Package ‘StabilizedRegression’

March 13, 2020

Title Stabilizing Regression and Variable Selection

Version 1.0

Description Contains an implementation of 'StabilizedRegression', a regression framework for heterogeneous data introduced in Pfister et al. (2019) <arXiv:1911.01850>. The procedure uses averaging to estimate a regression of a set of predictors X on a response variable Y by enforcing stability with respect to a given environment variable. The resulting regression leads to a variable selection procedure which allows to distinguish between stable and unstable predictors. The package further implements a visualization technique which illustrates the trade-off between stability and predictiveness of individual predictors.

BugReports https://github.com/NiklasPfister/StabilizedRegression-R/issues

Depends R (>= 3.5)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Imports MASS, R6, glmnet, corpcor, ggplot2, ggrepel

NeedsCompilation no

Author Niklas Pfister [aut, cre],
Evan Williams [ctb]

Maintainer Niklas Pfister <np@math.ku.dk>

Repository CRAN

Date/Publication 2020-03-13 10:20:09 UTC

R topics documented:

coef.StabilizedRegression .. 2
learn_network .. 2
linear_regressor .. 4
plot.SRanalysis .. 6
predict.StabilizedRegression .. 6
SRanalysis ... 7
StabilizedRegression ... 9
Description

Coefficients functions for 'StabilizedRegression' objects.

Usage

```r
## S3 method for class 'StabilizedRegression'
coef(object, predictive_model = FALSE, ...)
```

Arguments

- `object`: object of class 'StabilizedRegression'.
- `predictive_model`: boolean specifying whether to use the
- `...`: additional arguments affecting the summary produced.

Author(s)

Niklas Pfister

learn_network

Learn network model

Description

Learn a network model for a collection of variables.

Usage

```r
learn_network(
  X,
  A = NA,
  method = "correlation",
  resampling_method = "stability_selection",
  numB = 100,
  cutoff = 0,
  pars = list(m = ncol(X), B = NA, alpha_stab = 0.05, alpha_pred = 0.05, size_weight =
                "linear", use_resampling = FALSE, prescreen_size = nrow(X) - 1, prescreen_type =
                "correlation", stab_test = "exact", pred_score = "mse", variable_importance =
                "scaled_coefficient"),
  verbose = 0,
  cores = 1)
```
Arguments

X
data matrix. Numeric matrix of size n times d, where columns correspond to individual variables.

A
stabilizing variable. Numeric vector of length n which can be interpreted as a factor.

method
specifies which method to use. "SR" for Stabilized Regression (both standard and predictive version), "SRstab" for only the standard version of SR, "SRpred" for only the predictive version of SR, "OLS" for linear OLS regression, "lasso" for Lasso and "correlation" for correlation test.

resampling_method
specifies which resampling method to use. Should be one of "none", "stability_selection" or "permutation".

numB
number of resamples to use.

cutoff
tuning parameter used in stability selection to determine which sets count as selected.

pars
list of additional parameters passed to SR regression. See StabilizedRegression for more details.

verbose
0 for no output, 1 for text output and 2 for text and diagnostic plots.

cores
number of cores to use in resampling step.

Details

Uses StabilizedRegression, Lasso or correlation to construct a node-wise network between all variables in X.

Value

A list consisting of the following elements

Amat
adjacency matrix, where Amat[i,j] is a score (depending on the resampling_method) for the edge from i to j. For "stability_selection" scores correspond to selection probabilities, for "permutation" scores correspond to permutation p-values and for "none" scores correspond to variable importance of the method.

p
Total number of potential edges which can be used to compute upper bound on false discovery rate (only computed if resampling_method == "stability_selection").

qest
Average number of selected edges in stability selection, which can be used to compute upper bound on false discovery rate (only computed if resampling_method == "stability_selection").

If method=="SR" result is a list with two entries SRstab and SRpred each consisting of a list of the form described above.

Author(s)

Niklas Pfister
Examples

```r
## Example
set.seed(1)
X1 <- rnorm(200)
X2 <- X1 + rnorm(200)
X3 <- 0.5 * X1 + X2 + 0.2 * c(rnorm(100), rnorm(100)+20)
X <- cbind(X1, X2, X3)
A <- as.factor(rep(c(0, 1), each=100))

network <- learn_network(X, A, method="SR", resampling_method="none")

print(network[[1]]$Amat)
print(network[[2]]$Amat)
```

linear_regressor

R6 Class Representing a Linear Regression

Description

An R6-class for linear regression that is used within the StabilizedRegression framework. Currently this is the only regression procedure that has been implemented. In order to extend the StabilizedRegression framework to a different regression procedure a custom R6-class with the same structure as this function can be written and used within StabilizedRegression.

Details

Constructor method initializes a linear regression object specifying on which subset of variables S to fit the regression and which type of stability test and prediction score to compute. The methods `fit()` and `predict()` can be applied to the object to fit and predict, respectively.

Public fields

- `estimator` Numeric vector of regression coefficients.
- `S` Numeric vector specifying the subset of variables to perform regression on.
- `scores` Numeric vector of fitted stability and prediction scores.
- `pars` List specifying the stability test via `test` and prediction score via `pred_score`.

