Package ‘StMoMo’

April 13, 2018

Title Stochastic Mortality Modelling

Version 0.4.1

Author Andres Villegas <andresmauriciovillegas@gmail.com>, Pietro Millosovich <Pietro.Millosovich.1@city.ac.uk>, Vladimir Kaishev <Vladimir.Kaishev.1@city.ac.uk>

Maintainer Andres Villegas <andresmauriciovillegas@gmail.com>

URL http://github.com/amvillegas/StMoMo

BugReports http://github.com/amvillegas/StMoMo/issues

Imports MASS, rootSolve (>= 1.6.5.1), fanplot (>= 3.4), reshape2 (>= 1.4.1), fields (>= 8.2), RColorBrewer

Depends R (>= 3.2.0), gnm (>= 1.0), forecast(>= 6.1)

License GPL (>= 2)

LazyData true

Suggests demography, knitr, xtable, MTS

VignetteBuilder knitr, utils

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-04-13 11:12:44 UTC
R topics documented:

apc ... 3
bootstrap ... 4
bootstrap.fitStMoMo .. 4
cbd ... 6
central2initial .. 7
coeff.fitStMoMo .. 8
EWMaleData ... 9
extractCohort .. 10
fit ... 11
fit.rh .. 11
fit.StMoMo .. 14
fitted.fitStMoMo .. 17
forecast.fitStMoMo ... 18
forecast.iarima ... 21
forecast.mrwd ... 22
genWeightMat ... 23
iarima .. 24
initial2central .. 25
lc ... 25
logLik.fitStMoMo .. 27
m6 ... 27
m7 ... 28
m8 ... 30
mrwd .. 31
plot.bootStMoMo .. 32
plot.fitStMoMo .. 33
plot.forStMoMo ... 33
plot.resStMoMo ... 34
predict.fitStMoMo ... 36
residuals.fitStMoMo ... 38
rh ... 39
simulate.bootStMoMo .. 41
simulate.fitStMoMo ... 43
simulate.iarima ... 47
simulate.mrwd .. 47
StMoMo .. 48
StMoMoData ... 51

Index 53
Create an Age-Period-Cohort mortality model

Description

Utility function to initialise a StMoMo object representing an Age-Period-Cohort mortality model.

Usage

apc(link = c("log", "logit"))

Arguments

link: defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link.

Details

The created model is either a log-Poisson or a logit-Binomial version of the classical age-period-cohort mortality model which has predictor structure

$$\eta_{xt} = \alpha_x + \kappa_t + \gamma_{t-x}.$$

To ensure identifiability we follow Cairns et al. (2009) and impose constraints

$$\sum_c \gamma_c = 0$$

and

$$\sum_c c\gamma_c = 0$$

Value

An object of class "StMoMo".

References

See Also

StMoMo, rh
Examples

```
APC <- apc()
wxt <- genWeightMat(EWMaleData$sages, EWMaleData$years, clip = 3)
APCfit <- fit(APC, data = EWMaleData, wxt = wxt)
plot(APCfit, parametricbx = FALSE, nCol = 3)
```

bootstrap

Generic method for bootstrapping a fitted Stochastic Mortality Model

Description

`bootstrap` is a generic function for bootstrapping Stochastic Mortality Models. The function invokes particular methods which depend on the class of the first argument.

Usage

```
bootstrap(object, nBoot, ...)
```

Arguments

- `object` an object used to select a method. Typically of class `fitStMoMo` or an extension of this class.
- `nBoot` number of bootstrap samples to produce.
- `...` arguments to be passed to or from other methods.

Details

`bootstrap` is a generic function which means that new fitting strategies can be added for particular stochastic mortality models. See for instance `bootstrap.fitStMoMo`.

bootstrap.fitStMoMo

Bootstrap a fitted Stochastic Mortality Model

Description

Produce bootstrap parameters of a Stochastic Mortality Model to account for parameter uncertainty.

Usage

```
## S3 method for class 'fitStMoMo'
bootstrap(object, nBoot = 1, type = c("semiparametric", "residual"), deathType = c("observed", "fitted"), ...)
```
Arguments

- **object**: an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- **nBoot**: number of bootstrap samples to produce.
- **type**: type of bootstrapping approach to be applied. "semiparametric" (default) uses the assumed distribution of the deaths to generate bootstrap samples. "residual" resamples the deviance residuals of the model to generate bootstrap samples.
- **deathType**: type of deaths to sample in the semiparametric bootstrap. "observed" (default) resamples the observed deaths. "fitted" resamples the fitted deaths. This parameter is only used if type is "semiparametric".
- **...**: arguments to be passed to or from other methods.

Details

When type is "residual" the residual bootstrapping approach described in Renshaw and Haberman (2008) is applied, which is an adaptation of the approach of Koissi et al (2006). In the case of a "logit" link with Binomial responses the adaptation described in Debon et al, (2010, section 3) is used.

When type is "semiparametric" the semiparametric approach described in Brouhns et al.(2005) is used. In the case of a "logit" link with Binomial responses a suitable adaptation is applied. If deathType is "observed" then the observed deaths are used in the sampling as in Brouhns et al. (2005) while if deathType is "fitted" the fitted deaths are used in the sampling as in Renshaw and Haberman (2008).

Value

A list with class "bootStMoMo" with components:

- **bootParameters**: a list of of length nBoot with the fitted parameters for each bootstrap replication.
- **model**: the model fit that has been bootstrapped.
- **type**: type of bootstrapping approach applied.
- **deathType**: type of deaths sampled in case of semiparametric bootstrap.

References

See Also

simulate.bootStMoMo, plot.bootStMoMo
Examples

```r
#Long computing times
## Not run:
LCfit <- fit(lc(), data = EMaleData)

LCResBoot <- bootstrap(LCfit, nBoot = 500, type = "residual")
plot(LCResBoot)

LCSemiObsBoot <- bootstrap(LCfit, nBoot = 500, type = "semiparametric")
plot(LCSemiObsBoot)

LCSemiFitBoot <- bootstrap(LCfit, nBoot = 500, type = "semiparametric",
                        deathType = "fitted")
plot(LCSemiFitBoot)

## End(Not run)
```

cbd Create a Cairns-Blake-Dowd mortality model

Description
Utility function to initialise a StMoMo object representing a Cairns-Blake-Dowd mortality model.

Usage
cbd(link = c("logit", "log"))

Arguments

- `link` defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link. Note that the default is the logit link.

Details
The created model is either a logit-Binomial or a log-Poisson version of the Cairns-Blake-Dowd mortality model which has predictor structure

\[
\eta_{xt} = \kappa_1^{(1)} + (x - \bar{x})\kappa_2^{(2)},
\]

where \(\bar{x} \) is the average age in the data.

Value
An object of class "StMoMo".
References

See Also
StMoMo, central2initial, m6, m7, m8

Examples

```r
cbd <- cbd()
cbdfit <- fit(CBD, data = central2initial(EWMaleData), ages.fit = 55:89)
plot(cbdfit, parametricbx = FALSE)
```

central2initial

Transform StMoMoData from central to initial exposures

Description
Transform StMoMoData from central to initial exposures. Initial exposures are computed by adding one half of the deaths to the central exposures.

Usage

`central2initial(data)`

Arguments

- `data` StMoMoData object of type "central" created with function `StMoMoData`.

Value

A StMoMoData object of type "initial".

See Also

initial2central

Examples

```r
cbd <- cbd()
cbdfit <- fit(CBD, data = central2initial(EWMaleData), ages.fit = 55:89)
plot(cbdfit, parametricbx = FALSE)
```
Description

Extract coefficients from a fitted Stochastic Mortality Model

Usage

```r
# S3 method for class 'fitStMoMo'
coef(object, ...)
```

Arguments

- `object`: an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- `...`: other arguments.

Value

A list of model parameters with components:

- `ax`: Vector with the fitted values of the static age function α_x. If the model does not have a static age function or failed to fit this is set to NULL.
- `bx`: Matrix with the values of the period age-modulating functions $\beta_x^{(i)}$, $i = 1, \ldots, N$. If the i-th age-modulating function is non-parametric (e.g., as in the Lee-Carter model) `bx[, i]` contains the estimated values. If the model does not have any age-period terms (i.e. $N = 0$) or failed to fit this is set to NULL.
- `kt`: Matrix with the values of the fitted period indexes $\kappa_t^{(i)}$, $i = 1, \ldots, N$. `kt[i,]` contains the estimated values of the i-th period index. If the model does not have any age-period terms (i.e. $N = 0$) or failed to fit this is set to NULL.
- `b0x`: Vector with the values of the cohort age-modulating function $\beta_x^{(0)}$. If the age-modulating function is non-parametric `b0x` contains the estimated values. If the model does not have a cohort effect or failed to fit this is set to NULL.
- `gc`: Vector with the fitted cohort index γ_c. If the model does not have a cohort effect or failed to fit this is set to NULL.

Examples

```r
APCfit <- fit(apc(), data = EWMaleData)
coef(APCfit)
```
description

Age-specific deaths and exposures for England and Wales from the Human Mortality Database. This is an object of class StMoMoData.

Usage

EWMaleData

Format

A list with the following components:

- Dxt matrix of deaths data.
- Ext matrix of exposures data (mid year population estimates).
- ages vector of ages.
- years vector of years.
- type the type of exposure in the data (central).
- series name of the extracted series in this case males.
- label label of the data.

Details

EWMaleData contains deaths and exposures for England and Wales males for the period 1961-2011 and for ages 0-100. Data taken from the Human Mortality Database on 5 November 2014.

Source

References

Human Mortality Database (2014). University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org.

See Also

StMoMoData
extractCohort

Extract cohort from an age-period array

Description

Extract cohorts from an age-period array. This is useful to construct a life table or to perform actuarial/demographic calculations on a cohort basis using the output of several functions in StMoMo.

Usage

extractCohort(A, age = as.numeric(dimnames(A)[[1]][1]), period = as.numeric(dimnames(A)[[2]][1]), cohort = period - age)

Arguments

A
an age-period array with a demographic quantity. This array can have two or more dimensions, with the first dimension being the age and the second dimension being the period (calendar year). Note that the names of these two dimensions are taken to represent the possible ages and periods in the array.

age
optional age for defining the cohort to be extracted. If argument age is provided (and argument cohort is not) then the extracted cohort corresponds to those born in the year period-age.

period
optional period (calendar year) for defining the cohort to be extracted. If argument period is provided (and argument cohort is not) then the extracted cohort corresponds to those born in the year period-age.

cohort
optional cohort to be extracted. If this argument is provided then arguments age and period are ignored.

