Package ‘StAMPP’

October 12, 2022

Type Package

Title Statistical Analysis of Mixed Ploidy Populations

Depends R (>= 3.2.0), pegas

Imports parallel, doParallel, foreach, adegenet, methods, utils

Version 1.6.3

Date 2021-07-30

Author LW Pembleton

Maintainer LW Pembleton <lwpembleton@gmail.com>

Description Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes following Yang et al. (2010) in mixed and single ploidy populations. Bootstrapping across loci is implemented during Fst calculation to generate confidence intervals and p-values around pairwise Fst values. StAMPP utilises SNP genotype data of any ploidy level (with the ability to handle missing data) and is coded to utilise multithreading where available to allow efficient analysis of large datasets. StAMPP is able to handle genotype data from genlight objects allowing integration with other packages such adegenet.

URL https://github.com/lpembleton/StAMPP

License GPL-3

RoxygenNote 7.1.1

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2021-08-08 04:20:05 UTC
R topics documented:

potato .. 2
potato.mini ... 4
stampp2genlight .. 5
stamppAmova .. 6
stamppConvert .. 7
stamppFst ... 8
stamppGmatrix ... 9
stamppNeisD ... 10
stamppPhylip .. 11

Index 12

potato Example genotype input format

Description

A data frame containing Solcap potato genotype data in tetraploid and diploid format as an small example of the input format required by StAMPP

Usage

data(potato)

Format

A data frame with 30 rows and 48 variables:

Sample Sample names
Pop Population name
Ploidy Ploidy level
Format Format of genotype data
solcap_snp_c1_1 genotype data
solcap_snp_c1_1000 genotype data
solcap_snp_c1_10000 genotype data
solcap_snp_c1_10001 genotype data
solcap_snp_c1_10011 genotype data
solcap_snp_c1_10012 genotype data
solcap_snp_c1_10031 genotype data
solcap_snp_c1_10042 genotype data
solcap_snp_c1_10050 genotype data
solcap_snp_c1_10054 genotype data
solcap_snp_c1_10109 genotype data
solcap_snp_c1_10130 genotype data
solcap_snp_c1_10157 genotype data
solcap_snp_c1_10202 genotype data
solcap_snp_c1_10252 genotype data
solcap_snp_c1_10253 genotype data
solcap_snp_c1_10255 genotype data
solcap_snp_c1_1029 genotype data
solcap_snp_c1_10295 genotype data
solcap_snp_c1_10297 genotype data
solcap_snp_c1_10351 genotype data
solcap_snp_c1_10384 genotype data
solcap_snp_c1_10397 genotype data
solcap_snp_c1_10457 genotype data
solcap_snp_c1_10491 genotype data
solcap_snp_c1_10492 genotype data
solcap_snp_c1_10494 genotype data
solcap_snp_c1_10579 genotype data
solcap_snp_c1_10646 genotype data
solcap_snp_c1_10669 genotype data
solcap_snp_c1_10715 genotype data
solcap_snp_c1_10737 genotype data
solcap_snp_c1_10743 genotype data
solcap_snp_c1_10762 genotype data
solcap_snp_c1_10855 genotype data
solcap_snp_c1_10873 genotype data
solcap_snp_c1_10879 genotype data
solcap_snp_c1_10900 genotype data
solcap_snp_c1_10932 genotype data
solcap_snp_c1_1094 genotype data
solcap_snp_c1_11137 genotype data
solcap_snp_c1_11144 genotype data
solcap_snp_c1_11196 genotype data
solcap_snp_c1_11206 genotype data

Source
The example genotype data is a subset of data from the publically available Solcap potato dataset which was re-scored in GenomeStudio in diploid and tetraploid formats.
Description

A data frame containing Solcap potato genotype data in tetraploid and diploid format as an small example of the input format required by StAMPP

Usage

data(potato.mini)

Format

A data frame with 6 rows and 48 variables:

