Package ‘SpecDetec’

October 19, 2018

Title Change Points Detection with Spectral Clustering

Version 1.0.0

Description Calculate change point based on spectral clustering with the option to automatically calculate the number of clusters if this information is not available.

Depends R (>= 3.4.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports stats, abind

RoxygenNote 6.1.0

NeedsCompilation no

Author Luis Uzai [aut, cre]

Maintainer Luis Uzai <uzai_ff@hotmail.com>

Repository CRAN

Date/Publication 2018-10-19 14:20:03 UTC

R topics documented:

- calculateAffinityMatrix .. 2
- clusterEstimateNumberOfClusters 3
- convertToMatrixTimeSeries .. 3
- DEVICE1 ... 4
- DEVICE2 ... 4
- DEVICE3 ... 5
- DEVICE4 ... 5
- DEVICE5 ... 6
- DEVICE6 ... 6
- FTIR1 ... 7
- FTIR2 ... 7
- FTIR3 ... 8
- FTIR4 ... 8
calculateAffinityMatrix

Calculate the affinity matrix based on the similarity matrix

Description

Calculate the affinity matrix based on the similarity matrix.

Usage

```r
calculateAffinityMatrix(similarityMatrix, neighborsNumber = 2)
```

Arguments

- `similarityMatrix`:
 Matrix of similarity between all points in the time series.
- `neighborsNumber`:
 Number of neighbors to consider affinity between nodes.

Details

Calculate the affinity matrix based on the similarity matrix. If the number of neighbors is equal to or greater than the similarity matrix, then the similarity and affinity matrix are equal.

Value

Affinity matrix based on the similarity matrix.

Author(s)

Luis Gustavo Uzai
clusterEstimatetNumber

Estimate the number of possible clusters

Description
Adaptation of the bartlett method of the speccalt package to estimate the number of clusters in the context of spectral clustering to detect change points

Usage
clusterEstimatetNumber(eigenvectorValues, tolerance, maxClusterNumber)

Arguments
eigenvectorValues
 Eigenvector matrix based on the affinity matrix
tolerance
 approximation to consider valid clusters
maxClusterNumber
 maximum number of calculable clusters

Details
Adaptation of the bartlett method of the speccalt package to estimate the number of clusters in the context of spectral clustering to detect change points

Value
An estimated number of clusters

Author(s)
Luis Gustavo Uzai

convertToMatrixTimeSeries

Converts the time series to position and value matrix

Description
Converts the time series to position and value matrix

Usage
convertToMatrixTimeSeries(data)
Arguments

data List of values corresponding to the time series

Details

Gets a list of values of any size and creates a key and value array of all positions

Value

The key matrix and value of the time series.

Author(s)

Luis Gustavo Uzai

Description

Derivation of RefrigerationDevices of the UCR Time Series Classification Repository These problems were taken from data recorded as part of government sponsored study called Powering the Nation. The intention was to collect behavioural data about how consumers use electricity within the home to help reduce the UK’s carbon footprint.

Usage

DEVICE1

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

Description

Derivation of RefrigerationDevices of the UCR Time Series Classification Repository These problems were taken from data recorded as part of government sponsored study called Powering the Nation. The intention was to collect behavioural data about how consumers use electricity within the home to help reduce the UK’s carbon footprint.

Usage

DEVICE2
DEVICE3

Format
The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

DEVICE3

Description
Derivation of Refrigeration Devices of the UCR Time Series Classification Repository. These problems were taken from data recorded as part of government sponsored study called Powering the Nation. The intention was to collect behavioural data about how consumers use electricity within the home to help reduce the UK’s carbon footprint.

Usage
DEVICE3

Format
The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

DEVICE4

Description
Derivation of Refrigeration Devices of the UCR Time Series Classification Repository. These problems were taken from data recorded as part of government sponsored study called Powering the Nation. The intention was to collect behavioural data about how consumers use electricity within the home to help reduce the UK’s carbon footprint.

Usage
DEVICE4

Format
The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...
Description

Derivation of Refrigeration Devices of the UCR Time Series Classification Repository. These problems were taken from data recorded as part of a government-sponsored study called Powering the Nation. The intention was to collect behavioural data about how consumers use electricity within the home to help reduce the UK’s carbon footprint.