Value

If the the input array is two dimensional the the output is a a vector with the quantity along the cohort. Otherwise if A is an N-dimensional array the output is an (N-1)-dimensional array with the first dimension representing the cohort.

See Also

fitted.fitStMoMo, forecast.fitStMoMo, simulate.fitStMoMo, simulate.bootStMoMo

Examples

LCfit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
#Plot forecast mortality rates for the 1950 cohort
LCfor <- forecast(LCfit)
plot(55:61, extractCohort(fitted(LCfit, type = "rates"), cohort = 1950),
 type = "l", log = "y", xlab = "age", ylab = "Mortality rate",
 main = "Mortality rates for the 1950 cohort",
 xlab = c(55,89), ylim = c(0.005, 0.12))
lines(62:89, extractCohort(LCfor$rates, cohort = 1950), lty = 2, col = "blue")

#Plot 10 simulated sets of mortality rates for the cohort
aged 60 in year 2010 (i.e., the 1950 cohort)
LCsim <- simulate(LCfit, nsim = 10)
mSim <- extractCohort(LCsim$rates, age = 60, period = 2010)
plot(55:61, extractCohort(fitted(LCfit, type = "rates"), cohort = 1950),
 type = "l", log = "y", xlab = "age", ylab = "Mortality rate",
 main = "Mortality rates for the 1950 cohort",
 xlim = c(55,89), ylim = c(0.005, 0.12))
matlines(62:89, mSim, lty = 2)

fit

Generic for fitting a Stochastic Mortality Model

Description

fit is a generic function for fitting Stochastic Mortality Models. The function invokes particular methods which depend on the class of the first argument.

Usage

```
fit(object, ...)
```

Arguments

- `object`: an object used to select a method. Typically of class `StMoMo` or an extension of this class.
- `...`: arguments to be passed to or from other methods.

Details

fit is a generic function which means that new fitting strategies can be added for particular stochastic mortality models. See for instance `fit.StMoMo`.

fit.rh

Fit a Renshaw and Haberman (Lee-Carter with cohorts) mortality model

Description

Fit a Renshaw and Haberman (Lee-Carter with cohorts) mortality model using the iterative Newton-Raphson procedure presented in Algorithm 1 of Hunt and Villegas (2015). This approach helps solve the well-known robustness and converges issues of the Lee-Carter model with cohort-effects.
Usage

```r
## S3 method for class 'rh'
fit(object, data = NULL, Dxt = NULL, Ext = NULL,
    ages = NULL, years = NULL, ages.fit = NULL, years.fit = NULL,
    oxt = NULL, wxt = NULL, start.ax = NULL, start.bx = NULL,
    start.kt = NULL, start.b0x = NULL, start.gc = NULL, verbose = TRUE,
    tolerance = 1e-04, iterMax = 10000, ...)
```

Arguments

- **object**: an object of class "rh" created with function `rh`.
- **data**: an optional object of type `StMoMoData` containing information on deaths and exposures to be used for fitting the model. This is typically created with function `StMoMoData`. If this is not provided then the fitting data is taken from arguments, `Dxt`, `Ext`, `ages`, `years`.
- **Dxt**: optional matrix of deaths data.
- **Ext**: optional matrix of observed exposures of the same dimension of `Dxt`.
- **ages**: optional vector of ages corresponding to rows of `Dxt` and `Ext`.
- **years**: optional vector of years corresponding to rows of `Dxt` and `Ext`.
- **ages.fit**: optional vector of ages to include in the fit. Must be a subset of `ages`.
- **years.fit**: optional vector of years to include in the fit. Must be a subset of `years`.
- **oxt**: optional matrix/vector or scalar of known offset to be used in fitting the model. This can be used to specify any a priori known component to be added to the predictor during fitting.
- **wxt**: optional matrix of 0-1 weights to be used in the fitting process. This can be used, for instance, to zero weight some cohorts in the data. See `genWeightMat` which is a helper function for defining weighting matrices.
- **start.ax**: optional vector with starting values for α_x.
- **start.bx**: optional matrix with starting values for $\beta_x^{(i)}$.
- **start.kt**: optional matrix with starting values for $\kappa_t^{(i)}$.
- **start.b0x**: optional vector with starting values for $\beta_{20}^{(0)}$.
- **start.gc**: optional vector with starting values for γ_c.
- **verbose**: a logical value. If `TRUE` progress indicators are printed as the model is fitted. Set `verbose = FALSE` to silent the fitting and avoid progress messages.
- **tolerance**: a positive numeric value specifying the tolerance level for convergence.
- **iterMax**: a positive integer specifying the maximum number of iterations to perform.
- **...**: arguments to be passed to or from other methods.
Value

- **model**: the object of class "rh" defining the fitted stochastic mortality model.
- **ax**: vector with the fitted values of the static age function α_x. If the model does not have a static age function or failed to fit this is set to NULL.
- **bx**: matrix with the values of the period age-modulating functions $\beta^{(i)}_x$, $i = 1, \ldots, N$. If the i-th age-modulating function is non-parametric (e.g. as in the Lee-Carter model) $bx[\cdot, i]$ contains the estimated values. If the model does not have any age-period terms (i.e. $N = 0$) or failed to fit this is set to NULL.
- **kt**: matrix with the values of the fitted period indexes $\kappa^{(i)}_t$, $i = 1, \ldots, N$. $kt[i, \cdot]$ contains the estimated values of the i-th period index. If the model does not have any age-period terms (i.e. $N = 0$) or failed to fit this is set to NULL.
- **b0x**: vector with the values of the cohort age-modulating function $\beta^{(0)}_x$. If the age-modulating function is non-parametric $b0x$ contains the estimated values. If the model does not have a cohort effect or failed to fit this is set to NULL.
- **gc**: vector with the fitted cohort index γ_c. If the model does not have a cohort effect or failed to fit this is set to NULL.
- **data**: StMoMoData object provided for fitting the model.
- **Dxt**: matrix of deaths used in the fitting.
- **Ext**: matrix of exposures used in the fitting.
- **oxt**: matrix of known offset values used in the fitting.
- **wxt**: matrix of 0-1 weights used in the fitting.
- **ages**: vector of ages used in the fitting.
- **years**: vector of years used in the fitting.
- **cohorts**: vector of cohorts used in the fitting.
- **fittingModel**: output from the iterative fitting algorithm.
- **loglik**: log-likelihood of the model. If the fitting failed to converge this is set to NULL.
- **deviance**: deviance of the model. If the fitting failed to converge this is set to NULL.
- **npar**: effective number of parameters in the model. If the fitting failed to converge this is set to NULL.
- **nobs**: number of observations in the model fit. If the fitting failed to converge this is set to NULL.
- **fail**: TRUE if a model could not be fitted and FALSE otherwise.
- **conv**: TRUE if the model fitting converged and FALSE if it didn’t.

References

fit.StMoMo

Examples

LCfit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
RHfit <- fit(rh(), data = EWMaleData, ages.fit = 55:89,
 wxt = wxt, start.ax = LCfit$ax,
 start.bx = LCfit$bx, start.kt = LCfit$kt)
plot(RHfit)

#Impose approximate constraint as in Hunt and Villegas (2015)
Not run:
RHapprox <- rh(approxConst = TRUE)
RHapproxfit <- fit(RHapprox, data = EWMaleData, ages.fit = 55:89,
 wxt = wxt)
plot(RHapproxfit)

End(Not run)

fit.StMoMo Fit a Stochastic Mortality Model

Description

Fit a Stochastic Mortality Model to a given data set. The fitting is done using package gnm.

Usage

S3 method for class 'StMoMo'
fit(object, data = NULL, Dxt = NULL, Ext = NULL,
 ages = NULL, years = NULL, ages.fit = NULL, years.fit = NULL,
 oxt = NULL, wxt = NULL, start.ax = NULL, start.bx = NULL,
 start.kt = NULL, start.b0x = NULL, start.gc = NULL, verbose = TRUE,
 ...
)

Arguments

object an object of class "StMoMo" defining the stochastic mortality model.
data an optional object of type StMoMoData containing information on deaths and exposures to be used for fitting the model. This is typically created with function StMoMoData. If this is not provided then the fitting data is taken from arguments, Dxt, Ext, ages, years.
Dxt optional matrix of deaths data.
Ext optional matrix of observed exposures of the same dimension of Dxt.
ages optional vector of ages corresponding to rows of Dxt and Ext.
years optional vector of years corresponding to rows of Dxt and Ext.
fit.StMoMo

ages.fit optional vector of ages to include in the fit. Must be a subset of ages.

years.fit optional vector of years to include in the fit. Must be a subset of years.

oxt optional matrix/vector or scalar of known offset to be used in fitting the model. This can be used to specify any a priori known component to be added to the predictor during fitting.

wxt optional matrix of 0-1 weights to be used in the fitting process. This can be used, for instance, to zero weight some cohorts in the data. See genWeightMat which is a helper function for defining weighting matrices.

start.ax optional vector with starting values for α_x.

start.bx optional matrix with starting values for $\beta_x^{(i)}$.

start.kt optional matrix with starting values for $\kappa_t^{(i)}$.

start.b0x optional vector with starting values for $\beta_x^{(0)}$.

start.gc optional vector with starting values for γ_c.

verbose a logical value. If TRUE progress indicators are printed as the model is fitted. Set verbose = FALSE to silent the fitting and avoid progress messages.

Arguments to be passed to or from other methods. This can be used to control the fitting parameters of gnm. See gnm.

Details

Fitting is done using function gnm within package gnm. This is equivalent to minimising (maximising) the deviance (log-likelihood) of the model. Ages and years in the data should be of type numeric. Data points with zero exposure are assigned a zero weight and are ignored in the fitting process. Similarly, NA are assigned a zero weight and ignored in the fitting process. Parameter estimates can be plotted using function plot.fitStMoMo.