Methods

- `linear_regressor$new()`
- `linear_regressor$fit()`
- `linear_regressor$predict()`
- `linear_regressor$clone()`
Method `new()`: Create a new `linear_regression` object.

Usage:
```
linear_regressor$new(
  S = numeric(),
  pars = list(test = "mean", pred_score = c("mse", "mse"))
)
```

Arguments:
- `S`: Subset of variables.
- `pars`: Parameters.

Returns: A new `linear_regression` object.

Method `fit()`: Fit a `linear_regression` object on data and computes the stability and prediction scores.

Usage:
```
linear_regressor$fit(X, Y, A, extra = NA)
```

Arguments:
- `X`: Predictor matrix.
- `Y`: Response vector.
- `A`: Environment indicator.
- `extra`: Not required (placeholder)

Returns: A fitted `linear_regression` object.

Method `predict()`: Predict using a fitted `linear_regression` object.

Usage:
```
linear_regressor$predict(X)
```

Arguments:
- `X`: Predictor matrix on which to predict response.

Returns: Numeric vector of predicted response.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```
linear_regressor$clone(deep = FALSE)
```

Arguments:
- `deep`: Whether to make a deep clone.

Author(s)
Niklas Pfister
plot.SRanalysis
\textit{plot function}

\textbf{Description}

Plot functions for 'SRanalysis' objects. Allows to visualize the stability and predictiveness trade-off of individual predictors.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'SRanalysis'
plot(x, x_axis = "SRdiff", varnames = NA, labels = FALSE, ...)
\end{verbatim}

\textbf{Arguments}

- \textbf{x} \hspace{1cm} object of class 'SRanalysis'.
- \textbf{x_axis} \hspace{1cm} either "SRdiff" or "SRpred".
- \textbf{varnames} \hspace{1cm} vector of variables names given in same ordering as columns of X. If NA the variable names saved in the SRanalysis object are used.
- \textbf{labels} \hspace{1cm} boolean specifying whether to print names for all variables with selection probability greater than 0.5. Only works if varnames has been specified.
- \textbf{...} \hspace{1cm} arguments to be passed to or from other methods.

\textbf{Author(s)}

Niklas Pfister

predict.StabilizedRegression
\textit{predict function}

\textbf{Description}

Predict functions for 'StabilizedRegression' objects.

\textbf{Usage}

\begin{verbatim}
S3 method for class 'StabilizedRegression'
predict(object, newdata, predictive_model = FALSE, ...)
\end{verbatim}
Arguments

- **object**
 object of class `StabilizedRegression`.

- **newdata**
 matrix or data.frame for which the response should be predicted.

- **predictive_model**
 boolean. If TRUE the model SR (pred) is used to predict, if FALSE the model SR is used.

- **...**
 additional arguments affecting the prediction produced.

Author(s)

Niklas Pfister

Description

Stability analysis based on stabilized regression used to analyze the trade-off between stability and predictivness of individual predictors.

Usage

```r
SRanalysis(
  X,
  Y,
  A,
  num_reps = 100,
  pred_scores = c("mse", "mse_env"),
  prescreen_types = c("correlation", "correlation_env"),
  pars_SR = list(m = ncol(X), B = 100, alpha_stab = 0.05, alpha_pred = 0.05, size_weight = "linear", use_resampling = FALSE, prescreen_size = NA, stab_test = "exact", variable_importance = "scaled_coefficient"),
  threshold = 0,
  cores = 1,
  verbose = 0,
  seed = NA
)
```

Arguments

- **X**
 predictor matrix. Numeric matrix of size n times d, where columns correspond to individual predictors.

- **Y**
 response variable. Numeric vector of length n.

- **A**
 stabilizing variable. Numeric vector of length n which can be interpreted as a factor.
num_reps number of resamples to use in stability selection.
pred_scores character vector of length 2, specifying the pred_score for SR and SRpred.
prescreen_types character vector of length 2, specifying the prescreen_type for SR and SRpred.
pars_SR list of all remaining parameters going into StabilizedRegression. compute_predictive, pred_score and prescreen_type are ignored.
threshold numeric value between 0 and 1, specifying in stability selection at which value to select variables.
cores number of cores used in mclapply.
verbose 0 for no output, 1 for text output and 2 for text and diagnostic plots.
seed fix the seed value at the beginning of the function.

Details

This function performs two version of StabilizedRegression: SR which selects a stable and predictive model and SRpred which fits a plain predictive model. Stability selection is then performed using the variable importance measures from both these methods and from their difference SRdiff as variable selection criterion. This allows to distinguish between which predictive variables are stable and which are unstable with respect to the stabilizing variable A. The results can be visualized by plotting the resulting object using the plot() function.

Due to the resampling this function can be quite computationally involved, we therefore recommend making use of the cores parameter for parallel computations.

Value

Object of class 'SRanalysis' consisting of the following elements

results List of stability selection results for for SR, SRpred and SRdiff.
varnames Vector of variable names taken from the column names of X.
avgcoefsign_SR Vector of average coefficient signs for SR
avgcoefsign_SRpred Vector of average coefficient signs for SRpred

Author(s)

Niklas Pfister

References

Example
```r
set.seed(1)
X1 <- rnorm(200)
Y <- X1 + rnorm(200)
X2 <- 0.5 * X1 + Y + 0.2 * c(rnorm(100), rnorm(100)+3)
X <- cbind(X1, X2)
A <- as.factor(rep(c(0, 1), each=100))
obj <- SRanalysis(X, Y, A, 10,
                  pars_SR=list(B=NA))
plot(obj, varnames = c("X1", "X2"), labels=TRUE)
print(obj$results)
```

Description

StabilizedRegression based on linear OLS

Usage

