Package ‘SpeTestNP’

October 28, 2022

Type Package

Title Non-Parametric Tests of Parametric Specifications

Version 1.1.0

Date 2022-10-24

Depends stats, foreach, parallel, doParallel

Suggests knitr, rmarkdown, AER

Maintainer Hippolyte Boucher <Hippolyte.Boucher@outlook.com>

Author Hippolyte Boucher [aut, cre],
Pascal Lavergne [aut]

Description Performs non-parametric tests of parametric specifications.

Five tests are available.
Specific bandwidth and kernel methods can be chosen along with many other options.
Allows parallel computing to quickly compute p-values based on the bootstrap.
Methods implemented in the package are H.J. Bierens (1982) <doi:10.1016/0304-4076(82)90105-1>,
J.C. Escanciano (2006) <doi:10.1017/S0266466606060506>,
P.L. Gozalo (1997) <doi:10.1016/S0304-4076(97)86571-2>,
P. Lavergne and V. Patilea (2008) <doi:10.1016/j.ijeconom.2007.08.014>,
C.F.J. Wu (1986) <doi:10.1214/aos/1176350142>,

Language en-US

VignetteBuilder knitr, rmarkdown

License GPL-2

NeedsCompilation yes

Encoding UTF-8

URL https://github.com/HippolyteBoucher/SpeTestNP

Repository CRAN

Date/Publication 2022-10-28 17:10:15 UTC
print.STNP

**R topics documented:**

<table>
<thead>
<tr>
<th>Function</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>print.STNP</td>
<td>2</td>
</tr>
<tr>
<td>SpeTest</td>
<td>3</td>
</tr>
<tr>
<td>SpeTest_Dist</td>
<td>7</td>
</tr>
<tr>
<td>SpeTest_Stat</td>
<td>11</td>
</tr>
<tr>
<td>summary.STNP</td>
<td>14</td>
</tr>
</tbody>
</table>

**Index**

<table>
<thead>
<tr>
<th>Function</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>print.STNP</td>
<td>15</td>
</tr>
</tbody>
</table>

---

### Description

Prints the test statistic and p-value of a specification test object of class `STNP`.

### Usage

```
## S3 method for class 'STNP'
print(x, ...)
```

### Arguments

- **x**: An object of class `STNP` resulting from function `SpeTest`
- **...**: Additional print arguments

### Value

No return value, prints the test statistic and p-value.

### Author(s)

Hippolyte Boucher <Hippolyte.Boucher@outlook.com>
Pascal Lavergne <lavergnetse@gmail.com>

### See Also

- `SpeTest` is the function which performs a specification test and records it along with all its options in an object of class `STNP`
- `summary.STNP` prints a summary of the specification test with all the options used
Examples

```r
n <- 100
k <- 2
x <- matrix(rnorm(n*k),ncol=k)
y <- 1+x%*%(1:k)+rnorm(n)
eq <- lm(y~x+0)
```

```r
print(SpeTest(eq, type="icm", nboot=50))
```

---

### SpeTest

**Nonparametric specification test**

### Description

SpeTest tests a parametric specification. It returns the test statistic and its p-value for five different heteroskedasticity-robust nonparametric specification tests.

### Usage

```r
SpeTest(eq, type="icm", rejection="bootstrap", norma="no", boot="wild", nboot=50, para=FALSE, ker="normal", knorm="sd", cch="default", hv="default", nbeta="default", direct="default", alphan="default")
```