Value

A list with class "fitStMoMo" with components:

model the object of class "StMoMo" defining the fitted stochastic mortality model.

ax vector with the fitted values of the static age function α_x. If the model does not have a static age function or failed to fit this is set to NULL.

bx matrix with the values of the period age-modulating functions $\beta_x^{(i)}$, $i = 1, ..., N$. If the i-th age-modulating function is non-parametric (e.g. as in the Lee-Carter model) bx[, i] contains the estimated values. If the model does not have any age-period terms (i.e. $N = 0$) or failed to fit this is set to NULL.

kt matrix with the values of the fitted period indexes $\kappa_t^{(i)}$, $i = 1, ..., N$. kt[i,] contains the estimated values of the i-th period index. If the model does not have any age-period terms (i.e. $N = 0$) or failed to fit this is set to NULL.

b0x vector with the values of the cohort age-modulating function $\beta_x^{(0)}$. If the age-modulating function is non-parametric b0x contains the estimated values. If the model does not have a cohort effect or failed to fit this is set to NULL.
vector with the fitted cohort index γ_c. If the model does not have a cohort effect or failed to fit this is set to NULL.

data
StMoMoData object provided for fitting the model.

Dxt
matrix of deaths used in the fitting.

Ext
matrix of exposures used in the fitting.

oxt
matrix of known offset values used in the fitting.

wxt
matrix of 0-1 weights used in the fitting.

ages
vector of ages used in the fitting.

years
vector of years used in the fitting.

cohorts
vector of cohorts used in the fitting.

fittingModel
output from the call to gnm used to fit the model. If the fitting failed to converge this is set to NULL.

loglik
log-likelihood of the model. If the fitting failed to converge this is set to NULL.

deviance
deviance of the model. If the fitting failed to converge this is set to NULL.

npar
effective number of parameters in the model. If the fitting failed to converge this is set to NULL.

nobs
number of observations in the model fit. If the fitting failed to converge this is set to NULL.

fail
TRUE if a model could not be fitted and FALSE otherwise.

conv
TRUE if the model fitting converged and FALSE if it didn’t.

Examples

Lee-Carter model only for older ages
LCFit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
plot(LCFit)

Use arguments Dxt, Ext, ages, years to pass fitting data
LCFit <- fit(lc(), Dxt = EWMaleData$Dxt, Ext = EWMaleData$Ext,
 ages = EWMaleData$ages, years = EWMaleData$years,
 ages.fit = 55:89)
plot(LCFit)

APC model weighting out the 3 first and last cohorts
wxt <- genWeightMat(EWMaleData$ages, EWMaleData$years, clip = 3)
APCfit <- fit(apc(), data = EWMaleData, wxt = wxt)
plot(APCfit, parametricbx = FALSE, nCol = 3)

Set verbose = FALSE for silent fitting
APCfit <- fit(apc(), data = EWMaleData, wxt = wxt,
 verbose = FALSE)

Not run:
Poisson Lee-Carter model with the static age function set to
the mean over time of the log-death rates
constLCfix_ax <- function(ax, bx, kt, b0x, gc, wxt, ages){
 c1 <- sum(bx, na.rm = TRUE)
 bx <- bx / c1
 kt <- kt * c1
 list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc)
}
LCfix_ax <- StMoMo(link = "log", staticAgeFun = FALSE,
periodAgeFun = "NP", constFun = constLCfix_ax)
LCfix_axfit <- fit(LCfix_ax, data= EWMaleData,
 oxt = rowMeans(log(EWMaleData$Dxt / EWMaleData$Ext)))
plot(LCfix_axfit)
End(Not run)

fitted.fitStMoMo

Compute fitted values for a Stochastic Mortality Model

Description

Returns fitted values for the data used in fitting a Stochastic Mortality Model.

Usage

```r
## S3 method for class 'fitStMoMo'
fitted(object, type = c("link", "rates", "deaths"), ...)
```

Arguments

- `object`: an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- `type`: the type of the fitted values that should be returned. The alternatives are "link" (default), "rates", and "deaths".
- `...`: other arguments.

Value

A matrix with the fitted values.

Examples

```r
LCfit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
matplot(LCfit$ages, fitted(LCfit), type = "l", lty = 1, col = rainbow(length(LCfit$years)), xlab = "year", ylab = "log death rate", main = "Fitted rates")
uxthat <- fitted(LCfit, type = "rates")
uxt <- LCfit$Dxt / LCfit$Ext
```
plot(LCfit$years, uxt["65",], xlab = "year", ylab = "death rate", main = "fitted vs. observed rates at age 65")
lines(LCfit$years, uxtthat["65",])

default mortality rates using a Stochastic Mortality Model

Description

Forecast mortality rates using a Stochastic Mortality Model fit. The period indexes $\kappa_i^{(t)}$, $i = 1, \ldots, N$, are forecasted using either a Multivariate Random Walk with Drift (MRWD) or N independent ARIMA(p, d, q) models. The cohort index γ_{t-x} is forecasted using an ARIMA(p, d, q). By default an ARIMA$(1, 1, 0)$ with a constant is used.

Usage

```r
## S3 method for class 'fitStMoMo'
forecast(object, h = 50, level = c(80, 95),
    oxt = NULL, gc.order = c(1, 1, 0), gc.include.constant = TRUE,
    jumpchoice = c("fit", "actual"), kt.method = c("mrwd", "iarima"),
    kt.order = NULL, kt.include.constant = TRUE, kt.lookback = NULL,
    gc.lookback = NULL, ...)```

**Arguments**

- `object` an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- `h` number of years ahead to forecast.
- `level` confidence level for prediction intervals of the period and cohort indices.
- `oxt` optional matrix/vector or scalar of known offset to be added in the forecasting. This can be used to specify any a priori known component to be added to the forecasted predictor.
- `gc.order` a specification of the ARIMA model for the cohort effect: the three components $(p, d, q)$ are the AR order, the degree of differencing, and the MA. The default is an ARIMA$(1, 1, 0)$.
- `gc.include.constant` a logical value indicating if the ARIMA model should include a constant value. The default is TRUE.
- `jumpchoice` option to select the jump-off rates, i.e. the rates from the final year of observation, to use in projections of mortality rates. "fit" (default) uses the fitted rates and "actual" uses the actual rates from the final year.
- `kt.method` optional forecasting method for the period index. The alternatives are "mrwd" (default) and "iarima". See details.
forecast.fitStMoMo

kt.order: an optional matrix with one row per period index specifying the ARIMA models; for the ith row (ith period index) the three components \((p, d, q)\) are the AR order, the degree of differencing, and the MA order. If absent the arima models are fitted using `auto.arima`. This argument is only used when `kt.method` is "iarima".

kt.include.constant: an optional vector of logical values indicating if the ARIMA model for the ith period index should include a constant value. The default is `TRUE`. This argument is only used when `kt.method` is "iarima".

kt.lookback: optional argument to specify the look-back window to use in the estimation of the time series model for the period indexes. By default all the estimated values are used. If `kt.lookback` is provided then the last `kt.lookback` years of \(\kappa_t^{(i)}, i = 1, \ldots, N\), are used.

gc.lookback: optional argument to specify the look-back window to use in the estimation of the ARIMA model for the cohort effect. By default all the estimated values are used in estimating the ARIMA model. If `gc.lookback` is provided then the last `gc.lookback` years of \(\gamma_{t-x}\) are used.

... other arguments for `iarima`.

Details

If `kt.method` is "mrwd", fitting and forecasting of the time series model for the period indexes is done with a Multivariate Random Walk with Drift using the function `mrwd`.

If `kt.method` is "iarima", fitting and forecasting of the time series model for the period indexes is done with \(N\) independent arima models using the function `iarima`. See this latter function for details on input arguments `kt.order` and `kt.include.constant`.

Fitting and forecasting of the ARIMA model for the cohort index is done with function `Arima` from package `forecast`. See the latter function for further details on input arguments `gc.order` and `gc.include.constant`.

Note that in some cases forecast of the cohort effects may be needed for a horizon longer than \(h\). This is the case when in the fitted model the most recent cohorts have been zero weighted. The forecasted cohorts can be seen in `gc.f$cohorts`.

Value

A list of class "forStMoMo" with components:

- `rates`: a matrix with the point forecast of the rates.
- `ages`: vector of ages corresponding to the rows of `rates`.
- `years`: vector of years for which a forecast has been produced. This corresponds to the columns of `rates`.
- `kt.f`: forecasts of period indexes of the model. This is a list with the model fitted to \(\kappa_t\); the mean(central) forecast, the lower and upper limits of the prediction intervals; the confidence level associated with the prediction intervals; and the years for which a forecast was produced. If the model does not have any age-period terms (i.e. \(N = 0\) this is set to NULL.
forecasts of cohort index of the model. This is a list with the model fitted to \( \gamma_c \); the mean (point) forecast, the lower and upper limits of the prediction intervals; the confidence level associated with the prediction intervals; and the cohorts for which a forecast was produced. If the mortality model does not have a cohort effect this is set to NULL.

offset used in the forecast.

a matrix with the fitted in-sample rates of the model for the years for which the mortality model was fitted.

the model fit from which the forecast was produced.

Jump-off method used in the forecast.

method used in the forecast of the period index.

Examples

```r
Lee-Carter (random walk with drift)
LCFit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
LCFor <- forecast(LCFit)
plot(LCFor)

Lee-Carter (forecast with ARIMA(1,1,2) with drift)
LCFor iarimal <- forecast(LCFit, kt.method = "iarima", kt.order = c(1, 1, 2))
plot(LCFor iarimal)

Lee-Carter (forecast with auto.arima)
LCFor iarima2 <- forecast(LCFit, kt.method = "iarima")
plot(LCFor iarima2)

CBD (Multivariate random walk with drift)
CBDfit <- fit(cbd(), data = central2initial(EWMaleData), ages.fit = 55:89)
CBDfor <- forecast(CBDfit)
plot(CBDfor, parametricbx = FALSE)

CBD (Independent Arima models)
kt.order <- matrix(c(1, 1, 2, # ARIMA(1, 1, 2) for k[1]
 0, 1, 1), # ARIMA(0, 1, 1) for k[2]
 nrow = 2, ncol = 3, byrow = TRUE)
CBDfor iarima <- forecast(CBDfit, kt.method = "iarima", kt.order = kt.order)
plot(CBDfor iarima, parametricbx = FALSE)