```r
StabilizedRegression(
  X, 
  Y, 
  A, 
  pars = list(m = ncol(X), B = 100, alpha_stab = 0.05, alpha_pred = 0.05, size_weight = "linear", 
              compute_predictive_model = TRUE, use_resampling = FALSE, prescreen_size = NA, 
              prescreen_type = "correlation", stab_test = "exact", pred_score = "mse", topk = 1, 
              variable_importance = "scaled_coefficient"), 
  verbose = 0, 
  seed = NA
)
```

Arguments

- **X**: predictor matrix. Numeric matrix of size n times d, where columns correspond to individual predictors.
- **Y**: response variable. Numeric vector of length n.
- **A**: stabilizing variable. Numeric vector of length n which can be interpreted as a factor.
- **pars**: list of additional parameters. `m` (default ncol(X)) integer specifying the largest possible subset size. `B` (default 100) integer specifying the number of random subsets to sample, if NA all subsets will be used. `alpha_stab` (default 0.05) value between 0 and 1 specifying the stability cutoff. `alpha_pred` (default
0.05) value between 0 and 1 specifying the predictive cutoff. `size_weight` (default "linear") one of the strings "linear", "constant", "quadratic", "rbf" or numeric weight vector specifying a probability for each potential set size from 1 to m. `compute_predictive_model` (default TRUE) boolean specifying whether to additionally compute SR (pred) and SR (diff) as well. `prescreen_size` (default NA) integer specifying the number of variables to screen down to before applying SR, if NA then no screening is applied. `prescreen_type` (default "correlation") one of the strings "correlation", "ols", "lasso", "deconfounding", "correlation_env", "deconfounding_env" specifying the type of screening. `stab_test` (default "exact") specifies which stability test to use. Either "exact" for a Bonferroni-corrected version of Chow's test, "mean_sres" a mean test based on resampling of the scaled residuals or "meanvar_sres" a mean and variance test based on resampling of the scaled residuals. `pred_score` (default "mse") specifies the prediction score. Either "mse" for the mean squared error, "mse_env" for the environment-wise best mean squared error, "aic" for the Akaike information criterion or "bic" for the Bayesian information criterion. `topk` (default 1) is a tuning parameter that can be used to increase the number of predictive sets. It should be an integer value, where higher values lead to more accepted sets based on the predictive cutoff. `variable_importance` (default "scaled_coefficient") specifies the type of variable ranking. Either "weighted" for a weighted average of all selected subsets, "scaled_coefficient" for a ranking based on the scaled average regression parameter or "permutation" for a permutation based ranking.

Details

Performs a linear regression of a response \(Y \) on a set of predictors \(X \) while ensuring stability across different values of a stabilizing variable \(A \).

Value

Object of class 'StabilizedRegression' consisting of the following elements:

- **learner_list**: List of all fitted linear OLS regressions (fitted R6 'linear_regression' objects).
- **weighting**: Weighting of the individual regressions in SR.
- **weighting_pred**: Weighting of the individual regressions in SR (pred). Only computed if `compute_predictive_model` is TRUE.
- **variable_importance**: Variable importance measure for all predictors based on SR.
- **variable_importance_pred**: Variable importance measure for all predictors based on SR (pred). Only computed if `compute_predictive_model` is TRUE.
- **variable_importance_diff**: Variable importance measure for all predictors based on difference between SR and SR (pred). Only computed if `compute_predictive_model` is TRUE.
StabilizedRegression

Author(s)

Niklas Pfister

References

Examples

```r
## Example
set.seed(1)
X1 <- rnorm(200)
Y <- X1 + rnorm(200)
X2 <- 0.5 * X1 + Y + 0.2 * c(rnorm(100), rnorm(100)+2)

X <- cbind(X1, X2)
A <- as.factor(rep(c(0, 1), each=100))

fit_sr <- StabilizedRegression(X, Y, A, pars=list(B=NA))
fit_lm <- lm(Y ~ X)

print(paste("Coefficients of SR:", toString(coefficients(fit_sr))))
print(paste("Coefficients of SR (pred):", toString(coefficients(fit_sr, predictive_model=TRUE))))
print(paste("Coefficients of OLS:", toString(coefficients(fit_lm))))
```
Index

coeff.StabilizedRegression, 2
learn_network, 2
linear_regressor, 4
plot.SRanalysis, 6
predict.StabilizedRegression, 6

SRanalysis, 7
StabilizedRegression, 3, 9