Pb

# extracting the coordinates from Murray dataset
coords <- murray[c("xpos","ypos")]

# computing Tjostheim's coefficient
z <- cor.spatial(x, y, coords)
```

CQ

Codispersion based similarity index

Description

This function computes a similarity index (CQ) based on the codispersion coefficient.
Usage

\[\text{CQ}(x, y, h = c(0,1), \text{eps} = c(0.01, 0.03), L = 255) \]

Arguments

- **x**: reference image matrix (grayscale)
- **y**: distorted image matrix (grayscale)
- **h**: 2-dimensional vector of the spatial lag. Default value is \(h = c(0,1) \).
- **eps**: rescaling constants, by default \(\text{eps} = c(0.01, 0.03) \)
- **L**: dynamic range of the images, by default \(L = 255 \).

Value

A list containing the following components:

- **CQ**: codispersion based similarity index between images \(x \) and \(y \).
- **direction**: vector of spatial lag.
- **comps**: components of \(\text{CQ} \), that is luminance, contrast and codispersion
- **stats**: sample statistics (means, variances and covariance) for each image.
- **speed**: Running time taken by the procedure.

References

Examples

```r
data(texmos2)

y <- imnoise(texmos2, type = "gaussian")
plot(as.raster(y))
o <- CQ(texmos2, y, h = c(0,1))
o

y <- imnoise(texmos2, type = "speckle")
plot(as.raster(y))
o <- CQ(texmos2, y, h = c(0,1))
o
```
denoise

Remove noise from an image

Description

This function removes noise from an input image.

Usage

denoise(img, type = "Lee", looks = 1, damping = 1)

Arguments

img : input grayscale image matrix.
type : character string, specifying the type of filter: "median", "Lee", "enhanced" (enhanced Lee filter), "Kuan" and "Nathan".
looks : specifies the equivalent (or effective) number of looks used to estimate noise variance, and it effectively controls the amount of smoothing applied to the image by the filter. A smaller value leads to more smoothing; a larger value preserves more distinct image features. The default value is looks = 1.
damping : specifies the extent of exponential damping effect on filtering, by default damping = 1.

Details

The median filter, in which each pixel is replaced by the median of nearby values is suitable to remove additive noise from an image.

The Lee filter reduces the speckle noise by applying a spatial filter to each pixel in an image, which filters the data based on local statistics calculated within a square window. The value of the center pixel is replaced by a value calculated using the neighboring pixels. Use the Lee filter to smooth speckled data that has a multiplicative component.

The Enhanced Lee filter is a refined version of the Lee filter, reducing the speckle noise effectively by preserving image sharpness and detail. Use the Enhanced Lee filter to reduce speckle while preserving texture information.

The Kuan filter follows a similar filtering process to the Lee filter in reducing speckle noise. This filter also applies a spatial filter to each pixel in an image, filtering the data based on local statistics of the centered pixel value that is calculated using the neighboring pixels.

Nathan filter is a particular case of the Kuan filter, obtained by putting looks = 1, and is thus applicable to 1-look SAR images only.

The size of the pixel window used to each filter is 3-by-3.

Value

Filtered image, returned as a numeric matrix. It allows a better image interpretation. The denoise function clips output pixel values to the range [0, 1] after removing the noise.
References

Examples

```r
data(texmos2)
x <- imnoise(texmos2, type = "saltnpepper", epsilon = 0.10)
plot(as.raster(x))

y <- denoise(x, type = "median")
plot(as.raster(y))

x <- imnoise(texmos2, type = "speckle")
plot(as.raster(x))

y <- denoise(x, type = "Lee")
plot(as.raster(y))
```

imnoise

Add noise to image

Description

This function adds noise to an input image.

Usage

```r
imnoise(img, type = "gaussian", mean = 0, sd = 0.01, epsilon = 0.05, var = 0.04,
         looks = 1)
```

Arguments

- `img` input grayscale image matrix.
- `type` character string, specifying the type of contamination: "gaussian" (Gaussian white/additive noise), "saltnpepper" (salt and pepper noise or on-off noise), "speckle" (uniform multiplicative noise) and "gamma" (gamma multiplicative noise).
- `mean` mean for the Gaussian noise, default value is mean = 0.
- `sd` standard deviation for the Gaussian noise, default value is sd = 0.01.
- `epsilon` contamination percentage for the salt and pepper noise with default noise density 0.05. This affects approximately `epsilon`% of pixels.
- `var` variance of uniform multiplicative noise using the equation `noise = img + unif * img`, with `unif` is uniformly distributed with mean 0 and variance `var`. Default value is `var = 0.04`.
- `looks` parameter of gamma multiplicative noise. The default value is `looks = 1`.
Value

Noisy image, returned as a numeric matrix. The `imnoise` function clips output pixel values to the range $[0, 1]$ after adding noise.

Examples