APC: Compare forecast with different models for the cohort index
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
APCfit <- fit(apc(), data = EWMaleData, ages.fit = 55:89,
 wxt = wxt)
APCfor1 <- forecast(APCfit)
plot(APCfor1, parametricbx = FALSE, nCol = 3)
APCfor2 <- forecast(APCfit, gc.order = c(0, 2, 2))
plot(APCfor2, only.gc = TRUE)
plot(c(APCfit$years, APCfor1$years),
 cbind(APCfor1$fitted, APCfor1$rates)["65",],
 type = "l", xlab = "year", ylab = "Mortality rate at age 65",
```
main = "Forecasts with different models for gc")
lines(APCfor2$years, APCfor2$rates["65", ], col = "blue")
points(APCfit$years, (APCfit$Dxt / APCfit$Ext)["65", ], pch = 19)

#Compare Lee-Carter forecast using:
# 1. Fitted jump-off rates and all history for kt
# 2. Actual jump-off rates and all history for kt
# 3. Fitted jump-off rates and only history for
#     the past 30 years of kt (i.e 1982-2011)
LCfor1 <- forecast(LCfit)
LCfor2 <- forecast(LCfit, jumpchoice = "actual")
LCfor3 <- forecast(LCfit, kt.lookback = 30)
plot(LCfit$years, (LCfit$Dxt / LCfit$Ext)["60", ],
    xlim = range(LCfit$years, LCfor1$years),
    ylim = range((LCfit$Dxt / LCfit$Ext)["60", ], LCfor1$rates["60", ],
                   LCfor2$rates["60", ], LCfor3$rates["60", ],
                   type = "p", xlab = "year", ylab = "rate",
                   main = "Lee-Carter: Forecast of mortality rates at age 60")
lines(LCfit$years, fitted(LCfit, type = "rates")["60", ],
lines(LCfor1$years, LCfor1$rates["60", ], lty = 2)
lines(LCfor2$years, LCfor2$rates["60", ], lty = 3, col = "blue")
lines(LCfor3$years, LCfor3$rates["60", ], lty = 4, col = "red")
legend("topleft", legend = c("Fitted jump-off", "Actual jump-off",
                            "Fitted jump-off, 30 year look-back"),
       lty = 1:3, col = c("black", "blue", "red"))

Description

Returns forecasts and other information for a group of independent arima series.

Usage

## S3 method for class 'iarima'
forecast(object, h = 10, level = c(80, 95), fan = FALSE,
          ...)  

Arguments

  object  an object of class "iarima".
  h       Number of periods for forecasting.
  level   confidence level for prediction intervals.
  fan     if TRUE, level is set to seq(50, 99, by = 1). This is suitable for fan plots.
  ...     other arguments.
Value

An object of class "iarimaForecast" with components:

- `model`: a list containing information about the fitted arima models.
- `mean`: array with the central forecast.
- `lower`: three dimensional array with lower limits for prediction intervals.
- `upper`: three dimensional array with upper limits for prediction intervals.
- `level`: the confidence values associated with the prediction intervals.

@export

Description

Returns forecasts and other information for a Multivariate Random Walk with Drift model.

Usage

```r
S3 method for class 'mrwd'
forecast(object, h = 10, level = c(80, 95), fan = FALSE,
 ...)
```

Arguments

- `object`: an object of class "mrwd".
- `h`: Number of periods for forecasting.
- `level`: confidence level for prediction intervals.
- `fan`: if TRUE, level is set to seq(50, 99, by = 1). This is suitable for fan plots.
- `...`: other arguments.

Value

An object of class "mrwdForecast" with components:

- `model`: a list containing information about the fitted model.
- `mean`: array with the central forecast.
- `lower`: three dimensional array with lower limits for prediction intervals.
- `upper`: three dimensional array with upper limits for prediction intervals.
- `level`: the confidence values associated with the prediction intervals.

@export

Forecast a Multivariate Random Walk with Drift
**Description**

Generates a weight matrix given a group of ages and years and a set of cohorts which are to be given zero weight. This is useful for excluding some data points when fitting a Stochastic Mortality Model (see `fit.StMoMo`).

**Usage**

```r
genWeightMat(ages, years, clip = 0, zerocohorts = NULL)
```

**Arguments**

- `ages`: vector of ages.
- `years`: vector of years.
- `clip`: number of cohorts in the boundary to assign a zero weight. This can be used to zero weigh some of the first and last cohorts in the data.
- `zeroCohorts`: other cohort for which a zero weight is to be assigned.

**Value**

A 0-1 matrix with 0 for the zero-weighed cohorts.

**See Also**

- `fit.StMoMo`

**Examples**

```r
Zero-weight the first three and last three cohorts
wxt1 <- genWeightMat(55:89, EWMaleData$years, clip = 3)
APCfit1 <- fit(apc(), data = EWMaleData, ages.fit = 55:89, wxt = wxt1)
plot(APCfit1, parametricbx = FALSE, ncol = 3)

Also zero-weight the 1886 cohort
wxt2 <- genWeightMat(55:89, EWMaleData$years, clip = 3, zeroCohorts = 1886)
APCfit2 <- fit(apc(), data = EWMaleData, ages.fit = 55:89, wxt = wxt2)
plot(APCfit2, parametricbx = FALSE, ncol = 3)
```
iarima 

Fit independent arima series to a multivariate time series

Description

Fits independent arima series to $x$, a multivariate time series.

Usage

iarima(x, order = NULL, include.constant = TRUE, ...)

Arguments

- **x**: numeric matrix with a multivariate time series. Series are arranged in rows with columns representing time.
- **order**: an optional matrix with one row per time series specifying the ARIMA models: for the $i$th row the three components $(p, d, q)$ are the AR order, the degree of differencing, and the MA order. If absent the arima models are fitted using `auto.arima`.
- **include.constant**: an optional vector of logical values indicating if the ARIMA model for the $i$th series should include a constant value. The default is `TRUE`. This parameter is ignored if order is NULL.
- **...**: additional parameters for `auto.arima`

Details

The fitting of the ARIMA models for each time series is done with function `Arima` from package `forecast`. See the latter function for further details on input arguments `kt.order` and `kt.include.constant`.

Value

an object of class "iarima" with components:

- **models**: a list with the arima models fitted to each time series.
- **x**: the original time series.
Transform StMoMoData from initial to central exposures

**Description**

Transform StMoMoData from initial to central exposures. Central exposures are computed by subtracting one half of the deaths from the initial exposures.

**Usage**

`initial2central(data)`

**Arguments**

- **data**: StMoMoData object of type "initial" created with function `StMoMoData`.

**Value**

A StMoMoData object of type "central".

**See Also**

`central2initial`

---

Create a Lee-Carter model

**Description**

Utility function to initialise a `stmomo` object representing a Lee-Carter model.

**Usage**

`lc(link = c("log", "logit"), const = c("sum", "last", "first"))`

**Arguments**

- **link**: defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link.

- **const**: defines the constraint to impose to the period index of the model to ensure identifiability. The alternatives are "sum" (default), "last" and "first" which apply constraints $\sum_t \kappa_t = 0$, $\kappa_n = 0$ and $\kappa_1 = 0$, respectively.
Details

The created model is either a log-Poisson (see Brouhns et al (2002)) or a logit-Binomial version of the Lee-Carter model which has predictor structure

\[ \eta_{xt} = \alpha_x + \beta_x \kappa_t. \]

To ensure identifiability one of the following constraints is imposed

\[ \sum_t \kappa_t = 0, \kappa_1 = 0, \kappa_n = 0 \]

depending on the value of const, and

\[ \sum_x \beta_x = 1. \]

Value

An object of class "StMoMo".

References


See Also

StMoMo

Examples

```r
#sum(kt[1]) = 0 and log link
LC1 <- lc()
LCfit1<-fit(LC1, data = EWMaleData, ages.fit = 55:89)
plot(LCfit1)

#kt[1] = 0 and log link
LC2 <- lc(const = "first")
LCfit2<-fit(LC2, data = EWMaleData, ages.fit = 55:89)
plot(LCfit2)

#kt[n] = 0 and logit link
LC3 <- lc("logit", "last")
LCfit3<-fit(LC3, data = EWMaleData, ages.fit = 55:89)
plot(LCfit3)
```
logLik.fitStMoMo

Log-Likelihood of a fitStMoMo object

Description

Returns the log-likelihood of a fitted Stochastic Mortality Model.

Usage

## S3 method for class 'fitStMoMo'
logLik(object, ...)

Arguments

object an object of class fitStMoMo representing a Stochastic Mortality Model fitted to some data.

... other arguments.

Value

The log-likelihood of the fitted model.

m6

Create an M6 type extension of the Cairns-Blake-Dowd mortality model

Description

Utility function to initialise a StMoMo object representing the M6 (CBD with cohorts) extension of the Cairns-Blake-Dowd mortality model introduced in Cairns et al (2009).

Usage

m6(link = c("logit", "log"))

Arguments

link defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link. Note that the default is the logit link.
Details

The created model is either a logit-Binomial or a log-Poisson version of the M6 model which has predictor structure

\[ \eta_{xt} = \kappa_1^{(1)} + (x - \bar{x})\kappa_2^{(2)} + \gamma_{t-x}, \]

where \(\bar{x}\) is the average age in the data.

Identifiability of the model is accomplished by applying parameters constraints

\[ \sum c \gamma_c = 0, \sum c^2 \gamma_c = 0 \]

which ensure that the cohort effect fluctuates around zero and has no linear trend. These constraints are applied using the strategy discussed in Appendix A of Haberman and Renshaw (2011).

Value

An object of class "StMoMo".

References


See Also

StMoMo, central2initial, cbd, m7, m8

Examples

```r
M6 <- m6()
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
M6fit <- fit(M6, data = central2initial(EWMaleData), ages.fit = 55:89)
plot(M6fit, parametricbx = FALSE)
```

Create an M7 type extension of the Cairns-Blake-Dowd mortality model

Description

Utility function to initialise a StMoMo object representing the M7 extension of the Cairns-Blake-Dowd mortality model introduced in Cairns et al (2009).
Usage

\texttt{m7(link = c("logit", "log"))}

Arguments

\texttt{link} defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link. Note that the default is the logit link.

Details

The created model is either a logit-Binomial or a log-Poisson version of the M7 model which has predictor structure

$$
\eta_{xt} = \kappa_i^{(1)} + (x - \bar{x})\kappa_i^{(2)} + \left((x - \bar{x})^2 - \hat{\sigma}_x^2\right)\kappa_i^{(2)} + \gamma_{t-x},
$$

where \( \bar{x} \) is the average age in the data and \( \hat{\sigma}_x^2 \) is the average value of \( (x - \bar{x})^2 \).

Identifiability of the model is accomplished by applying parameters constraints

$$
\sum_c \gamma_c = 0, \sum_c c\gamma_c = 0, \sum_c c^2\gamma_c = 0
$$

which ensure that the cohort effect fluctuates around zero and has no linear or quadratic trend. These constraints are applied using the strategy discussed in Appendix A of Haberman and Renshaw (2011).

Value

An object of class "StMoMo".

References


See Also

\texttt{StMoMo, central2initial, cbd, m6, m8}

Examples

