Package ‘StackImpute’
October 12, 2022

Title Tools for Analysis of Stacked Multiple Imputations
Version 0.1.0
Description Provides methods for inference using stacked multiple
imputations augmented with weights. The vignette provides example R code for
implementation in general multiple imputation settings. For additional details
about the estimation algorithm, we refer the reader to Beesley, Lauren J and
imputation incorporating the substantive model” <doi:10.1111/biom.13372>,
missingness through imputation stacking” <arXiv:2101.07954>.
Depends R (>= 3.6.0)
License GPL-2
Encoding UTF-8
LazyData true
LazyDataCompression xz
RoxygenNote 7.1.1
Imports sandwich, zoo, mice, dplyr, MASS, magrittr, boot
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Lauren Beesley [aut],
Mike Kleinsasser [cre]
Maintainer Mike Kleinsasser <mkleinsa@umich.edu>
Repository CRAN
Date/Publication 2021-09-10 11:10:02 UTC

R topics documented:

Bootstrap_Variance .. 2
func.boot ... 3
Description

This function takes a dataset with stacked multiple imputation and a model fit and applies bootstrap to estimate the covariance matrix accounting for imputation uncertainty.

Usage

Bootstrap_Variance(fit, stack, M, n_boot = 100)

Arguments

- **fit**: object with corresponding vcov method (e.g. glm, coxph, survreg, etc.) from fitting to the (weighted) stacked dataset
- **stack**: data frame containing stacked dataset across multiple imputations. Could have 1 or M rows for each subject with complete data. Should have M rows for each subject with imputed data. Must contain the following named columns: (1) stack$.id, which correspond to a unique identifier for each subject. This column can be easily output from MICE. (2) stack$wt, which corresponds to weights assigned to each row. Standard analysis of stacked multiple imputations should set these weights to 1 over the number of times the subject appears in the stack. (3) stack$.imp, which indicates the multiply imputed dataset (from 1 to M). This column can be easily output from MICE.
- **M**: number of multiple imputations
- **n_boot**: number of bootstrap samples

Details

This function implements the bootstrap-based estimation method for stacked multiple imputations proposed by Dr. Paul Bernhardt in “A Comparison of Stacked and Pooled Multiple Imputation” at the Joint Statistical Meetings, 2019.

Value

Variance, estimated covariance matrix accounting for within and between imputation variation
Examples

data(stackExample)

fit = stackExample$fit
stack = stackExample$stack

bootcovar = Bootstrap_Variance(fit, stack, M = 5, n_boot = 10)
VARIANCE_boot = diag(bootcovar)

Description

This function is called internal to Bootstrap_Variance and re-estimates glm model parameters

Usage

func.boot(data, indices)

Arguments

data matrix with indices of possible imputed datasets to sample
indices sampled indices

Value

numeric vector of parameter coefficients

Description

This function is internal to Jackknife_Variance. This estimates model parameters using a subset of the stacked data.

Usage

func.jack(leaveout, stack)
glm.weighted.dispersion

Arguments

leaveout
data frame containing stacked dataset across multiple imputations. Could have 1 or M rows for each subject with complete data. Should have M rows for each subject with imputed data. Must contain the following named columns: (1) stack$.id, which correspond to a unique identifier for each subject. This column can be easily output from MICE. (2) stack$wt, which corresponds to weights assigned to each row. Standard analysis of stacked multiple imputations should set these weights to 1 over the number of times the subject appears in the stack. (3) stack$.imp, which indicates the multiply imputed dataset (from 1 to M). This column can be easily output from MICE.

stack

Value

numeric vector of parameter coefficients

description

The goal of this function is to estimate the glm dispersion parameter using data across imputed datasets while correctly accounting for the weights.

Usage

 glm.weighted.dispersion(fit)

Arguments

fit
an object of class glm

Value

an estimate of the glm dispersion parameter

Examples

data(stackExample)
glm.weighted.dispersion(stackExample$fit)
Jackknife Variance

Description

This function takes a dataset with stacked multiple imputation and a model fit and applies jackknife to estimate the covariance matrix accounting for imputation uncertainty.

Usage

Jackknife_Variance(fit, stack, M)

Arguments

- **fit**: object with corresponding vcov method (e.g. glm, coxph, survreg, etc.) from fitting to the (weighted) stacked dataset
- **stack**: data frame containing stacked dataset across multiple imputations. Could have 1 or M rows for each subject with complete data. Should have M rows for each subject with imputed data. Must contain the following named columns: (1) stack$.id, which correspond to a unique identifier for each subject. This column can be easily output from MICE. (2) stack$wt, which corresponds to weights assigned to each row. Standard analysis of stacked multiple imputations should set these weights to 1 over the number of times the subject appears in the stack. (3) stack$.imp, which indicates the multiply imputed dataset (from 1 to M). This column can be easily output from MICE.
- **M**: number of multiple imputations

Details

This function implements the jackknife-based estimation method for stacked multiple imputations proposed by Beesley and Taylor (2021).