### Arguments

- **eq**: A fitted model of class `lm` or `nls`.
- **type**: Test type.
  - If type = "icm" the test of Bierens (1982) is performed (default).
  - If type = "zheng" the test of Zheng (1996) is performed.
  - If type = "esca" the test of Escanciano (2006) is performed, significantly increases computing time.
  - If type = "pala" the test of Lavergne and Patilea (2008) is performed.
  - If type = "sicm" the test of Lavergne and Patilea (2012) is performed.
- **rejection**: Rejection rule.
  - If rejection = "bootstrap" the p-value of the test is based on the bootstrap (default).
  - If rejection = "asymptotics" and type = "zheng" or type = "esca" or type = "sicm" the p-value of the test is based on asymptotic normality of the normalized test statistic under the null hypothesis.
  - If type = "icm" or type = "esca" the argument rejection is ignored and the p-value is based on the bootstrap.
<table>
<thead>
<tr>
<th><strong>norma</strong></th>
<th>Normalization of the test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>If <code>norma = &quot;no&quot;</code> the test statistic is not normalized (default)</td>
<td></td>
</tr>
<tr>
<td>If <code>norma = &quot;naive&quot;</code> the test statistic is normalized with a naive estimator of the variance of its components</td>
<td></td>
</tr>
<tr>
<td>If <code>norma = &quot;np&quot;</code> the test statistic is normalized with a nonparametric estimator of the variance of its components</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>boot</strong></th>
<th>Bootstrap method to compute the test p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>If <code>boot = &quot;wild&quot;</code> the wild bootstrap of Wu (1986) is used (default)</td>
<td></td>
</tr>
<tr>
<td>If <code>boot = &quot;smooth&quot;</code> the smooth conditional moments bootstrap of Gozalo (1997) is used</td>
<td></td>
</tr>
</tbody>
</table>

| **nboot** | Number of bootstraps used to compute the test p-value, by default `nboot = 50` |

<table>
<thead>
<tr>
<th><strong>para</strong></th>
<th>Parallel computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>If <code>para = FALSE</code> parallel computing is not used to generate the bootstrap samples to compute the test p-value (default)</td>
<td></td>
</tr>
<tr>
<td>If <code>para = TRUE</code> parallel computing is used to generate the bootstrap samples to compute the test p-value, significantly decreases computing time, makes use of all CPU cores except one</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>ker</strong></th>
<th>Kernel function used in the central matrix and for the nonparametric covariance estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>If <code>ker = &quot;normal&quot;</code> the central matrix kernel function is the normal p.d.f (default)</td>
<td></td>
</tr>
<tr>
<td>If <code>ker = &quot;triangle&quot;</code> the central matrix kernel function is the triangular p.d.f</td>
<td></td>
</tr>
<tr>
<td>If <code>ker = &quot;logistic&quot;</code> the central matrix kernel function is the logistic p.d.f</td>
<td></td>
</tr>
<tr>
<td>If <code>ker = &quot;sinc&quot;</code> the central matrix kernel function is the sine cardinal function</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>knorm</strong></th>
<th>Normalization of the kernel function</th>
</tr>
</thead>
<tbody>
<tr>
<td>If <code>knorm = &quot;sd&quot;</code> then the standard deviation using the kernel function equals 1 (default)</td>
<td></td>
</tr>
<tr>
<td>If <code>knorm = &quot;sq&quot;</code> then the integral of the squared kernel function equals 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>cch</strong></th>
<th>Central matrix kernel bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>If <code>type = &quot;icm&quot;</code> or <code>type = &quot;esca&quot;</code> then <code>cch</code> always equals 1</td>
<td></td>
</tr>
<tr>
<td>If <code>type = &quot;zheng&quot;</code> the &quot;default&quot; bandwidth is the scaled rule of thumb: <code>cch = 1.06*n^(-1/(4+k))</code> where k is the number of regressors</td>
<td></td>
</tr>
<tr>
<td>If <code>type = &quot;sicm&quot;</code> or <code>type = &quot;pala&quot;</code> the &quot;default&quot; bandwidth is the scaled rule of thumb: <code>cch = 1.06*n^(-1/5)</code></td>
<td></td>
</tr>
</tbody>
</table>

The user may change the bandwidth when `type = "zheng", type = "sicm"` or `type = "pala"`.