```r
M7 <- m7()
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
M7fit <- fit(M7, data = central2initial(EWMaleData), ages.fit = 55:89)
plot(M7fit, parametricbx = FALSE)
```
Create an M8 type extension of the Cairns-Blake-Dowd mortality model

Description
Utility function to initialise a StMoMo object representing the M8 extension of the Cairns-Blake-Dowd mortality model introduced in Cairns et al (2009).

Usage
m8(link = c("logit", "log"), xc)

Arguments
- `link` defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link. Note that the default is the logit link.
- `xc` constant defining the cohort age-modulating parameter.

Details
The created model is either a logit-Binomial or a log-Poisson version of the M8 model which has predictor structure
\[
\eta_{xt} = \kappa_1^{(1)} + (x - \bar{x})\kappa_1^{(2)} + (x_{c} - \bar{x})\gamma_{l-x}
\]
where \(\bar{x}\) is the average age in the data and \(x_c\) is a predefined constant. Identifiability of the model is accomplished by applying parameters constraint
\[
\sum_c \gamma_c = 0.
\]

Value
An object of class "StMoMo".

References

See Also
StMoMo, central2initial, cbd, m6, m7
mrwd

Examples

```r
M8 <- m8(xc = 89)
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
M8fit <- fit(M8, data = central2initial(EWMaleData), ages.fit = 55:89)
plot(M8fit, parametricbx = FALSE)
```

---

**mrwd**  
*Fit a Multivariate Random Walk with Drift*

**Description**

Fits a Multivariate Random Walk with Drift to \( x \), a multivariate time series.

**Usage**

```r
mrwd(x)
```

**Arguments**

- **x**: numeric matrix with a multivariate time series. Series are arranged in rows with columns representing time.

**Details**

For further information on the Multivariate Random Walk with drift see Appendix B in Haberman and Renshaw (2011).

**Value**

an object of class "mrwd" with components:

- **drift**: a vector with the estimated drift.
- **sigma**: a matrix with the estimated variance covariance matrix.
- **fitted**: fitted values.
- **residuals**: residuals from the fitted model. That is observed minus fitted values.
- **x**: the original time series.

**References**


**plot.bootStMoMo**  
*Plot bootstrapped parameters of a Stochastic Mortality Model*

**Description**

Plot fancharts of bootstrapped parameters of a Stochastic Mortality Model stored in an object of class "bootStMoMo".

**Usage**

```r
S3 method for class 'bootStMoMo'
plot(x, nCol = 2, parametricbx = TRUE,
 colour = rgb(0, 0, 0),
 probs = c(2.5, 10, 25, 50, 75, 90, 97.5), ...)
```

**Arguments**

- `x`: an object of class "bootStMoMo" with the bootstrapped parameters of a stochastic mortality model.
- `nCol`: number of columns to use in the plot.
- `parametricbx`: if FALSE parametric age-modulating terms, which don’t need to be estimated, are not plotted.
- `colour`: colour to use in the fans.
- `probs`: probabilities related to percentiles to plot in the fan chart. The default c(2.5, 10, 25, 50, 75, 90, 97.5) plots the 50%, 80% and 95% confidence intervals of the parameters.
- `...`: other arguments.

**See Also**

- `plot.fitStMoMo`

**Examples**

```r
Long computing times
Not run:
CBDfit <- fit(cbd(), data = central2initial(EWMaleData),
 ages.fit = 55:89)
CBDResBoot <- bootstrap(CBDfit, nBoot = 500)
plot(CBDResBoot)
plot(CBDResBoot, parametricbx = FALSE, probs = seq(2.5, 97.5, 2.5))
End(Not run)
```
plot.fitStMoMo

Plot fitted parameters from a stochastic mortality model

Description

Plot fitted parameters of a stochastic mortality model of class "fitStMoMo".

Usage

```r
S3 method for class 'fitStMoMo'
plot(x, nCol = 2, parametricbx = TRUE, type = "l", ...)
```

Arguments

- `x`: an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- `nCol`: number of columns to use in the plot.
- `parametricbx`: if FALSE parametric age-modulating terms, which don’t need to be estimated, are not plotted.
- `type`: what type of plot should be drawn. See `plot`.
- `...`: additional arguments to control graphical appearance. See `plot`.

Examples

```r
Fit and plot a Lee-Carter model
LCFit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
plot(LCFit)
plot(LCFit, type = "p", pch = 19)

Fit and plot a CBD model
CBDfit <- fit(cbd(), data = central2initial(EWMaleData), ages.fit = 55:89)
plot(CBDfit)
plot(CBDfit, parametricbx = FALSE)
plot(CBDfit, nCol = 1, parametricbx = FALSE, lwd = 2)
```

plot.forStMoMo

Plot a forecast from a Stochastic Mortality Model

Description

Plot a forecasted Stochastic Mortality Model of class "forStMoMo".
plot.resStMoMo

Plot the residuals of a Stochastic Mortality Model

Description
Plots the deviance residuals of a Stochastic Mortality Model which are of class "resStMoMo". Three types of plots are available: scatter plot of residuals by age, period and cohort, colour map (heatmap) of the residuals, and a black and white signplot of the residuals.

Usage
```r
S3 method for class 'forStMoMo'
plot(x, nCol = 2, parametricbx = TRUE, only.kt = FALSE,
 only.gc = FALSE, colour = "grey60", ...)
```

## Arguments
- `x`: an object of class "forStMoMo" with the forecast of a stochastic mortality model.
- `nCol`: number of columns to use in the plot.
- `parametricbx`: if FALSE parametric age-modulating terms, which don't need to be estimated, are not plotted.
- `only.kt`: If TRUE only the period indexes of the model are plotted.
- `only.gc`: If TRUE only the cohort index of the model is plotted. This argument is ignored if `only.kt` is TRUE.
- `colour`: colour to use in the prediction intervals.
- `...`: additional arguments to control graphical appearance. See `plot`.

See Also
`plot.fitStMoMo`

Examples
```r
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
APCfit <- fit(apc(), data = EWMaleData, ages.fit = 55:89, wxt = wxt)
APCfor <- forecast(APCfit)
plot(APCfor)
plot(APCfor, parametricbx = FALSE, nCol = 3)
plot(APCfor, only.kt = TRUE)
plot(APCfor, only.gc = TRUE, lwd = 2)
```
plot.resStMoMo

Arguments

- **x**: an object of class `resStMoMo` with the residuals of a Stochastic Mortality Model.
- **type**: the type of the plot. The alternatives are "scatter" (default), "colourmap", and "signplot".
- **reslim**: optional numeric vector of length 2, giving the range of the residuals.
- **plotAge**: logical value indicating if the age scatter plot should be produced. This is only used when `type = "scatter"`.
- **plotYear**: logical value indicating if the calendar year scatter plot should be produced. This is only used when `type = "scatter"`.
- **plotCohort**: logical value indicating if the cohort scatter plot should be produced. This is only used when `type = "scatter"`.
- **pch**: optional symbol to use for the points in a scatterplot. This is only used when `type = "scatter"`. See `plot`.
- **col**: optional colours to use in plotting. If `type = "scatter"` this is a single colour to use in the points in the scatter plots, while if `type = "colourmap"` this should be a list of colours (see help in `image.plot` for details). This argument is ignored if `type = "signplot"`.
- **...**: other plotting parameters to be passed to the plotting functions. This can be used to control the appearance of the plots.

Details

When `type = "scatter"` scatter plots of the residuals against age, calendar year and cohort (year of birth) are produced.

When `type = "colourmap"` a two dimensional colour map of the residuals is plotted. This is produced using function `image.plot`. See `image.plot` for further parameters that can be passed to this type of plots.

When `type = "signplot"` a two dimensional black and white map of the residuals is plotted with dark grey representing negative residuals and light grey representing positive residuals. This is produced using function `image.default`.

@seealso `residuals.fitStMoMo`

Examples

```r
CBDFit <- fit(cbd(), data = central2initial(EMaleData), ages.fit = 55:89)
CBDres <- residuals(CBDFit)
plot(CBDres)
plot(CBDres, type = "signplot")
plot(CBDres, type = "colourmap")
```
predict.fitStMoMo

**Predict method for Stochastic Mortality Models fits**

**Description**

Obtain predictions from a Stochastic Mortality Model fit.

**Usage**

```r
S3 method for class 'fitStMoMo'
predict(object, years, kt = NULL, gc = NULL, oxt = NULL, type = c("link", "rates"), ...)
```

**Arguments**

- **object**: an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- **years**: vector of years for which a prediction is required.
- **kt**: matrix of values of the period indexes to use for the prediction. If the model has any age-period term this argument needs to be provided and the number of rows in `kt` must be equal to the number of age-period terms in the model and the number of columns in `kt` must correspond to the length of `years`. If the Stochastic Mortality Model doesn’t have any age-period terms this argument is ignored and needs not be provided.
- **gc**: vector of values of the cohort indexes to use for the prediction. If the model has a cohort effect this argument needs to be provided. In this case the length of `gc` must be equal to the number of cohorts for which a prediction is being produced, namely, `length(object$ages) + length(years) - 1`. If the Stochastic Mortality Model doesn’t have a cohort effect this argument is ignored and needs not be provided.
- **oxt**: optional matrix/vector or scalar of known offset to be used in the prediction.
- **type**: the type of the predicted values that should be returned. The alternatives are "link" (default) and "rates".
- **...**: other arguments.

**Details**

This function evaluates

\[
\hat{\eta}_{xt} = o_{xt} + \alpha_x + \sum_{i=1}^{N} \beta^{(i)}_{\kappa^{(i)}_t} + \beta^{(0)}_{\gamma_\tau-x}
\]

for a fitted Stochastic Mortality model. In producing a prediction the static age function, \(\alpha_x\), and the age-modulating parameters, \(\beta^{(i)}_{\kappa^{(i)}_t}\), \(i = 0, ..., N\), are taken from the fitted model in `object` while the period indexes, \(\kappa^{(i)}_t\), \(i = 1, ..., N\), and cohort index, \(\gamma_\tau-x\), are taken from the function arguments.

This function can be useful, for instance, in producing forecasts of mortality rates using time series models different to those available in `forecast.fitStMoMo` (See examples below).
### `predict.fitStMoMo`

**Value**

A matrix with the predicted values.

**See Also**

`forecast.fitStMoMo`

**Examples**

