Package ‘Spillover’

February 12, 2023

Type Package

Title Spillover/Connectedness Index Based on VAR Modelling

Version 0.1.0.3

Date 2023-02-7

Author Jilber Urbina

Maintainer Jilber Urbina <jurbina@cipadla.com>

License GPL-2

Depends R (>= 3.5.0), vars

Imports dplyr, ggplot2, fastSOM, tidyr, zoo

Encoding UTF-8

RoxygenNote 7.2.3

Suggests rmarkdown, knitr

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2023-02-12 21:52:09 UTC

R topics documented:

dy2009 ... 2
dy2012 ... 2
dynamic.spillover .. 3
g.fevd ... 4
G.spillover .. 5
Diebold and Yilmaz (2009) dataset

Description

Format
a data.frame-class dataset

References

Examples
data(dy2009)
head(dy2009)
summary(dy2009) # Same as Diebold and Yilmaz (2012) summary statistics

Diebold and Yilmaz (2012) dataset

Description
A dataset consisting of 2771 log volatility daily observations of 4 variables: Stocks (SP500), Bonds (R_10Y), Commodities (DJUBSCOM) and FX (USDX). The period for this dataset is from Jan 25, 1999 to Jan 29, 2010.

Format
a data.frame-class dataset
dynamic.spillover

References

Examples

data(dy2012)
head(dy2012)
summary(dy2012) # Same as Diebold and Yilmaz (2012) summary statistics

dynamic.spillover
dynamic.spillover is a function for estimating DY directional spillovers.

Description

dynamic.spillover is a function for estimating DY directional spillovers.

Usage

dynamic.spillover(
 data, # a data.frame consisting of dates in its first column and numeric variables for the others
 width, # a integer specifying the window width in number of observations.
 n.ahead = 10, # An integer indicating the how many steps ahead the spillover should be forecasted.
 standardized = TRUE, # A logical value indicating whether the values should be divided by the number of columns to get a percentage.
 na.fill = FALSE, # A logical value for filling with NA at the beginning window due to width.
 remove.own = TRUE, # should own directional spillover be removed?
 ... # Further arguments to be passed to var function
)

Arguments

data
width
n.ahead
standardized
na.fill
remove.own
...

Value

A list of data.frames holding all directional spillovers as described in Diebold and Yilmaz (2012)
g.feVD

Generalized Forecast Error Variance Decomposition

Description

Computes the generalized forecast error variance decomposition of a VAR(p) for `n.ahead` steps.

Usage

```r
g.feVD(x, n.ahead = 10, normalized = TRUE)
```

Arguments

- `x`: Object of class `varrest` generated by `VAR()` from vars package.
- `n.ahead`: Integer specifying the steps ahead.
- `normalized`: a logical value indicating whether the result should be normalized to sum up to 1, see Details

Details

When `normalized=FALSE` this function computes the generalized forecast error variance decomposition proposed by Pesaran and Shin (1998) which takes the form:

\[
\alpha_{ij}^g(h) = \frac{\sigma_{ii}^{-1} \sum_{l=0}^{h-1} (e_i' \Theta_l \Sigma \epsilon e_j)^2}{\sum_{l=0}^{h-1} (e_i' \Theta_l \Sigma \epsilon \Theta_l' e_i)}, \quad i, j = 0, 1, 2 \ldots, K
\]

Where Θ_l are the coefficients matrix of the MA representation of the VAR model, $\Sigma \epsilon$ is the variance matrix of the reduced-form error vector ϵ, σ_{ii} is the standard deviation of the error term for the ith equation and e_i and e_j are selection vectors with ones as the ith element and zeros elsewhere.

If `normalized=TRUE` (the default value) then g.feVD computes:

\[
\tilde{a}_{ij}^g(h) = \frac{a_{ij}^g(h)}{\sum_{j=1}^{K} a_{ij}^g(h)}
\]

This fact implies the normalization is simply each entry of the generalized fevd divided by its corresponding row sum.

Value

A list of length K holding the generalized forecast error variances as matrices. This is an object of class `varfevd` from vars package.
G.spillover

Author(s)

Jilber Urbina

References

Examples

```r
library(vars)
data(stock.prices)
stocks <- stock.prices[,1:2]
VAR.1 <- VAR(stocks)
g.fevd(VAR.1, n.ahead = 10) # normalized
g.fevd(VAR.1, n.ahead = 10, normalized=FALSE) # Not normalized
```

Description

Computes the generalized spillover index proposed in Diebold and Yilmaz (2012) which is based on the General Forecast Variance Decomposition introduced by Pesaran and Shin (1998).