| **hv** | If `norma = "np"` or `rejection = "bootstrap"` and `boot = "smooth", hv` is the bandwidth of the nonparametric errors covariance estimator, by "default" the bandwidth is the scaled rule of thumb `hv = 1.06*n^(-1/(4+k))` |

| **nbeta** | If `type = "pala"` or `type = "sicm", nbeta` is the number of "betas" in the unit hypersphere used to compute the statistic, computing time increases as `nbeta` gets larger |

By "default" it is equal to 20 times the square root of the number of exogenous control variables
direct

If \texttt{type = "pala"}, \texttt{direct} is the favored direction for beta, by "default" it is the OLS estimator if \texttt{class(eq) = "lm"}

If \texttt{type = "sicm"}, \texttt{direct} is the initial direction for beta. This direction should be a vector of 0 (for no direction), 1 (for positive direction) and -1 (for negative direction)

For ex, \texttt{c(1,-1,0)} indicates that the user thinks that the first regressor has a positive effect on the dependent variable, that the second regressor has a negative effect on the dependent variable, and that he has no idea about the effect of the third regressor

By "default" no direction is given to the hypersphere

alphan

If \texttt{type = "pala"}, \texttt{alphan} is the weight given to the favored direction for beta, by "default" it is equal to \( \log(n) \cdot n^{-3/2} \)

Details

To perform a nonparametric specification test the only argument needed is a model \texttt{eq} of class \texttt{lm} or of class \texttt{nls}. But other options can and should be specified: the test type \texttt{type}, the rejection rule \texttt{rejection}, the normalization of the test statistic \texttt{norm}, the bootstrap type \texttt{boot} and the size of the vector being generated which is equal to the number of bootstrap samples \texttt{nboot}, whether the vector is generated using parallel computing \texttt{para}, the central matrix kernel function \texttt{ker} and its standardization \texttt{knorm}, the bandwidths \texttt{cch} and \texttt{hv}. If the user has knowledge of the tests coined by Lavergne and Patilea he may choose a higher number of betas for the hypersphere (which may significantly increase computational time) and an initial "direction" to the hypersphere for the SICM test (none is given by "default") or a starting beta for the PALA test (which is the OLS estimator by "default" if \texttt{class(eq) = "nls"}).

The statistic can be normalized with a naive estimator of the conditional covariance of its elements as in Zheng (1996), or with a nonparametric estimator of the conditional covariance of its elements as in in Yin, Geng, Li, Wang (2010). The p-value is based either on the wild bootstrap of Wu (1986) or on the smooth conditional moments bootstrap of Gozalo (1997).

Value

\texttt{SpeTest} returns an object of \texttt{class STNP}.

\texttt{summary} and \texttt{print} can be used on objects of this class.

An object of class \texttt{STNP} is a list which contains the following elements:

- \texttt{stat} The value of the test statistic used in the test
- \texttt{pval} The test p-value
- \texttt{type} The type of test which was used
- \texttt{boot} The type of bootstrap which was used to compute the p-value
- \texttt{nboot} The number of bootstrap samples used to compute the p-value
- \texttt{ker} The central matrix kernel function which was used
- \texttt{knorm} The kernel matrix standardization: "sq" if the second moment equals 1 or "sd" if the standard deviation equals 1
- \texttt{cch} The central matrix kernel function bandwidth
The nonparametric covariance estimator bandwidth

nbeta: The number of directions in the unit hypersphere used to compute the test statistic if type = "pala" or type = "sicm"

direct: The preferred / initial direction in the unit hypersphere if type = "pala" or type = "sicm"

alphan: The weight given to the preferred direction if type = "pala"

Note

The data used to obtain the fitted model eq should not contain factors, factor variables should be transformed into dummy variables a priori

Requires the packages stats (already installed and loaded by default in Rstudio), foreach, parallel and doParallel (if parallel computing is used to generate the test p-value) to be installed

For more information and to be able to use the package to its full potential see the references

Author(s)