Usage

DEVICE5

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

Description

Derivation of Refrigeration Devices of the UCR Time Series Classification Repository. These problems were taken from data recorded as part of a government-sponsored study called Powering the Nation. The intention was to collect behavioural data about how consumers use electricity within the home to help reduce the UK’s carbon footprint.

Usage

DEVICE6

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...
Description

Derivation of Meat of the UCR Time Series Classification Repository Food spectrographs are used in chemometrics to classify food types, a task that has obvious applications in food safety and quality assurance. The classes are chicken, pork and turkey.

Usage

FTIR1

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

Description

Derivation of Meat of the UCR Time Series Classification Repository Food spectrographs are used in chemometrics to classify food types, a task that has obvious applications in food safety and quality assurance. The classes are chicken, pork and turkey.

Usage

FTIR2

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...
Description

Derivation of Meat of the UCR Time Series Classification Repository Food spectrographs are used in chemometrics to classify food types, a task that has obvious applications in food safety and quality assurance. The classes are chicken, pork and turkey.

Usage

FTIR3

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

Description

Derivation of Meat of the UCR Time Series Classification Repository Food spectrographs are used in chemometrics to classify food types, a task that has obvious applications in food safety and quality assurance. The classes are chicken, pork and turkey.

Usage

FTIR4

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...
FTIR5

Description

Derivation of Meat of the UCR Time Series Classification Repository Food spectrographs are used in chemometrics to classify food types, a task that has obvious applications in food safety and quality assurance. The classes are chicken, pork and turkey.

Usage

FTIR5

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...

FTIR6

Description

Derivation of Meat of the UCR Time Series Classification Repository Food spectrographs are used in chemometrics to classify food types, a task that has obvious applications in food safety and quality assurance. The classes are chicken, pork and turkey.

Usage

FTIR6

Format

The format is: Value Class 1.063400 1 -0.953410 1 ... -0.596090 2 ...
gaussianKernel

Calculate Gaussian Kernel

Description

Measure of similarity between two points represented by x_1 and x_2

Usage

```r
gaussianKernel(x1, x2, alpha = 1)
```

Arguments

- **x1**: first value to compute
- **x2**: second value to compute
- **alpha**: Alpha Measure

Details

Measure of similarity between two points represented by x_1 and x_2

Value

Measure of similarity between two points.

Author(s)

Luis Gustavo Uzai

generateEigenvectorMatrix

Calculate the eigenvector of the affinity matrix

Description

Calculate the eigenvector of the affinity matrix

Usage

```r
generateEigenvectorMatrix(affinityMatrix)
```

Arguments

- **affinityMatrix**: Affinity matrix based on the similarity matrix based on key and value matrix of the time series
generateSimilarityMatrix

Description

Use some similarity measure to calculate the similarity matrix

Usage

`generateSimilarityMatrix(data, similarityMeasure)`

Arguments

- `data` Key and value matrix of a time series
- `similarityMeasure` Measure of similarity between two points represented by x1 and x2

Details

Use some similarity measure to calculate the similarity matrix

Value

Matrix of similarity calculated from the key and value matrix.

Author(s)

Luis Gustavo Uzai
getClusterFact

Get the Factor of the cluster position in relation to the matrix of eigenvectors

Description

Get the Factor of the cluster position in relation to the matrix of eigenvectors

Usage

```r
getClusterFact(eigenvectorValues, eigenvectorLengthLessOne, clusterNumber, reverseClusterNumber)
```

Arguments

- `eigenvectorValues`: Eigenvector matrix based on the affinity matrix
- `eigenvectorLengthLessOne`: the eigenvector matrix size minus 1
- `clusterNumber`: the cluster position number being tested
- `reverseClusterNumber`: the number of the inverse position of the cluster being tested

Details

Gets the factor of the value and its opposite in relation to the matrix of the eigenvectors

Value

Factor of the cluster position in relation to the matrix of eigenvectors

Author(s)

Luis Gustavo Uzai

getClusterProd

Get the Product of the cluster position in relation to the matrix of eigenvectors