Usage

```r
G.spillover(x, n.ahead = 10, standardized = TRUE)
```

Arguments

- **x**: Object of class 'varest' generated by VAR() from vars package.
- **n.ahead**: Integer specifying the steps ahead.
- **standardized**: A logical value indicating whether the values should be divided by the number of columns to get a percentage.

Details

This function computes the Generalized Directional Spillover Table which has as its ij^{th} entry the estimated contribution to the forecast error variance of variable i coming from innovations to variable j. The off-diagonal column sums are the Contributions to Others, while the row sums represent Contributions from Others, when these are totaled across countries then we have the numerator of the Spillover Index. Similarly, the columns sums or rows sums (including diagonal), when totaled across countries, give the denominator of the Spillover Index, which is 100%.

G.spillover is based upon the General Forecast Error Variance Decomposition introduced by Pesaran and Shin (1998) and its explicit formulation can be found in Diebold and Yilmaz (2010).
Description
Computes the net spillover index.

Usage
net(x)

Arguments
x Object of class spillover.table generated by either O.spillover() or G.spillover().

Value
A list length K holding the generalized forecast error variances as matrices.

Author(s)
Jilber Urbina
O.spillover

References

See Also

O.spillover G.spillover

0.spillover

Orthogonalized spillover index

Description

Computes the orthogonalized spillover index proposed in Diebold and Yilmaz (2009) which is based on the Orthogonalized Forecast Error Variance Decomposition.

Usage

```r
O.spillover(
  x,
  n.ahead = 10,
  ortho.type = c("single", "partial", "total"),
  standardized = TRUE
)
```

Arguments

- **x**: Object of class `varest` generated by `VAR()` from vars package.
- **n.ahead**: Integer specifying the steps ahead.
- **ortho.type**: A character string indicating the type of orthogonalized index is required. "single" takes the original ordering of variables in VAR model and applies Cholesky decomposition for the fevd. Whereas "partial" takes a random sample out of all the possible combinations generated for the Cholesky decomposition, while "total" uses all the combinations, therefore it takes more time to finish. Both, "partial" and "total" provide average results.
- **standardized**: A logical value indicating whether the values should be divided by the number of columns to get a percentage.

Details

This function computes the Orthogonalized Directional Spillover Table which has as its ij^{th} entry the estimated contribution to the forecast error variance of variable i coming from innovations to variable j. The off-diagonal column sums are the *Contributions to Others*, while the row sums represent *Contributions from Others*, when these are totaled across countries then we have the numerator of the Spillover Index. Similarly, the columns sums or rows sums (including diagonal), when totaled across countries, give the denominator of the Spillover Index, which is 100%.
O.spillover

0. spillover is based upon the Orthogonalized (using Cholesky orthogonalization) Forecast Error Variance Decomposition (see Lutkepohl, 2006) and its explicit formulation can be found in Diebold and Yilmaz (2009).

Since 0. spillover is based on orthogonalized FEVD, then the result is as many indeces as combinations is allowed according to the number of variables in the VAR model, this is exactly equal to $K!$, then output has three options: table, summary and all.ind. table produces a data.frame holding the (orthogonalized) directional mean spillover indices.

When output="table", a data.frame is generated consisting of either mean or median directional spillover indeces, this because for each possible order of the variables the o.fevd is computed and over this result a spillover index is generated and this procedure repeats until reaching the last order (this means all the possible combinations given by $K!$). When output="table" a mean directional spillover table is generated, but this can be changed using stat="median" for a median directional spillover to be generated. Note that stat argument only affects the results of output="table".

When output="summary" an vector is generated, this contains Mean, Min, Max.

This is a user-friendly version of fastSOM::sot_avg_exact() function.

Value

When output="table", a data.frame consisting of the spillover index.
When output="summary", a summary of all spillover indeces.

Author(s)

Jilber Urbina

References

See Also

G.spillover

Examples

```r
library(vars)

# Replicating Table 3, Diebold and Yilmaz (2009)

data(dy2009)
VAR.2 <- VAR(dy2009[,-1], p=2)
O.spillover(VAR.2, ortho.type = "single", standardized = FALSE)
O.spillover(VAR.2, ortho.type = "partial"

```
plotdy

Plot directional spillover index

Description

Plot directional spillover index

Usage

plotdy(
 data,
 direction = c("from", "to", "net", "net_pairwise", "from_to_pairwise")
)

Arguments

data: An object class directional.spillover resulting from applying dynamic.spillover

direction: A character string indicating the direction of the spillover, see Diebold and Yilmaz (2012)