Hippolyte Boucher <Hippolyte.Boucher@outlook.com>
Pascal Lavergne <lavergetse@gmail.com>

References


P.L. Gozalo (1997), "Nonparametric Bootstrap Analysis with Applications to Demographic Effects in Demand Functions", Journal of Econometrics, 81 (2), 357-393


P. Lavergne and V. Patilea (2012), "One for All and All for One: Regression Checks with Many Regressors", Journal of Business and Economic Statistics, 30 (1), 41-52


See Also

print and print.STNP applied to an object of class STNP print the specification test statistic and its p-value

summary and summary.STNP applied to an object of class STNP print a summary of the specification test with all the options used
**SpeTest_Dist** is the function which only returns the specification test statistic

**SpeTest_Dist** generates a vector drawn from the distribution of the test statistic under the null hypothesis using the bootstrap

### Examples

```r
n <- 100
k <- 2
x <- matrix(rnorm(n*k),ncol=k)
y<-1+x%*%(1:k)+rnorm(n)
eq<-lm(y~x+0)

summary(SpeTest(eq=eq,type="icm",norma="naive",boot="smooth"))

eq<-nls(out~expla1*a+b*expla2*c,start=list(a=0,b=4,c=2),
data=data.frame(out=y,expla1=x[,1],expla2=x[,2]))

print(SpeTest(eq=eq,type="icm",norma="naive",boot="smooth"))
```

---

**SpeTest_Dist**

Nonparametric specification test statistic distribution

### Description

**SpeTest_Dist** generates a vector from the nonparametric specification test statistic distribution under the null hypothesis for one of five different tests using the bootstrap

### Usage

```
SpeTest_Dist(eq, type="icm", norma="no", boot="wild", nboot=50, para=FALSE, ker="normal",
knorm="sd", cch="default", hv="default", nbeta="default", direct="default",
alphan="default")
```

### Arguments

- **eq**: A fitted model of class `lm` or `nls`
- **type**: Test type
  - If `type = "icm"` the vector is generated from the distribution of the test of Bierens (1982) under the null hypothesis (default)
  - If `type = "zheng"` the vector is generated from the distribution of the test of Zheng (1996) under the null hypothesis
  - If `type = "esca"` the vector is generated from the distribution of the test of Escanciano (2006) under the null hypothesis, significantly increases computing time
  - If `type = "pala"` the vector is generated from the distribution of the test of Lavergne and Patilea (2008) under the null hypothesis
If type = "sicm" the vector is generated from the distribution of the test of Lavergne and Patilea (2012) under the null hypothesis.

**norma**
Normalization of the test statistic
- If norma = "no" the test statistic is not normalized (default)
- If norma = "naive" the test statistic is normalized with a naive estimator of the variance of its components
- If norma = "np" the test statistic is normalized with a nonparametric estimator of the variance of its components

**boot**
Bootstrap type to generate the vector drawn from the distribution under the null hypothesis of the test statistic
- If boot = "wild" the wild bootstrap of Wu (1986) is used
- If boot = "smooth" the smooth conditional moments bootstrap of Gozalo (1997) is used

**nboot**
Size of the vector drawn from the test statistic distribution under the null using the bootstrap, by default nboot = 50

**para**
Parallel computing
- If para = FALSE parallel computing is not used to generate the vector from the test statistic distribution under the null (default)
- If para = TRUE parallel computing is used to generate the vector from the test statistic distribution under the null, significantly decreases computing time, makes use of all CPU cores except one

**ker**
Kernel function used in the central matrix and for the nonparametric covariance estimator
- If ker = "normal" the central matrix kernel function is the normal p.d.f (default)
- If ker = "triangle" the central matrix kernel function is the triangular p.d.f
- If ker = "logistic" the central matrix kernel function is the logistic p.d.f
- If ker = "sinc" the central matrix kernel function is the sine cardinal function

**knorm**
Normalization of the kernel function
- If knorm = "sd" then the standard deviation using the kernel function equals 1 (default)
- If knorm = "sq" then the integral of the squared kernel function equals 1