```r
Not run:
M6 Forecast using VARIMA(1,1) model
library(MTS)

fit m6
years <- EWMaleData$years
ages.fit <- 55:89
M6 <- m6(link = "log")
M6fit <- fit(M6, data = EWMaleData, ages.fit = ages.fit)

Forecast kt using VARIMA(1,1) model from MTS
h <- 50
kt.M6 <- t(M6fit$kt)
kt.M6.diff <- apply(kt.M6, 2, diff)
fit.kt.M6.11 <- VARMA(kt.M6.diff, p = 1, q = 1)
pred.ktdiff.M6.11 <- VARMAPred(fit.kt.M6.11, h = h)
pred.kt.M6.11 <- apply(rbind(tail(kt.M6, n = 1),
 pred.ktdiff.M6.11$pred),
 2, cumsum)[-1,]

set row names
years.forecast <- seq(tail(years, 1) + 1, length.out = h)
rownames(pred.kt.M6.11) <- years.forecast

plot kt1
plot(x = c(years, years.forecast),
 y = c(kt.M6[, 1], pred.kt.M6.11[, 1]),
 col = rep(c("black", "red"), times = c(length(years), h)),
 xlab = "time",
 ylab = "k1")

plot(x = c(years, years.forecast),
 y = c(kt.M6[, 2], pred.kt.M6.11[, 2]),
 col = rep(c("black", "red"), times = c(length(years), h)),
 xlab = "time",
 ylab = "k2")

forecast cohort effect
the following cohorts are required:
from 2012 - 89 = 1923
to 2061 - 55 = 2006
pred.gc.M6 <- forecast(auto.arima(M6fit$gc, max.d = 1), h = h)
```

residuals.fitStMoMo

Extract deviance residuals of a Stochastic Mortality Model

Description

Compute deviance residuals of a fitted Stochastic Mortality Model. These residuals can be plotted using plot.resStMoMo.

Usage

## S3 method for class 'fitStMoMo'
residuals(object, scale = TRUE, ...)

Arguments

object an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.

scale logical indicating whether the residuals should be scaled or not by dividing the deviance by the overdispersion of the model. Default is TRUE.

... other arguments.

Value

An object of class "resStMoMo" with the residuals. This object has components:

residuals a matrix with the residuals.

ages ages corresponding to the rows in residuals.

years years corresponding to the columns in residuals.
Create a Renshaw and Haberman (Lee-Carter with cohorts) mortality model

**Description**

Utility function to initialise a \texttt{stmomo} object representing a Renshaw and Haberman (Lee-Carter with cohorts) mortality model introduced in Renshaw and Haberman (2006).

**Usage**

```
rh(link = c("log", "logit"), cohortAgeFun = c("1", "NP"), approxConst = FALSE)
```

**Arguments**

- `link`: defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link.
- `cohortAgeFun`: defines the cohort age modulating parameter $\beta_x^{(0)}$. It can take values: "NP" for a non-parametric age term or "1" for $\beta_x^{(0)} = 1$ (the default).
- `approxConst`: defines if the approximate identifiability constraint of Hunt and Villegas (2015) is applied or not. If TRUE, the output object is of class \texttt{rh} and subsequent model fitting is performed with \texttt{fit.rh}. If FALSE, the output object is of class \texttt{stmomo} and subsequent model fitting is performed with \texttt{fit.stmomo}.

**Details**

The created model is either a log-Poisson or a logit-Binomial version of the Renshaw and Haberman model which has predictor structure

$$
\eta_{xt} = \alpha_x + \beta_x^{(1)} k_t + \beta_x^{(0)} \gamma_{t-x}.
$$

or

$$
\eta_{xt} = \alpha_x + \beta_x^{(1)} k_t + \gamma_{t-x}.
$$

depending on the value of argument `cohortAgeFun`. 

**Examples**

```r
CBDfit <- fit(cbd(), data = central2initial(EWMaleData), ages.fit = 55:89)
CBDres <- residuals(CBDfit)
plot(CBDres)
```
To ensure identifiability the following constraints are imposed

\[ \sum_t \kappa_t = 0, \sum_x \beta_x^{(1)} = 1, \sum_c \gamma_c = 0 \]

plus

\[ \sum_x \beta_x^{(0)} = 1 \]

if `cohortAgeFun = "NP"`

In addition, if `approxConst=TRUE` then the approximate identifiability constraint

\[ \sum_c (c - \bar{c})\gamma_c = 0 \]

is applied to improve the stability and robustness of the model (see Hunt and Villegas (2015)).

By default \(\beta_x^{(0)} = 1\) as this model has shown to be more stable (see Haberman and Renshaw (2011) and Hunt and Villegas (2015)).

**Value**

An object of class "StMoMo" or "rh".

**References**


**See Also**

`fit.rh, StMoMo, lc, apc`

**Examples**

```
LCfit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
RHfit <- fit(rh(), data = EWMaleData, ages.fit = 55:89, wxt = wxt,
 start.ax = LCfit$ax, start.bx = LCfit$bx, start.kt = LCfit$kt)
plot(RHfit)

#Impose approximate constraint as in Hunt and Villegas (2015)
Not run:
RHapprox <- rh(approxConst = TRUE)
RHapproxfit <- fit(RHapprox, data = EWMaleData, ages.fit = 55:89, wxt = wxt)
plot(RHapproxfit)
```
simulate.bootStMoMo

Simulate future sample paths from a Bootstrapped Stochastic Mortality Model

Description
Simulate future sample paths from a Bootstrapped Stochastic Mortality Model. The period indexes $\kappa_{i}^{(i)}, i = 1, ..N,$ are modelled using either a Multivariate Random Walk with Drift (MRWD) or $N$ independent ARIMA($p, d, q$) models. The cohort index $\gamma_{t-x}$ is modelled using an ARIMA($p, d, q$). By default an ARIMA(1, 1, 0) with a constant is used.

Usage
## S3 method for class 'bootStMoMo'
simulate(object, nsim = 1, seed = NULL, h = 50,
oxt = NULL, gc.order = c(1, 1, 0), gc.include.constant = TRUE,
jumpchoice = c("fit", "actual"), kt.method = c("mrwd", "iarima"),
kt.order = NULL, kt.include.constant = TRUE, kt.lookback = NULL,
gc.lookback = NULL, ...)

Arguments
- **object**: an object of class "bootStMoMo" with the bootstrapped parameters of a stochastic mortality model.
- **nsim**: number of sample paths to simulate from each bootstrapped sample. Thus if there are nBoot bootstrapped samples the total number of paths will be nsim * nBoot.
- **seed**: either NULL or an integer that will be used in a call to set.seed before simulating the time series. The default, NULL will not change the random generator state.
- **h**: number of years ahead to forecast.
- **oxt**: optional array/matrix/vector or scalar of known offset to be added in the simulations. This can be used to specify any a priori known component to be added to the simulated predictor.
- **gc.order**: a specification of the ARIMA model for the cohort effect: the three components ($p, d, q$) are the AR order, the degree of differencing, and the MA. The default is an ARIMA(1, 1, 0).
- **gc.include.constant**: a logical value indicating if the ARIMA model should include a constant value. The default is TRUE.
- **jumpchoice**: option to select the jump-off rates, i.e. the rates from the final year of observation, to use in projections of mortality rates. "fit" (default) uses the fitted rates and "actual" uses the actual rates from the final year.
kt.method  optional forecasting method for the period index. The alternatives are "mrwd" (default) and "iarima". See details.
kt.order  an optional matrix with one row per period index specifying the ARIMA models: for the ith row (ith period index) the three components \((p, d, q)\) are the AR order, the degree of differencing, and the MA order. If absent the arima models are fitted using \texttt{auto.arima}. This argument is only used when \texttt{kt.method} is "iarima".
kt.include.constant  an optional vector of logical values indicating if the ARIMA model for the ith period index should include a constant value. The default is \texttt{TRUE}. This argument is only used when \texttt{kt.method} is "iarima".
kt.lookback  optional argument to specify the look-back window to use in the estimation of the time series model for the period indexes. By default all the estimated values are used. If \texttt{kt.lookback} is provided then the last \texttt{kt.lookback} years of \(\kappa_{t(i)}, i = 1, \ldots N\), are used.
gc.lookback  optional argument to specify the look-back window to use in the estimation of the ARIMA model for the cohort effect. By default all the estimated values are used in estimating the ARIMA model. If \texttt{gc.lookback} is provided then the last \texttt{gc.lookback} years of \(\gamma_{t-x}\) are used.
...
other arguments.

Details

For further details see \texttt{simulate.fitStMoMo}.

Value

A list of class "simStMoMo" with components

- \texttt{rates} a three dimensional array with the future simulated rates.
- \texttt{ages} vector of ages corresponding to the first dimension of \texttt{rates}.
- \texttt{years} vector of years for which a simulations has been produced. This corresponds to the second dimension of \texttt{rates}.
- \texttt{kt.s} information on the simulated paths of the period indices of the model. This is a list with the simulated paths of \(\kappa_{t (sim)}\) and the \texttt{years} for which simulations were produced. If the mortality model does not have any age-period terms (i.e. \(N = 0\)) this is set to \texttt{NULL}.
- \texttt{gc.s} information on the simulated paths of the cohort index of the model. This is a list with the simulated paths of \(\gamma_{c (sim)}\) and the \texttt{cohorts} for which simulations were produced. If the mortality model does not have a cohort effect this is set to \texttt{NULL}.
- \texttt{oxt.s} a three dimensional array with the offset used in the simulations.
- \texttt{fitted} a three dimensional array with the in-sample rates of the model for the years for which the mortality model was fitted (and bootstrapped).
- \texttt{jumpchoice} Jump-off method used in the simulation.
- \texttt{kt.method} method used in the modelling of the period index.
- \texttt{model} the bootstrapped model from which the simulations were produced.
simulate.fitStMoMo

See Also

bootstrap.fitStMoMo, simulate.fitStMoMo

Examples

#Long computing times
## Not run:
#Lee-Carter: Compare projection with and without parameter uncertainty
library(fanplot)
LCfit <- fit(lc(), data = EWMaleData)
LCResBoot <- bootstrap(LCfit, nBoot = 500)
LCResBootSim <- simulate(LCResBoot)
LCsim <- simulate(LCfit, nsim = 500)
plot(LCfit$years, log(LCfit$dxt / LCfit$Ext)["10", ],
xlim = range(LCfit$years, LCsim$years),
ylim = range(log(LCfit$dxt / LCfit$Ext)["10", ],
          log(LCsim$rates["10", ])),
type = "l", xlab = "year", ylab = "log rate",
main = "Mortality rate projection at age 10 with and without parameter uncertainty")
fan(t(log(LCResBootSim$rates["10", ]), start = LCResBootSim$years[1],
     probs = c(2.5, 10, 25, 50, 75, 90, 97.5), n.fan = 4,
     fan.col = colorRampPalette(c(rgb(0, 0, 1), rgb(1, 1, 1))), ln = NULL)
fan(t(log(LCsim$rates["10", 1:(length(LCsim$years) - 3), ]),
     start = LCsim$years[1], probs = c(2.5, 10, 25, 50, 75, 90, 97.5),
     n.fan = 4, fan.col = colorRampPalette(c(rgb(1, 0, 0), rgb(1, 1, 1))),
     ln = NULL)

## End(Not run)

**simulate.fitStMoMo**  
*Simulate future sample paths from a Stochastic Mortality Model*

**Description**

Simulate future sample paths from a Stochastic Mortality Model. The period indexes $\kappa_t^{(i)}, i = 1, \ldots, N$, are modelled using either a Multivariate Random Walk with Drift (MRWD) or $N$ independent ARIMA$(p, d, q)$ models. The cohort index $\gamma_{t-x}$ is modelled using an ARIMA$(1, 1, 0)$ with a constant is used.

**Usage**