```r
data(texmos2)
x <- imnoise(texmos2, type = "saltnpepper", epsilon = 0.10)
plot(as.raster(x))

y <- imnoise(texmos2, type = "speckle")
plot(as.raster(y))

z <- imnoise(texmos2, type = "gamma", looks = 4)
plot(as.raster(z))
```

modified.Ftest

Modified F test

Description

Performs a modified version of the F test to assess the multiple correlation between one spatial process and several others.

Usage

```r
modified.Ftest(x, y, coords, nclass = 13)
```

Arguments

- `x`:

an n-by-q matrix of data values.

- `y`:

an n-dimensional vector of data values.

- `coords`:

an n-by-2 matrix containing coordinates of the n data locations in each row.

- `nclass`:

a single number giving the number of cells for Moran's index. The default is 13. If this argument is `NULL`, Sturges' formula is used.

Details

The methodology implemented is a modified F test for assessing the multiple correlation between one spatial process and several others. The test is based on corrections of the multiple correlation coefficient between the two spatially correlated sequences and required the estimation of an effective sample size. This factor takes into account the spatial association of both processes.
Value

A list with class "mod.Ftest" containing the following components:

- **corr** the sample correlation coefficient.
- **ESS** the estimated effective sample size.
- **Fstat** the value of the (unscaled) F-statistic.
- **df1, df2** degrees of freedom for the F-statistic.
- **p.value** the p-value for the test.
- **upper.bounds** upper bounds of the intervals constructed to compute Moran’s I.
- **card** number of elements in each interval generated to compute Moran’s I.
- **imoran** a matrix containing Moran’s index for each interval associated with the response and predicted variables.

The generic functions `print` and `summary` are used to obtain and print additional details about the modified F test.

References

Examples

```r
# The Pinus Radiata data set
data(radiata)

# defining the response and predictor variables from the radiata data set
y <- radiata$height
x <- radiata[c("basal","altitude","slope")]

# extracting the coordinates from the radiata data set
coords <- radiata[c("xpos","ypos")]

# computing the modified $F$-test of spatial association
z <- modified.Ftest(x, y, coords)
z

# display the upper bounds, cardinality and the computed Moran’s index
summary(z)
```
modified.ttest

Description

Performs a modified version of the *t* test to assess the correlation between two spatial processes.

Usage

```r
modified.ttest(x, y, coords, nclass = 13)
```

Arguments

- `x`: an `n`-dimensional vector of data values.
- `y`: an `n`-dimensional vector of data values.
- `coords`: an `n`-by-2 matrix containing coordinates of the `n` data locations in each row.
- `nclass`: a single number giving the number of cells for Moran’s index. The default is 13. If this argument is `NULL` Sturges’ formula is used.

Details

The methodology implemented is a modified *t* test of spatial association based on the work of Clifford and Richardson (1989). The test is based on corrections of the sample correlation coefficient between the two spatially correlated sequences and required the estimation of an effective sample size. This factor takes into account the spatial association of both processes.

Value

A list with class "mod.ttest" containing the following components:

- `corr`: the sample correlation coefficient.
- `ESS`: the estimated effective sample size.
- `Fstat`: the value of the (unscaled) *F*-statistic.
- `dof`: the estimated degrees of freedom for the *F*-statistic.
- `p.value`: the *p*-value for the test.
- `upper.bounds`: upper bounds of the intervals constructed to compute Moran’s *I*.
- `card`: number of elements in each interval generated to compute Moran’s *I*.
- `imoran`: a matrix containing Moran’s index for each interval associated with both variables.

The generic functions `print` and `summary` are used to obtain and print additional details about the modified *t* test.
References

Examples

```r
# Murray Smelter site dataset
data(murray)

# defining the arsenic (As) and lead (Pb) variables from the murray dataset
x <- murray$As
y <- murray$Pb

# extracting the coordinates from Murray dataset
coords <- murray[c("xpos","ypos")]

# computing the modified t-test of spatial association
z <- modified.ttest(x, y, coords)
z

# display the upper bounds, cardinality and the computed Moran's index
summary(z)
```

murray

The Murray smelter site dataset

Description

The dataset consists of soil samples collected in and around the vacant, industrially contaminated, Murray smelter site (Utah, USA). This area was polluted by airborne emissions and the disposal of waste slag from the smelting process. A total of 253 locations were included in the study, and soil samples were taken from each location. Each georeferenced sample point is a pool composite of four closely adjacent soil samples in which the concentration of the heavy metals arsenic (As) and lead (Pb) was determined.

Usage

```r
data(murray)
```

Format

A data frame with 253 observations on the following 5 variables.

- **As**: arsenic concentrations measurements.
- **Pb**: lead concentrations measurements.
- **xpos**: x-coordinates.
normalize

- **ypos** y-coordinates.
- **quad** a factor where numbers indicate different sub-regions within the area.

Source

normalize

Normalization for a matrix

Description
This function normalizes an image matrix so that the minimum value is 0 and the maximum value is 1.

Usage

```r
normalize(img)
```

Arguments

- **img** target image

Value
Image matrix in which minimum value is 0 and maximum value is 1.

Examples