**cch**
Central matrix kernel bandwidth
- If type = "icm" or type = "esca" then cch always equals 1
- If type = "zheng" the "default" bandwidth is the scaled rule of thumb: cch = 1.06*n^(-1/(4+k)) where k is the number of regressors
- If type = "sicm" or type = "pala" the "default" bandwidth is the scaled rule of thumb: cch = 1.06*n^(-1/5)
- The user may change the bandwidth when type = "zheng", type = "sicm" or type = "pala"

**hv**
If norma = "np" or rejection = "bootstrap" and boot = "smooth", hv is the bandwidth of the nonparametric errors covariance estimator, by "default" the bandwidth is the scaled rule of thumb hv = 1.06*n^(-1/(4+k))
If type = "pala" or type = "sicm", nbeta is the number of "betas" in the unit hypersphere used to compute the statistic, computing time increases as nbeta gets larger. By "default" it is equal to 20 times the square root of the number of exogenous control variables.

direct

If type = "pala", direct is the favored direction for beta, by "default" it is the OLS estimator if class(eq) = "lm". If type = "sicm", direct is the initial direction for beta. This direction should be a vector of 0 (for no direction), 1 (for positive direction) and -1 (for negative direction). For ex, c(1,-1,0) indicates that the user thinks that the first regressor has a positive effect on the dependent variable, that the second regressor has a negative effect on the dependent variable, and that he has no idea about the effect of the third regressor. By "default" no direction is given to the hypersphere.

alphan

If type = "pala", alphan is the weight given to the favored direction for beta, by "default" it is equal to log(n)*n^(-3/2).

Details

To generate a vector from the specification test statistic distribution under the null using the bootstrap the only argument needed is a model eq of class lm or of class nls. But other options can and should be specified: the test statistic type type, the normalization of the test statistic norma, the bootstrap type boot, the size of the vector being generated which is equal to the number of bootstrap samples nboot, whether the vector is generated using parallel computing para, the central matrix kernel function ker and its standardization knorm, the bandwidths cch and hv. If the user has knowledge of the tests coined by Lavergne and Patilea he may choose a higher number of betas for the hypersphere (which may significantly increase computational time) and an initial "direction" to the hypersphere for the SICM test (none is given by "default") or a starting beta for the PALA test (which is the OLS estimator by "default" if class(eq) = "nls").

The statistic can be normalized with a naive estimator of the conditional covariance of its elements as in Zheng (1996), or with a nonparametric estimator of the conditional covariance of its elements as in Yin, Geng, Li, Wang (2010). The vector is generated either from the wild bootstrap of Wu (1986) or from the smooth conditional moments bootstrap of Gozalo (1997).

Value

SpeTest_Dist returns a vector of size nboot which is drawn from the distribution of the test statistic under the null hypothesis using the bootstrap.

Note

The data used to obtain the fitted model eq should not contain factors, factor variables should be transformed into dummy variables a priori.

Requires the packages stats (already installed and loaded by default in R studio), foreach, parallel and doParallel (if parallel computing is used to generate the vector) to be installed.

For more information and to be able to use the package to its full potential see the references.
Author(s)

Hippolyte Boucher <Hippolyte.Boucher@outlook.com>
Pascal Lavergne <lavergnetse@gmail.com>

References


P.L. Gozalo (1997), "Nonparametric Bootstrap Analysis with Applications to Demographic Effects in Demand Functions", *Journal of Econometrics*, 81 (2), 357-393


P. Lavergne and V. Patilea (2012), "One for All and All for One: Regression Checks with Many Regressors", *Journal of Business and Economic Statistics*, 30 (1), 41-52


See Also

*SpeTest* is the function which performs a specification test and records it along with all its options in an object of class STNP

*SpeTest_Stat* is the function which only returns the specification test statistic

Examples

```r
n <- 100
k <- 2
x <- matrix(rnorm(n*k),ncol=k)
y<-1+x%*%1:k+rnorm(n)
eq<-lm(y~x+0)
SpeTest_Dist(eq=eq,type="zheng",boot="wild",nboot=10)
eq<-nls(out~expla1*a+b*expla2+c,start=list(a=0,b=4,c=2),
data=data.frame(out=y,expla1=x[,1],expla2=x[,2]))
SpeTest_Dist(eq=eq,type="zheng",boot="wild",nboot=20)
```
SpeTest computes the nonparametric specification test statistic for one of five different tests.