Sample Sample names
Pop Population name
Ploidy Ploidy level
Format Format of genotype data
solcap_snp_c1_1 genotype data
solcap_snp_c1_1000 genotype data
solcap_snp_c1_10000 genotype data
solcap_snp_c1_10001 genotype data
solcap_snp_c1_10011 genotype data
solcap_snp_c1_10012 genotype data
solcap_snp_c1_10031 genotype data
solcap_snp_c1_10042 genotype data
solcap_snp_c1_10050 genotype data
solcap_snp_c1_10054 genotype data
solcap_snp_c1_10109 genotype data
solcap_snp_c1_10130 genotype data
solcap_snp_c1_10157 genotype data
solcap_snp_c1_10202 genotype data
solcap_snp_c1_10252 genotype data
solcap_snp_c1_10253 genotype data
solcap_snp_c1_10255 genotype data
solcap_snp_c1_1029 genotype data
solcap_snp_c1_10295 genotype data
solcap_snp_c1_10297 genotype data
Source
The example genotype data is a subset of data from the publically available Solcap potato dataset which was re-scored in GenomeStudio in diploid and tetraploid formats.

Description
Converts a StAMPP formatted allele frequency data frame generated from the stamppConvert function to a genlight object for use in other packages.

Usage
stampp2genlight(geno, pop = TRUE)
Arguments

- geno: a data frame containing allele frequency data generated from stamppConvert.
- pop: logical. True if population IDs are present in the StAMPP genotype data, False if population IDs are absent.

Details

StAMPP only exports to genlight objects as they are able to handle mixed ploidy datasets unlike genpop and genloci objects. The genlight object allows the integration between StAMPP and other common R packages such as ADEGENET.

Value

A object of class genlight which contains genotype data, individual IDs, population IDs (if present) and ploidy levels.

Author(s)

Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

Examples

```r
# import genotype data and convert to allele frequencies
data(potato.mini, package="StAMPP")
potato.freq <- stamppConvert(potato.mini, "r")

# Convert the StAMPP formatted allele frequency data frame to a genlight object
potato.genlight <- stampp2genlight(potato.freq, TRUE)
```

__stamppAmova__

Analysis of Molecular Variance

Description

Calculates an AMOVA based on the genetic distance matrix from stamppNeisD() using the amova() function from the package PEGAS for exploring within and between population variation.

Usage

```
stamppAmova(dist.mat, geno, perm = 100)
```

Arguments

- dist.mat: the matrix of genetic distances between individuals generated from stamppNeisD()
- geno: a data frame containing allele frequency data generated from stamppConvert, or a genlight object containing genotype data, individual IDs, population IDs and ploidy levels
- perm: the number of permutations for the tests of hypotheses
Details

Uses the formula distance ~ populations, to calculate an AMOVA for population differentiation and within & between population variation. This function uses the amova function from the PEGAS package.

Value

An object of class "amova" which is a list containing a table of sum of square deviations (SSD), mean square deviations (MSD) and the number of degrees of freedom as well as the variance components

Author(s)

Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

References

Examples

import genotype data and convert to allele frequencies
data(potato.mini, package="StAMPP")
potato.freq <- stamppConvert(potato.mini, "r")
Calculate genetic distance between individuals
potato.D.ind <- stamppNeisD(potato.freq, FALSE)
Calculate AMOVA
stamppAmova(potato.D.ind, potato.freq, 100)

stamppConvert

Import and Convert

Description

Imports biallelic AB formatted or allele A frequency genotype data. If the data is in imported in biallelic AB format this function also converts it to allele frequencies

Usage

stamppConvert(genotype.file, type = "csv")

Arguments

genotype.file the genotype input file. This should be a R matrix object or a file path for a csv file containing the genotype data in either biallelic AB format or allele ‘A’ frequency format, or a genlight object containing genotype data

type the type of file the genotype data is being imported from; "csv" = comma seperated file, "r" = data frame in the R workspace, "genlight" = genlight object.
stamppFst

Value

An object of class data.frame which contains allele frequency data for use in other StAMPP functions.

Author(s)

Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

Examples

```r
# Import example data into the R workspace
data(potato.mini, package="StAMPP")
# Convert to allele frequencies
potato.freq <- stamppConvert(potato.mini, "r")
```

stamppFst Fst Computation

Description

This function calculates pairwise Fst values along with confidence intervals and p-values between populations according to the method proposed by Wright(1949) and updated by Weir and Cockerham (1984).