Value

Variance, estimated covariance matrix accounting for within and between imputation variation

Examples

data(stackExample)

fit = stackExample$fit
stack = stackExample$stack

jackcovar = Jackknife_Variance(fit, stack, M = 5)
VARIANCE_jack = diag(jackcovar)
Description

This function takes a dataset with stacked multiple imputations and a glm or coxph fit and estimates the corresponding information matrix accounting for the imputation uncertainty.

Usage

Louis_Information(fit, stack, M, IMPUTED = NULL)

Arguments

fit object of class glm or coxph from fitting to the (weighted) stacked dataset
stack data frame containing stacked dataset across multiple imputations. Could have 1 or M rows for each subject with complete data. Should have M rows for each subject with imputed data. Must contain the following named columns: (1) stack$.id, which correspond to a unique identifier for each subject. This column can be easily output from MICE. (2) stack$wt, which corresponds to weights assigned to each row. Standard analysis of stacked multiple imputations should set these weights to 1 over the number of times the subject appears in the stack.
M number of multiple imputations
IMPUTED deprecated parameter, not used in current version

Details

This function uses the observed information matrix principle proposed in Louis (1982) and applied to imputations in Wei and Tanner (1990). This estimator is a further extension specifically designed for analyzing stacks of multiply imputed data as proposed in Beesley and Taylor (2019) https://arxiv.org/abs/1910.04625.

Value

Info, estimated information matrix accounting for within and between imputation variation

Examples

data(stackExample)
Info = Louis_Information(stackExample$fit, stackExample$stack, M = 50)
VARIANCE = diag(solve(Info))
Description

This function takes a dataset with stacked multiple imputations and a score matrix and covariance matrix from stacked and weighted analysis as inputs to estimates the corresponding information matrix accounting for the imputation uncertainty.

Usage

Louis_Information_Custom(score, covariance_weighted, stack, M)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>score</td>
<td>n x p matrix containing the contribution to the outcome model score matrix for each subject (n rows) and each model parameter (p columns).</td>
</tr>
<tr>
<td>covariance_weighted</td>
<td>p x p matrix containing the estimated covariance matrix from fitting the desired model to the stacked and weighted multiple imputations. Note: For GLM models, use summary(fit)$cov.unscaled*StackImpute::glm.weighted.dispersion(fit) as the default dispersion parameter will be incorrect.</td>
</tr>
<tr>
<td>stack</td>
<td>data frame containing stacked dataset across multiple imputations. Could have 1 or M rows for each subject with complete data. Should have M rows for each subject with imputed data. Must contain the following named columns: (1) stack$.id, which correspond to a unique identifier for each subject. This column can be easily output from MICE. (2) stack$wt, which corresponds to weights assigned to each row. Standard analysis of stacked multiple imputations should set these weights to 1 over the number of times the subject appears in the stack.</td>
</tr>
<tr>
<td>M</td>
<td>number of multiple imputations</td>
</tr>
</tbody>
</table>

Details

This function uses the observed information matrix principle proposed in Louis (1982) and applied to imputations in Wei and Tanner (1990). This estimator is a further extension specifically designed for analyzing stacks of multiply imputed data as proposed in Beesley and Taylor (2019) https://arxiv.org/abs/1910.04625.

Value

Info, estimated information matrix accounting for within and between imputation variation
my_update

Examples

data(stackExample)

fit = stackExample$fit
stack = stackExample$stack

covariates = as.matrix(cbind(1, stack$X, stack$B))
score = sweep(covariates, 1, stack$Y - covariates %*% matrix(coef(fit)), '*' / glm.weighted.dispersion(fit))
covariance_weighted = summary(fit)$cov.unscaled * glm.weighted.dispersion(fit)
Info = Louis.Information_Custom(score, covariance_weighted, stack, M = 50)
VARIANCE_custom = diag(solve(Info))

my_update

Description

Function for updating a model fit using either new data or a new model structure

Usage

my_update(mod, formula = NULL, data = NULL, weights = NULL)

Arguments

mod object of class 'glm' or 'coxph'
formula formula for updated model fit, default = no change
data data used for updated model fit, default = no change
weights weights used for updated model fit, default = no change

Value

the updated model fit object of the same class as the given model
stackExample

Example data for `Louis_Information()`

Description

Example data set for `Louis_Information()`

Format

a list with

- fit glm fit from vignette example
- stack stacked imputed data sets from vignette example
Index

* data
 stackExample, 9

Bootstrap_Variance, 2

func.boot, 3
func.jack, 3

glm.weighted.dispersion, 4

Jackknife_Variance, 5

Louis_Information, 6
Louis_Information_Custom, 7

my_update, 8

stackExample, 9