Value

a ggplot2 object consisting of directional plots

References

Examples

library(Spillover)
require(tidyr)
require(dplyr)
require(ggplot2)

data(dy2012)
dy_results <- dynamic.spillover(data=dy2012, width=200, remove.own = FALSE)

pp_from <- plotdy(dy_results, direction = "from")

pp_from +
 labs(title="Any title") +
 facet_wrap(~variables, ncol = 2)

pp_to <- plotdy(dy_results, direction = "to")

pp_net <- plotdy(dy_results, direction = "net")
A dataset of class `zoo` consisting of 1632 two-days rolling average observations on returns based on closed price for six leading stock indices: S&P 500 (US), FTSE 100 (UK), EURO STOXX 50 (Eurozone), BOVESPA (Brazil), NIKKEI 225 (Japan) and S&P ASX 200 (Australia). EURO STOXX 50 covers 50 stocks from 12 Eurozone countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain. The period for this dataset is from June 16, 2003 to September 15, 2009. All series are in US Dollars.

Format

a `zoo`-class dataset

Examples

```r
data(rol.returns)
head(rol.returns)  # First 6 observations
tail(rol.returns)  # Last 6 observations
```

A dataset of class `zoo` consisting of 1633 two-days rolling average observations on intraday volatilities based on Garman and Klass (1980) for six leading stock indices: S&P 500 (US), FTSE 100 (UK), EURO STOXX 50 (Eurozone), BOVESPA (Brazil), NIKKEI 225 (Japan) and S&P ASX 200 (Australia). EURO STOXX 50 covers 50 stocks from 12 Eurozone countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain. The period for this dataset is from June 13, 2003 to September 15, 2009. All series are in US Dollars.
Format

a zoo-class dataset

Examples

data(rol.vol)
head(rol.vol) # First 6 observations
tail(rol.vol) # Last 6 observations

roll.net Dynamic Spillover Index

Description

Estimates the dynamic spillover index given a moving window as described in Diebold and Yilmaz (2012). We recommend switching to dynamic.spillover.

Usage

roll.net(
 data,
 width,
 n.ahead = 10,
 index = c("orthogonalized", "generalized"),
 ortho.type = c("partial", "total"),
 ...
)

Arguments

data Object of class ‘zoo’.
width An integer specifying the window width which is aligned to the original sample.
n.ahead An integer indicating the how many steps ahead the spillover should be forecasted.
index A character string indicating whether the orthogonalized or the generalized index is computed.
ortho.type A character string indicating the type of orthogonalized index is required. "partial" takes a random sample out of all the possible combinations generated for the Choleski decomposition, while "total" uses all the combinations, therefore it takes more time to finish.
...
Further arguments to be passed to VAR function from vars package.

Value

A zoo object holding all the net spillover index estimations.
roll.spillover

Author(s)
Jilber Urbina

References

Examples
data(dy2012)
G_net <- roll.net(as.zoo(dy2012[1:300,c(2,3,4)]), width = 200, index="generalized")
data(dy2012)
orthogonalized rolling net spillover index, based on a VAR(2)
O_net_dy2012 <- roll.net(as.zoo(dy2012[, -1]), width = 200)
Generalized rolling net spillover index, based on a VAR(2)
G_net_dy2012 <- roll.net(as.zoo(dy2012[, -1]), width = 200, index="generalized")

roll.spillover Dynamic Spillover Index

Description
Estimates the dynamic spillover index given a rolling window as described in Diebold and Yilmaz (2012). We recommend switching to dynamic.spillover.

Usage
roll.spillover(
data,
width,
n.ahead = 10,
index = c("orthogonalized", "generalized"),
ortho.type = c("single", "partial", "total"),
...
)

Arguments
data Object of class ‘zoo’.
width An integer specifying the window width which is aligned to the original sample.
n.ahead An integer indicating the how many steps ahead the spillover should be forecasted.
index A character string indicating whether the orthogonalized or the generalized index is computed.

ortho.type Applicable only if index="orthogonalized". A character string indicating the type of orthogonalized index is required. "single" takes the original ordering of variables in VAR model and applies Cholesky decomposition for the fevd. Whereas "partial" takes a random sample out of all the possible combinations generated for the Cholesky decomposition, while "total" uses all the combinations, therefore it takes more time to finish. Both, "partial" and "total" provide average results.

... Further arguments to be passed to VAR function from vars package.

Value

A zoo object holding all the indeces.