Usage

```
SpeTest_Stat(eq, type="icm", norma="no", ker="normal", knorm="sd",
cch="default", hv="default", nbeta="default", direct="default",
alphan="default")
```

Arguments

- **eq**: A fitted model of class `lm` or `nls`
- **type**: Test statistic type
  - If `type = "icm"` the test statistic of Bierens (1982) is returned (default)
  - If `type = "zheng"` the test statistic of Zheng (1996) is returned
  - If `type = "esca"` the test statistic of Escanciano (2006) is returned, significantly increases computing time
  - If `type = "pala"` the test statistic of Lavergne and Patilea (2008) is returned
  - If `type = "sicm"` the test statistic of Lavergne and Patilea (2012) is returned
- **norma**: Normalization of the test statistic
  - If `norma = "no"` the test statistic is not normalized (default)
  - If `norma = "naive"` the test statistic is normalized with a naive estimator of the variance of its components
  - If `norma = "np"` the test statistic is normalized with a nonparametric estimator of the variance of its components
- **ker**: Kernel function used in the central matrix and for the nonparametric covariance estimator
  - If `ker = "normal"` the central matrix kernel function is the normal p.d.f (default)
  - If `ker = "triangle"` the central matrix kernel function is the triangular p.d.f
  - If `ker = "logistic"` the central matrix kernel function is the logistic p.d.f
  - If `ker = "sinc"` the central matrix kernel function is the sine cardinal function
- **knorm**: Normalization of the kernel function
  - If `knorm = "sd"` then the standard deviation using the kernel function equals 1 (default)
  - If `knorm = "sq"` then the integral of the squared kernel function equals 1
- **cch**: Central matrix kernel bandwidth
  - If `type = "icm"` or `type = "esca"` then `cch` always equals 1
  - If `type = "zheng"` the "default" bandwidth is the scaled rule of thumb: `cch = 1.06*n^(-1/(4+k))` where k is the number of regressors
If `type = "sicm"` or `type = "pala"` the "default" bandwidth is the scaled rule of thumb: `cch = 1.06*n^{-1/5}`

The user may change the bandwidth when `type = "zheng"`, `type = "sicm"` or `type = "pala"

`hv`

If `norma = "np"` or `rejection = "bootstrap"` and `boot = "smooth"`, `hv` is the bandwidth of the nonparametric errors covariance estimator, by "default" the bandwidth is the scaled rule of thumb `hv = 1.06*n^{(-1/(4+k))}`

`nbeta`

If `type = "pala"` or `type = "sicm"`, `nbeta` is the number of "betas" in the unit hypersphere used to compute the statistic, computing time increases as `nbeta` gets larger

By "default" it is equal to 20 times the square root of the number of exogenous control variables

`direct`

If `type = "pala"`, `direct` is the favored direction for beta, by "default" it is the OLS estimator if `class(eq) = "lm"`

If `type = "sicm"`, `direct` is the initial direction for beta. This direction should be a vector of 0 (for no direction), 1 (for positive direction) and -1 (for negative direction)

For ex, `c(1,-1,0)` indicates that the user thinks that the first regressor has a positive effect on the dependent variable, that the second regressor has a negative effect on the dependent variable, and that he has no idea about the effect of the third regressor

By "default" no direction is given to the hypersphere

`alphan`

If `type = "pala"`, `alphan` is the weight given to the favored direction for beta, by "default" it is equal to `log(n)*n^{(-3/2)}`