```r
S3 method for class 'fitStMoMo'
simulate(object, nsim = 1000, seed = NULL, h = 50,
 oxt = NULL, gc.order = c(1, 1, 0), gc.include.constant = TRUE,
 jumpchoice = c("fit", "actual"), kt.method = c("mrwd", "iarima"),
 kt.order = NULL, kt.include.constant = TRUE, kt.lookback = NULL,
 gc.lookback = NULL, ...)
```
**Arguments**

- **object**: an object of class "fitStMoMo" with the fitted parameters of a stochastic mortality model.
- **nsim**: number of sample paths to simulate.
- **seed**: either NULL or an integer that will be used in a call to `set.seed` before simulating the time series. The default, NULL will not change the random generator state.
- **h**: number of years ahead to forecast.
- **oxt**: optional matrix/vector or scalar of known offset to be added in the simulations. This can be used to specify any a priori known component to be added to the simulated predictor.
- **gc.order**: a specification of the ARIMA model for the cohort effect: the three components \((p, d, q)\) are the AR order, the degree of differencing, and the MA. The default is an ARIMA(1,1,0).
- **gc.include.constant**: a logical value indicating if the ARIMA model should include a constant value. The default is `TRUE`.
- **jumpchoice**: option to select the jump-off rates, i.e. the rates from the final year of observation, to use in projections of mortality rates. "fit" (default) uses the fitted rates and "actual" uses the actual rates from the final year.
- **kt.method**: optional forecasting method for the period index. The alternatives are "mrwd" (default) and "iarima". See details.
- **kt.order**: an optional matrix with one row per period index specifying the ARIMA models: for the \(i\)th row (\(i\)th period index) the three components \((p, d, q)\) are the AR order, the degree of differencing, and the MA order. If absent the arima models are fitted using `auto.arima`. This argument is only used when `kt.method` is "iarima".
- **kt.include.constant**: an optional vector of logical values indicating if the ARIMA model for the \(i\)th period index should include a constant value. The default is `TRUE`. This argument is only used when `kt.method` is "iarima".
- **kt.lookback**: optional argument to specify the look-back window to use in the estimation of the time series model for the period indexes. By default all the estimated values are used. If `kt.lookback` is provided then the last `kt.lookback` years of \(\kappa_t^{(i)}, i = 1, ..N\), are used.
- **gc.lookback**: optional argument to specify the look-back window to use in the estimation of the ARIMA model for the cohort effect. By default all the estimated values are used in estimating the ARIMA model. If `gc.lookback` is provided then the last `gc.lookback` years of \(\gamma_{t-x}\) are used.
- ... other arguments.

**Details**

If `kt.method` is "mrwd", fitting and simulation of the time series model for the period indexes is done with a Multivariate Random Walk with Drift using the function `mrwd`.
If \texttt{kt.method} is "iarima", fitting and simulation of the time series model for the period indexes is done with \( N \) independent arima models using the function \texttt{iarima}. See this latter function for details on input arguments \texttt{kt.order} and \texttt{kt.include.constant}.

Fitting and simulation of the ARIMA model for the cohort index is done with function \texttt{Arima} from package \texttt{forecast}. See the latter function for further details on input arguments \texttt{gc.order} and \texttt{gc.include.constant}.

Note that in some cases simulations of the cohort effects may be needed for a horizon longer than \( h \). This is the case when in the fitted model the most recent cohorts have been zero weighted. The simulated cohorts can be seen in \texttt{gc.s$cohorts}.

\textbf{Value}

A list of class "\texttt{simStMoMo}" with components:

\begin{itemize}
  \item \texttt{rates} a three dimensional array with the future simulated rates.
  \item \texttt{ages} vector of ages corresponding to the first dimension of \texttt{rates}.
  \item \texttt{years} vector of years for which a simulations has been produced. This corresponds to the second dimension of \texttt{rates}.
  \item \texttt{kt.s} information on the simulated paths of the period indexes of the model. This is a list with the model fitted to \( \kappa_t \); the simulated paths (\texttt{sim}); and the years for which simulations were produced. If the mortality model does not have any age-period terms (i.e. \( N = 0 \)) this is set to \texttt{NULL}.
  \item \texttt{gc.s} information on the simulated paths of the cohort index of the model. This is a list with the model fitted to \( \gamma_c \); the simulated paths (\texttt{sim}); and the cohorts for which simulations were produced. If the mortality model does not have a cohort effect this is set to \texttt{NULL}.
  \item \texttt{oxt.s} a three dimensional array with the offset used in the simulations.
  \item \texttt{fitted} a three dimensional array with the in-sample rates of the model for the years for which the mortality model was fitted.
  \item \texttt{jumpchoice} Jump-off method used in the simulation.
  \item \texttt{kt.method} method used in the modelling of the period index.
  \item \texttt{model} the model fit from which the simulations were produced.
\end{itemize}

\textbf{See Also}

\texttt{forecast.fitStMoMo}

\textbf{Examples}

```r
#Lee-Carter
LCfit <- fit(lc(), data = EWMaleData, ages.fit = 55:89)
LCsim.mrwd <- simulate(LCfit, nsim = 100)
LCsim.iarima <- simulate(LCfit, nsim = 100, kt.method = "iarima",
 kt.order = c(1, 1, 2))

par(mfrow=c(2, 2))
plot(LCfit$years, LCfit$kt[,], xlim = range(LCfit$years, LCsim.mrwd$kt.s$years),
```
ylim = range(LCfit$kt, LCsim.mrwds$kt.s$sim), type = "l",
xlab = "year", ylab = "kt",
main = "Lee-Carter: Simulated paths of the period index kt (mrwd)"
matlines(LCsim.mrwds$kt$seyears, LCsim.mrwds$kt$s$sim[1, ], type = "1", lty = 1)
plot(LCfit$years, (LCfit$Dxt / LCfit$Ext)["65", ],
xlim = range(LCfit$years, LCsim.mrwds$years),
ylim = range((LCfit$Dxt / LCfit$Ext)["65", ], LCsim.mrwds$rates["65", , ]),
type = "l", xlab = "year", ylab = "rate",
main = "Lee-Carter: Simulated mortality rates at age 65"
matlines(LCsim.mrwds$years, LCsim.mrwds$rates["65", , ], type = "1", lty = 1)

#APC
par(mfrow=c(1, 3))
wxt <- genWeightMat(55:89, EWMaleData$years, clip = 3)
APCfit <- fit(apc(), data = EWMaleData, ages.fit = 55:89, wxt = wxt)
APCsim <- simulate(APCfit, nsim = 100, gc.order = c(1, 1, 0))
plot(APCfit$years, APCfit$kt[1, ],
xlim = range(APCfit$years, APCsim$kt$seyears),
ylim = range(APCfit$kt, APCsim$kt$s$sim), type = "l",
xlab = "year", ylab = "kt",
main = "APC: Simulated paths of the period index kt")
matlines(APCsim$kt$seyears, APCsim$kt$s$sim[1, , ], type = "1", lty = 1)
plot(APCfit$cohorts, APCfit$gc,
xlim = range(APCfit$cohorts, APCsim$gc$s$cohorts),
ylim = range(APCfit$gc, APCsim$gc$s$sim, na.rm = TRUE), type = "l",
xlab = "year", ylab = "kt",
main = "APC: Simulated paths of the cohort index (ARIMA(1,1,0))")
matlines(APCsim$gc$s$cohorts, APCsim$gc$s$sim, type = "1", lty = 1)
plot(APCfit$years, (APCfit$Dxt / APCfit$Ext)["65", ],
xlim = range(APCfit$years, APCsim$years),
ylim = range((APCfit$Dxt/APCfit$Ext)["65", ], APCsim$rates["65", , ]),
type = "l", xlab = "year", ylab = "rate",
main = "APC: Simulated of mortality rates at age 65"
matlines(APCsim$years, APCsim$rates["65", , ], type = "1", lty = 1)

#Compare LC and APC
library(fanplot)
par(mfrow=c(1, 1))
plot(LCfit$years, (LCfit$dx / LCfit$ext)[“66”, ],
    xlim = range(LCfit$years, LCsim.mrwd$years),
    ylim = range((LCfit$dx / LCfit$ext)[“66”, ], LCsim.mrwd$rates[“65”, , ],
    APCsim$rates[“65”, , ]), type = “l”, xlab = “year”, ylab = “rate”,
    main = “Fan chart of mortality rates at age 65 (LC vs. APC)”)
fan(t(LCsim.mrwd$rates[“65”, , ]), start = LCsim.mrwd$years[1],
    probs = c(2.5, 10, 25, 50, 75, 90, 97.5), n.fan = 4,
    fan.col = colorRampPalette(c(rgb(1, 0, 0), rgb(1, 1, 1))), ln = NULL)
fan(t(APCsim$rates[“65”, 1:(length(APCsim$years) - 3), ]),
    start = APCsim$years[1], probs = c(2.5, 10, 25, 50, 75, 90, 97.5),
    n.fan = 4, fan.col = colorRampPalette(c(rgb(0, 0, 1), rgb(1, 1, 1))),
    ln = NULL)

---

simulate.iarima  
*Simulate independent arima series*

**Description**

Returns one simulated path of the group of independent arima series in object.

**Usage**