Author(s)

Jilber Urbina

References

Examples

data(dy2012)
O_index <- roll.spillover(as.zoo(dy2012[1:300,c(2,3,4)]), width = 200, p=4)
Orthogonalized rolling spillover index based on a VAR(4), single order
O_index <- roll.spillover(as.zoo(dy2012[,1]), width = 200, p=4)
Generalized rolling spillover index based on a VAR(4)
G_index<- roll.spillover(as.zoo(dy2012[,1]), width = 200, index="generalized", p=4)
A comparison: (warning: It can take several minutes.)
single <- roll.spillover(as.zoo(dy2012[1:1200,2:4]), width = 200, p=4)
partial <- roll.spillover(as.zoo(dy2012[1:1200,2:4]), width = 200, p=4, ortho.type = "partial")
total <- roll.spillover(as.zoo(dy2012[1:1200,2:4]), width = 200, p=4, ortho.type = "total")
out <- cbind(single, partial, total)
head(out)
plot(out, col=1:3, main="Spillover index")

Description

Spillover index based on both, orthogonalized and generalized forecast error variance decomposition of a VAR(p) for n step ahead forecast. It computes both orthogonalized and generalized directional spillover indices proposed by Diebold and Yilmaz (2009, 2012)
A dataset consisting of 3507 daily observations on closed price for six leading stock indices: S&P 500 (US), FTSE 100 (UK), EURO STOXX 50 (Eurozone), BOVESPA (Brazil), NIKKEI 225 (Japan) and S&P ASX 200 (Australia). EURO STOXX 50 covers 50 stocks from 12 Eurozone countries: Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal and Spain. The period for this dataset is from December 31, 1999 to June 10, 2013. All series are in US Dollars.
total.dynamic.spillover

Dynamic Spillover Index

Description

Estimates the dynamic spillover index given a rolling window as described in Diebold and Yilmaz (2012).

Usage

total.dynamic.spillover(
 data,
 width,
 n.ahead = 10,
 index = c("orthogonalized", "generalized"),
 ortho.type = c("single", "partial", "total"),
 ...
)

Arguments

data Object of class ‘zoo’.
width An integer specifying the window width which is aligned to the original sample.
n.ahead An integer indicating the how many steps ahead the spillover should be forecasted.
index A character string indicating whether the orthogonalized or the generalized index is computed.
ortho.type Applicable only if index="orthogonalized". A character string indicating the type of orthogonalized index is required. "single" takes the original ordering of variables in VAR model and applies Cholesky decomposition for the fevd. Whereas "partial" takes a random sample out of all the possible combinations generated for the Cholesky decomposition, while "total" uses all the combinations, therefore it takes more time to finish. Both, "partial" and "total" provide average results.
...
... Further arguments to be passed to VAR function from vars package.

Value

A zoo object holding total dynamic index.

Author(s)

Jilber Urbina
References

Examples

data(dy2012)
O_index <- total.dynamic.spillover(as.zoo(dy2012[1:300,c(2,3,4)]), width = 200, p=4)

Orthogonalized rolling spillover index based on a VAR(4), single order
O_index <- total.dynamic.spillover(as.zoo(dy2012[,-1]), width = 200, p=4)
Generalized rolling spillover index based on a VAR(4)
G_index<- total.dynamic.spillover(as.zoo(dy2012[,-1]), width = 200, index="generalized", p=4)
A comparison: (warning: It can take several minutes.)
single <- total.dynamic.spillover(as.zoo(dy2012[1:1200,2:4]), width = 200, p=4, ortho.type = "partial")
partial <- total.dynamic.spillover(as.zoo(dy2012[1:1200,2:4]), width = 200, p=4, ortho.type = "partial")
total <- total.dynamic.spillover(as.zoo(dy2012[1:1200,2:4]), width = 200, p=4, ortho.type = "total")
out <- cbind(single, partial, total)
head(out)
plot(out, col=1:3, main="Spillover index")
Index

* Generalized
g.fevd, 4
* Orthogonal
 O.spillover, 7
* dataset
dy2009, 2
dy2012, 2
 rol.returns, 10
 rol.vol, 10
 stock.prices, 14
* decomposition
g.fevd, 4
 O.spillover, 7
* error
g.fevd, 4
 O.spillover, 7
* fevd
g.fevd, 4
* forecast
 O.spillover, 7
* g.fevd
g.fevd, 4
* htest
 total.dynamic.spillover, 15
* index
 O.spillover, 7
* models
 G.spillover, 5
* o.fevd
 O.spillover, 7
* package
 Spillover, 13
* regression
 G.spillover, 5
* spillover
 O.spillover, 7
* ts
 total.dynamic.spillover, 15
* variance

g.fevd, 4
 O.spillover, 7
dy2009, 2
dy2012, 2
dynamic.spillover, 3
g.fevd, 4
 G.spillover, 5, 7, 8
net, 6
 O.spillover, 6, 7, 7
plotdy, 9
 rol.returns, 10
 rol.vol, 10
 roll.net, 11
 roll.spillover, 12
Spillover, 13
Spillover-package (Spillover), 13
stock.prices, 14
 total.dynamic.spillover, 15