Description

Get the Product of the cluster position in relation to the matrix of eigenvectors
getSpectralClusters

Usage

getClusterProd(eigenvectorValues, eigenvectorLengthLessOne, clusterNumber, reverseClusterNumber)

Arguments

eigenvectorValues
 Eigenvector matrix based on the affinity matrix

eigenvectorLengthLessOne
 the eigenvector matrix size minus 1

clusterNumber
 the cluster position number being tested

reverseClusterNumber
 the number of the inverse position of the cluster being tested

Details

Gets the product of the value and its opposite in relation to the matrix of the eigenvectors

Value

Product of the cluster position in relation to the matrix of eigenvectors

Author(s)

Luis Gustavo Uzai

getSpectralClusters

Clustering with the smallest eigenvectors from eigenvector Matrix

Description

Clustering with the smallest eigenvectors from eigenvector Matrix

Usage

getspectralclusters(eigenvectorMatrix, numberOfClusters = 2)

Arguments

eigenvectorMatrix
 Eigenvector matrix based on the affinity matrix

numberOfClusters
 maximum number of clusters for prediction

Details

Modified standard function present in kernlab to perform clustering with graph spectrum using standard version of K-Means
Value

K-Means Cluster Object

Author(s)

Luis Gustavo Uzai

Spec

Calculate change points with spectral cluster

Description

Calculate change point based on spectral clustering you have the option to automatically calculate the number of clusters if this information is not available.

Usage

```
Spec(data, neighboorsNumber = 5, tolerance = 0.01,
     maxNumberOfChangePoints = 19, estimationChangePointsNumber = NULL)
```

Arguments

- `data` List of values corresponding to the time series
- `neighboorsNumber` Number of neighbors to consider affinity between nodes
- `tolerance` approximation to consider valid clusters, used only for calculation of forecast of change points, default 0.01
- `maxNumberOfChangePoints` maximum number of clusters for prediction : default 19
- `estimationChangePointsNumber` predicted number of change points in the series, if null, is automatically calculated: default null

Details

Calculate change point based on spectral clustering you have the option to automatically calculate the number of clusters if this information is not available. It uses the Gaussian Kernel for the calculation of affinity matrix and Kmeans for the spectral cluster, however, several other options can be used and the package must be customized to better suit the use.

Value

Numerical array with the position of the change points in the time series

Author(s)

Luis Gustavo Uzai
Examples

data <- DEVICE[, 1]
realChangePoints <- c(which(diff(DEVICE$Class) != 0))
calculateChangePoints <- Spec(data, neighborsNumber = 6,
 tolerance = 0.005, estimationChangePointsNumber = 2)
minValue <- -99999
maxValue <- 99999
plot(data, type = "l", xlab = "x", ylab = "y")
for (r in 1:length(realChangePoints)) {
 lines(x = c(realChangePoints[r], realChangePoints[r]),
 y = c(minValue, maxValue), lwd = 2, col = "red")
}
for (n in 1:length(calculateChangePoints)) {
 lines(x = c(calculateChangePoints[n], calculateChangePoints[n]),
 y = c(minValue, maxValue), lwd = 2, col = "blue")
}
Index

*Topic datasets
 DEVICE1, 4
 DEVICE2, 4
 DEVICE3, 5
 DEVICE4, 5
 DEVICE5, 6
 DEVICE6, 6
 FTIR1, 7
 FTIR2, 7
 FTIR3, 8
 FTIR4, 8
 FTIR5, 9
 FTIR6, 9

calculateAffinityMatrix, 2
clusterEstimateNumber, 3
convertToMatrixTimeSeries, 3

DEVICE1, 4
DEVICE2, 4
DEVICE3, 5
DEVICE4, 5
DEVICE5, 6
DEVICE6, 6

FTIR1, 7
FTIR2, 7
FTIR3, 8
FTIR4, 8
FTIR5, 9
FTIR6, 9

gaussianKernel, 10
generateEigenvectorMatrix, 10
generateSimilarityMatrix, 11
getClusterFact, 12
getClusterProd, 12
getSpectralClusters, 13

Spec, 14