```r
S3 method for class 'iarima'
simulate(object, nsim = 10, seed = NULL, ...)
```

**Arguments**

- `object`  
  An object of class "iarima".

- `nsim`  
  number of periods for the simulated series.

- `seed`  
  either NULL or an integer that will be used in a call to `set.seed` before simulating the time series. The default, NULL will not change the random generator state.

- `...`  
  other arguments.

---

simulate.mrwd  
*Simulate a Multivariate Random Walk with Drift*

**Description**

Returns one simulated path of the Multivariate Random Walk with Drift model in object.

**Usage**

```r
S3 method for class 'mrwd'
simulate(object, nsim = 10, seed = NULL, ...)
```
Arguments

- **object**: An object of class "mrwd".
- **nsim**: number of periods for the simulated series.
- **seed**: either NULL or an integer that will be used in a call to `set.seed` before simulating the time series. The default, NULL will not change the random generator state.

... other arguments.

### StMoMo

Create a new Stochastic Mortality Model

**Description**

Initialises a StMoMo object which represents a Generalised Age-Period-Cohort Stochastic Mortality Model.

**StMoMo.**

**Usage**

```r
stmomo(link = c("log", "logit"), staticAgeFun = TRUE, periodAgeFun = "NP", cohortAgeFun = NULL, constFun = function(ax, bx, kt, b0x, gc, wxt, ages) list(ax = ax, bx = bx, kt = kt, b0x = b0x, gc = gc))
```

**Arguments**

- **link**: defines the link function and random component associated with the mortality model. "log" would assume that deaths follow a Poisson distribution and use a log link while "logit" would assume that deaths follow a Binomial distribution and a logit link.
- **staticAgeFun**: logical value indicating if a static age function $\alpha_x$ is to be included.
- **periodAgeFun**: a list of length $N$ with the definitions of the period age modulating parameters $\beta_x(i)$. Each entry can take values: "NP" for non-parametric age terms, "1" for $\beta_x(i) = 1$ or a predefined parametric function of age (see details). Set this to NULL if there are no period terms in the model.
- **cohortAgeFun**: defines the cohort age modulating parameter $\beta_x(0)$. It can take values: "NP" for non-parametric age terms, "1" for $\beta_x(0) = 1$, a predefined parametric function of age (see details) or NULL if there is no cohort effect.
- **constFun**: function defining the identifiability constraints of the model. It must be a function of the form `constFun < function(ax, bx, kt, b0x, gc, wxt, ages)` taking a set of fitted model parameters and returning a list of the model parameters with the identifiability constraints applied. If omitted no identifiability constraints are applied to the model.
Details

R implementation of the family of Generalised Age-Period-Cohort stochastic mortality models. This family of models encompasses many models proposed in the literature including the well-known Lee-Carter model, CBD model and APC model.

StMoMo defines an abstract representation of a Generalised Age-Period-Cohort (GAPC) Stochastic model that fits within the general class of generalised non-linear models defined as follows

\[ D_{xt} \sim \text{Poisson}(E_{xt}\mu_{xt}), D_{xt} \sim \text{Binomial}(E_{xt}, q_{xt}) \]

\[ \eta_{xt} = \log \mu_{xt}, \eta_{xt} = \logit q_{xt} \]

\[ \eta_{xt} = \alpha_x + \sum_{i=1}^{N} \beta_x^{(i)} \kappa_t^{(i)} + \beta_x^{(0)} \gamma_{t-x} \]

\[ v : \{ \alpha_x, \beta_x^{(1)}, \ldots, \beta_x^{(N)}, \kappa_t^{(1)}, \ldots, \kappa_t^{(N)}, \beta_x^{(0)}, \gamma_{t-x} \} \rightarrow \{ \alpha_x, \beta_x^{(1)}, \ldots, \beta_x^{(N)}, \kappa_t^{(1)}, \ldots, \kappa_t^{(N)}, \beta_x^{(0)}, \gamma_{t-x} \}, \]

where

- \( \alpha_x \) is a static age function;
- \( \beta_x^{(i)}, \kappa_t^{(i)}, i = 1, \ldots, N \), are age/period terms;
- \( \beta_x^{(0)} \gamma_{t-x} \) is the age/cohort term; and
- \( v \) is a function defining the identifiability constraints of the model.

Most Stochastic mortality models proposed in the literature can be cast to this representation (See Hunt and Blake (2015)).

Parametric age functions should be scalar functions of the form \( f \leftarrow \text{function}(x, \text{ages}) \) taking a scalar age \( x \) and a vector of model fitting ages (see examples below).

Do to limitation of functions \texttt{gnm} within package \texttt{gnm}, which is used for fitting "StMoMo" objects to data (see \texttt{fit.StMoMo}), models combining parametric and non-parametric age-modulating functions are not supported at the moment.

Value

A list with class "StMoMo" with components:

- \texttt{link} a character string defining the link function of the model.
- \texttt{staticAgeFun} a logical value indicating if the model has a static age function.
- \texttt{periodAgeFun} a list defining the period age modulating parameters.
- \texttt{cohortAgeFun} an object defining the cohort age modulating parameters.
- \texttt{constFun} a function defining the identifiability constraints.
- \texttt{N} an integer specifying The number of age-period terms in the model.
- \texttt{textFormula} a character string of the model formula.
- \texttt{gnmFormula} a formula that can be used for fitting the model with package \texttt{gnm}. 
References


See Also

fit.StMoMo, lc, ccbd, apc, rh, m6, m7, m8

Examples

#Lee-Carter model
constLC <- function(ax, bx, kt, b0x, gc, wxt, ages) {
c1 <- mean(kt[, 1], na.rm = TRUE)
c2 <- sum(bx[, 1], na.rm = TRUE)
list(ax = ax + c1 * bx, bx = bx / c2, kt = c2 * (kt - c1))
}
LC <- StMoMo(link = "log", staticAgeFun = TRUE, periodAgeFun = "NP",
             constFun = constLC)
plot(fit(LC, data = EWMaleData, ages.fit = 55:89))

#CBD model
fR <- function(x, ages) x - mean(ages)
CBD <- StMoMo(link = "logit", staticAgeFun = FALSE,
              periodAgeFun = c("1", f2))
plot(fit(CBD, data = EWMaleData, ages.fit = 55:89))

#Reduced Plat model (Plat, 2009)
fR <- function(x, ages) mean(ages) - x
constPlat <- function(ax, bx, kt, b0x, gc, wxt, ages) {
  nYears <- dim(wxt)[2]
  x <- ages
  t <- 1:nYears
  c <- (1 - tail(ages, 1)):(nYears - ages[1])
  xbar <- mean(x)
  #nsum g(c)=0, nsum cg(c)=0, nsum c^2g(c)=0
  phiReg <- lm(gc ~ 1 + c + I(c^2), na.action = na.omit)
  phi <- coef(phiReg)
  #nsum kt[1, ] = 0
  ci <- rowMeans(kt, na.rm = TRUE)
  kt[1, ] <- kt[1, ] - ci[1]
createStMoMoData

Description
Create StMoMoData object suitable for fitting a Stochastic Mortality Model using function fit.StMoMo.

Usage
createStMoMoData(data, series = names(data$rate)[1], type = c("central", "initial"))

Arguments
data
demogdata object of type "mortality". It is either the output from functions read_demogdata or hmd_mx of package demography.
series
name of series within data to use.
type
the type of exposure that should be included in the output. The alternatives are "central" (default) and "initial". "central" exposures are suitable for fitting models under a log-Poisson framework while "initial" exposures are suitable under a logit-Binomial framework.

Value
A list with class "StMoMoData" with components:

Dxt
matrix of deaths data.
Ext
matrix of observed exposures.
ages
vector of ages corresponding to rows of Dxt and Ext.
years
vector of years corresponding to rows of Dxt and Ext.
type
the type of exposure in the data.
series
name of the extracted series.
label
label of the data.
Examples

```r
Not run:
library(demography)
NZdata <- hmd.mx(country = "NZL_NP", username = username, password = password,
 label = "New Zealand")
NZStMoMo <- StMoMoData(NZdata, series = "male")
summary(NZStMoMo)

End(Not run)
```
Index

+Topic datasets
  EWMaleData, 9

  apc, 3, 40, 50
  Arima, 19, 24, 45
  auto.arima, 19, 24, 42, 44

  bootstrap, 4
  bootstrap.fitStMoMo, 4, 4, 43

  cbd, 6, 28–30, 50
  central2initial, 7, 7, 25, 28–30
  coef.fitStMoMo, 8

  EWMaleData, 9, 16
  extractCohort, 10

  fit, 11
  fit.rh, 11, 39, 40
  fit.StMoMo, 11, 14, 23, 39, 49–51
  fitted.fitStMoMo, 10, 17
  forecast.fitStMoMo, 10, 18, 36, 37, 45
  forecast.iarima, 21
  forecast.mrwd, 22

  genWeightMat, 12, 15, 16, 23
  gnm, 15, 49

  hmd.mx, 51

  iarima, 19, 24, 45
  image.default, 35
  image.plot, 35
  initial2central, 7, 25

  lc, 25, 40, 50
  logLik.fitStMoMo, 27

  m6, 7, 27, 29, 30, 50
  m7, 7, 28, 28, 30, 50
  m8, 7, 28, 29, 30, 50

  mrwd, 19, 31, 44

  plot, 33–35
  plot.bootStMoMo, 5, 32
  plot.fitStMoMo, 15, 16, 32, 33, 34
  plot.forStMoMo, 33
  plot.resStMoMo, 34, 38, 39
  predict.fitStMoMo, 36

  read.demogdata, 51
  residuals.fitStMoMo, 35, 38
  rh, 3, 12, 39, 50

  set.seed, 41, 44, 47, 48
  simulate.bootStMoMo, 5, 10, 41
  simulate.fitStMoMo, 10, 42, 43, 43
  simulate.iarima, 47
  simulate.mrwd, 47
  StMoMo, 3, 7, 26, 28–30, 40, 48
  StMoMo-package (StMoMo), 48
  StMoMoData, 7, 9, 12, 14, 16, 25, 51