### Details

To compute the specification test statistic the only argument needed is a model `eq` of class `lm` or of class `nls`. But other options can and should be specified: the test statistic `type`, the normalization of the test statistic `norma`, the central matrix kernel function `ker` and its standardization `ker`, the bandwidths `cch` and `hv`. If the user has knowledge of the tests coined by Lavergne and Patilea he may choose a higher number of betas for the hypersphere (which may significantly increase computational time) and an initial "direction" to the hypersphere for the SICM test (none is given by "default") or a starting beta for the PALA test (which is the OLS estimator by "default" if `class(eq) = "nls"`).

The statistic can be normalized with a naive estimator of the conditional covariance of its elements as in Zheng (1996), or with a nonparametric estimator of the conditional covariance of its elements as in in Yin, Geng, Li, Wang (2010).

### Value

`SpeTest_Stat` returns the nonparametric specification test statistic

### Note

The data used to obtain the fitted model `eq` should not contain factors, factor variables should be transformed into dummy variables a priori
SpeTest_Stat

Requires the packages stats (already installed and loaded by default in Rstudio), foreach, parallel and doParallel (if parallel computing is used to generate the vector) to be installed.

For more information and to be able to use the package to its full potential see the references

Author(s)

Hippolyte Boucher <Hippolyte.Boucher@outlook.com>
Pascal Lavergne <lavernetse@gmail.com>

References


P.L. Gozalo (1997), "Nonparametric Bootstrap Analysis with Applications to Demographic Effects in Demand Functions", Journal of Econometrics, 81 (2), 357-393


P. Lavergne and V. Patilea (2012), "One for All and All for One: Regression Checks with Many Regressors", Journal of Business and Economic Statistics, 30 (1), 41-52


See Also

SpeTest is the function which performs a specification test and records it along with all its options in an object of class STNP.

SpeTest_Dist generates a vector drawn from the distribution of the test statistic under the null hypothesis using the bootstrap.

Examples

n <- 100
k <- 2
x <- matrix(rnorm(n*k),ncol=k)
y<-1+x%*%(1:k)+rnorm(n)
eq<lm(y~x+0)
SpeTest_Stat(eq=eq,type="icm")
eq<-nls(out~expla1*a+b*expla2+c,start=list(a=0,b=4,c=2),
data = data.frame(out = y, expla1 = x[,1], expla2 = x[,2])

SpeTest_Stat(eq = eq, type = "icm")

summary.STNP

summary.STNP

Summarize a specification test STNP object

Description

Prints a summary of a specification test object of class STNP with all the options used, including if options were "default"

Usage

## S3 method for class 'STNP'
summary(object, ...)

Arguments

object An object of class STNP resulting from function SpeTest
...

Additional summary arguments

Value

No return value, prints a summary of the test

Author(s)

Hippolyte Boucher <Hippolyte.Boucher@outlook.com>
Pascal Lavergne <lavergnetse@gmail.com>

See Also

SpeTest is the function which performs a specification test and records it along with all its options in an object of class STNP

print.STNP prints the specification test statistic and p-value only

Examples

n <- 100
k <- 2
x <- matrix(rnorm(n*k), ncol = k)
y <- 1 + x %*% (1:k) + rnorm(n)
eq <- lm(y ~ x + 0)

summary(SpeTest(eq = eq, type = "icm", norma = "np"))
Index

* linear model
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11
* nonparametric test
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11
* nonparametric
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11
* parametric model
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11
* parametric
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11
* specification test
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11
* test
  SpeTest, 3
  SpeTest_Dist, 7
  SpeTest_Stat, 11

class, 5
print, 5
print.STNP, 2, 6, 14
SpeTest, 2, 3, 10, 13, 14
SpeTest_Dist, 7, 7, 13
SpeTest_Stat, 7, 10, 11
summary, 5
summary.STNP, 2, 6, 14