Usage

```r
stamppFst(geno, nboots = 100, percent = 95, nclusters = 1)
```

Arguments

- **geno**: a data frame containing allele frequency data generated from stamppConvert, or a genlight object containing genotype data, individual IDs, population IDs and ploidy levels.
- **nboots**: number of bootstraps to perform across loci to generate confidence intervals and p-values.
- **percent**: the percentile to calculate the confidence interval around.
- **nclusters**: number of processor threads or cores to use during calculations.

Details

If possible, using multiple processing threads or cores is recommended to assist in calculating Fst values over a large number of bootstraps.
stamppGmatrix

Value
An object list with the components: Fsts a matrix of pairwise Fst values between populations Pvalues a matrix of p-values for each of the pairwise Fst values contained in the 'Fsts' matrix Bootstraps a dataframe of each Fst value generated during Bootstrapping and the associated confidence intervals If nboots<2, no bootstrapping is performed and therefore only a matrix of Fst values is returned.

Author(s)
Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

References

Examples
import genotype data and convert to allele frequencies
data(potato.mini, package="StAMPP")
potato.freq <- stamppConvert(potato.mini, "r")
Calculate pairwise Fst values between each population
potato.fst <- stamppFst(potato.freq, 100, 95, 1)

stamppGmatrix

Genomic Relationship Calculation

Description
This function calculates a genomic relationship matrix following the method described by Yang et al (2010)

Usage
stamppGmatrix(geno)

Arguments
geno a data frame containing allele frequency data generated from stamppConvert, or a genlight object containing genotype data, individual IDs, population IDs and ploidy levels

Value
An object of class matrix which contains the genomic relationship values between each individual
stamppNeisD

Author(s)
Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

References

Examples
import genotype data and convert to allele frequencies
data(potato.mini, package="StAMPP")
potato.freq <- stamppConvert(potato.mini, "r")
Calculate genomic relationship values between each individual
potato.fst <- stamppGmatrix(potato.freq)

stamppNeisD Genetic Distance Calculation

Description
This function calculates Nei's genetic distance (Nei 1972) between populations or individuals

Usage
stamppNeisD(geno, pop = TRUE)

Arguments
geno a data frame containing allele frequency data generated from stamppConvert, or a genlight object containing genotype data, individual IDs, population IDs and ploidy levels
pop logical. True if genetic distance should be calculated between populations, false if it should be calculated between individual

Value
A object of class matrix which contains the genetic distance between each population or individual

Author(s)
Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

References
Examples

import genotype data and convert to allele frequencies
data(potato.mini, package="StAMPP")
potato.freq <- stamppConvert(potato.mini, "r")
Calculate genetic distance between individuals
potato.D.ind <- stamppNeisD(potato.freq, FALSE)
Calculate genetic distance between populations
potato.D.pop <- stamppNeisD(potato.freq, TRUE)

stamppPhylip

Export to Phylip Format

Description

Converts the genetic distance matrix generated with stamppNeisD into Phylip format and exports it as a text file.

Usage

stamppPhylip(distance.mat, file = "")

Arguments

distance.mat the matrix containing the genetic distances generated from stamppNeisD to be converted into Phylip format

file the file path and name to save the Phylip format matrix as

Details

The exported Phylip formatted text file can be easily imported into software packages such as DARWin (Perrier & Jacquemound-Collet 2006) to be used to generate neighbor joining trees.

Author(s)

Luke Pembleton <luke.pembleton at agriculture.vic.gov.au>

References

Examples

import genotype data and convert to allele frequencies
data(potato.mini, package="StAMPP")
potato.freq <- stamppConvert(potato.mini, "r")
Calculate genetic distance between individuals
potato.D.ind <- stamppNeisD(potato.freq, FALSE)
Calculate genetic distance between populations
potato.D.pop <- stamppNeisD(potato.freq, TRUE)
Export the genetic distance matrix in Phylip format
Not run: stamppPhylip(potato.D.pop, file="potato_distance.txt")
Index

* datasets
 potato, 2
 potato.mini, 4
 potato, 2
 potato.mini, 4
 stampp2genlight, 5
 stamppAmova, 6
 stamppConvert, 7
 stamppFst, 8
 stamppGmatrix, 9
 stamppNeisD, 10
 stamppPhylip, 11