```r
data(twelve)
x <- RGB2gray(twelve, method = "RMY")
x <- normalize(x)
plot(as.raster(x))
```

radiata

The Pinus Radiata dataset

Description
Pinus radiata is one of the mostly widely planted species in Chile and is planted in a wide array of soil types and regional climates. The plots were located in the Escuadron sector, south of Concepción, in the southern portion of Chile and has an area of 1244.43 hectares.

Usage

```r
data(radiata)
```
Format

A data frame with 468 observations on the following 6 variables.

- **xpos** x-coordinates.
- **ypos** y-coordinates.
- **basal** basal area measurements.
- **height** dominant tree height.
- **altitude** altitude in meters.
- **slope** slope of the terrain plot.

Source

RGB2gray

Convert RGB image or colormap to grayscale image

Description

This function converts color image to gray image.

Usage

`RGB2gray(img, method = "average", weights = NULL)`

Arguments

- **img**
 - target image, specified as an nrow-by-ncol-by-3 numeric array.
- **method**
 - character, procedure for converting color to grayscale. Available methods are "average", "BT240", "brighter" (or maximum decomposition), "darker" (or minimum decomposition), "ITU" (or BT.709), "lightness" (or desaturation), "LUMA" (or BT.601), "RMY" and "weighted" (user provided).
- **weights**
 - weights for red (R), green (G), and blue (B) channels. Required if method = "weighted".

Value

Grayscale image, returned as an nrow-by-ncol numeric matrix with values in the range [0, 1].

`RGB2gray` converts RGB values to grayscale values by forming a weighted sum of the R, G, and B channels.
Examples

data(twelve)
par(pty = "s", mfrow = c(1,3))
plot(as.raster(twelve)) # in RGB
 title(main = "original", font.main = 1)

x <- RGB2gray(twelve, method = "RMY")
plot(as.raster(x)) # in grayscale
 title(main = "RMY", font.main = 1)

x <- RGB2gray(twelve, method = "ITU")
plot(as.raster(x)) # OMG! 12 is gone...
 title(main = "ITU", font.main = 1)

SSIM Structural similarity index

Description

This function computes the structural similarity index (SSIM) proposed by Wang et al. (2004).

Usage

SSIM(x, y, alpha = 1, beta = 1, gamma = 1, eps = c(0.01, 0.03), L = 255)

Arguments

- **x**: reference image matrix (grayscale)
- **y**: distorted image matrix (grayscale)
- **alpha**: weight associated with luminance, default value is alpha = 1.
- **beta**: weight associated with contrast, default value is beta = 1.
- **gamma**: weight associated with structure, default value is gamma = 1.
- **eps**: rescaling constants, by default eps = c(0.01, 0.03)
- **L**: dynamic range of the images, by default L = 255.

Value

A list containing the following components:

- **SSIM**: structural similarity index between images x and y.
- **coefficients**: weights (alpha, beta, gamma) associated with each component of SSIM
- **comps**: components of SSIM, that is luminance, contrast and structure
- **stats**: sample statistics (means, variances and covariance) for each image.
- **speed**: Running time taken by the procedure.
References

Examples

data(texmos2)

 y <- imnoise(texmos2, type = "gaussian")
 plot(as.raster(y))
 o <- SSIM(texmos2, y)

 y <- imnoise(texmos2, type = "speckle")
 plot(as.raster(y))
 o <- SSIM(texmos2, y)

texmos2 USC texture mosaic number 2

Description

Gray-level texture map with information about mosaic composed of eight different texture samples taken from the Brodatz texture book, available from USC-SIPI image database.

Usage

data(texmos2)

Format

A grayscale matrix of size 512-by-512.

Source

USC-SIPI image database, URL: http://sipi.usc.edu/database/
twelve

Ishihara plate number 1

Description
Ishihara plate number 1, with the numeral '12' designed to be visible by all persons.

Usage
data(twelve)

Format
An array of 380-by-380-by-3 representing a RGB image.

wheat

Brodatz texture image, Straw (D15)

Description

Usage
data(wheat)

Format
A grayscale matrix of size 512-by-512.

Source

USC-SIPI image database, URL: http://sipi.usc.edu/database/
Index

* datasets
 murray, 12
 radiata, 13
 texmos2, 16
 twelve, 17
 wheat, 17
* htest
 modified.Ftest, 9
 modified.ttest, 11
* misc
 clipping, 2
 CQ, 5
 denoise, 7
 imnoise, 8
 normalize, 13
 RGB2gray, 14
 SSIM, 15
* multivariate
 codisp, 3
 cor.spatial, 4
 clipping, 2
 codisp, 3
 cor, 5
 cor.spatial, 4
 CQ, 5
 denoise, 7
 imnoise, 8
 modified.Ftest, 9
 modified.ttest, 11
 murray, 12
 normalize, 13
 radiata, 13
 RGB2gray, 14
 SSIM, 15