Package ‘StakeholderAnalysis’

November 13, 2017

Version 1.2
Date 2017-10-24
Title Measuring Stakeholder Influence
Author Anna Zamojska [aut],
Piotr Zientara [aut],
Sebastian Susmarski [aut],
Lech Kujawski [aut, cre]
Maintainer Lech Kujawski <lech.kujawski@ug.edu.pl>
Depends R (>= 3.2.3)
License GPL (>= 2)
URL https://www.r-project.org
NeedsCompilation no
Repository CRAN
Date/Publication 2017-11-13 21:18:07 UTC

R topics documented:

 StakeholderAnalysis-package ... 2
 AttribIdent .. 3
 AttribPict ... 4
 BenefCost ... 5
 CollabPotential ... 6
 DataExp ... 7
 Histograms ... 9
 ImpactAnalysis .. 10
 PrelCalc ... 11
 RelationPict .. 13
Description

This project was financed by The National Center of Research and Development (grant number IS-2/88/NCBR/2015). This software is an original instrument for measuring stakeholder influence on the development of a publicly-funded infrastructure project and for estimating its cost and benefits, as perceived by different stakeholder groups. Its originality lies in application of Leontief’s input-output analysis to estimating both stakeholder influence on a infrastructure project and its cost and benefits, as perceived by different stakeholder groups. Admittedly, in the literature there are studies that draw on Leontief’s model to estimate stakeholder influence or, separately, to measure a project’s perceived costs and benefits. That said, none of this research work - unlike our package - combines the two focuses. It follows that our software, uniquely, links together Leontief’s input-output analysis, stakeholder influence measurement and estimation of a project’s costs and benefits. Therefore, it constitutes a useful instrument that might be of particular interest to managers and municipality official responsible for implementation of a large-scale infrastructure projects.

Details

The DESCRIPTION file:

Package: StakeholderAnalysis
Version: 1.2
Date: 2017-10-24
Title: Measuring Stakeholder Influence
Authors@R: c(person("Anna", "Zamojska", role="aut", email="anna.zamojska@ug.edu.pl"), person("Piotr", "Zientara", role="aut"), person("Sebastian", "Susmarski", role="aut"), person("Lech", "Kujawski", role="aut", email="lech.kujawski@ug.edu.pl"))
Author: Anna Zamojska [aut], Piotr Zientara [aut], Sebastian Susmarski [aut], Lech Kujawski [aut, cre]
Maintainer: Lech Kujawski <lech.kujawski@ug.edu.pl>
Depends: R (>= 3.2.3)
Description: Proposes an original instrument for measuring stakeholder influence on the development of an infrastructure project that is carried through by a municipality, drawing on stakeholder classifications (Mitchell, Agle, & Wood, 1997) and input-output modelling (Hester & Adams, 2013).
License: GPL (>= 2)
URL: https://www.r-project.org
AttribIdent

Index of help topics:

AttribIdent AttribIdent
AttribPict AttribPict
BenefCost BenefCost
CollabPotential CollabPotential
DataExp DataExp
Histograms Histograms
ImpactAnalysis ImpactAnalysis
PrelCalc PrelCalc
RelationPict RelationPict
RespVerif RespVerif
StakeholderClassif StakeholderClassif
StakeholderAnalysis-package

Measuring Stakeholder Influence

Author(s)

Lech Kujawski Anna Zamojska [aut], Piotr Zientara [aut], Sebastian Susmarski [aut], Lech Kujawski [aut, cre]
Maintainer: Lech Kujawski <lech.kujawski@ug.edu.pl>

References

AttribIdent

Description

Identifies stakeholder attributes as well as benefits and costs

Usage

AttribIdent(TestedResponses, NoAttrib, NoStakeholders, NameStakeholders)

Arguments

TestedResponses

the result of the RespVerif function

NoAttrib

col numbers in the raw data set related to particular constructs. The $NoAttrib from the PreCalc function should be used

NoStakeholders

the number of stakeholder groups. The $NoStakeholders from the PreCalc function should be used

NameStakeholders

the names of stakeholder groups. The $NameStakeholders from the PreCalc function should be used
Details

Based on previously performed tests of means and fractions (see the RespVerif function), the function determines whether a particular attribute is statistically significant or not (<0.05).

Value

- **Mean**: (the number of stakeholder groups) x 6 matrix. In each row, the "+" sign indicates that an attribute is statistically significant, while the "-" sign indicates that an attribute is not statistically significant (based on the mean test). The "0" sign shows that the response is neutral, meaning that respondents do not know whether they possess a particular attribute or not.

- **Fra**: (the number of stakeholder groups) x 6 matrix. In each row, the "+" sign indicates that an attribute is statistically significant, while the "-" sign indicates that an attribute is not statistically significant (based on the fraction test). The "0" sign shows that the response is neutral, meaning that respondents do not know whether they possess a particular attribute or not.

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

Examples

```r
# first import DataExp
data(DataExp)
# then execute PrelCalc(), RespVerif()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15),NoPow=c(3,8,14,16),
NoUrg=c(4,6,10,12),NoLeg=c(5,7,9,17),NoBen=18:22,NoCos=23:27)
RespVerifExp=RespVerif(CountResponses=PrelCalcExp$CountResponses,
NoStakeholders=PrelCalcExp$NoStakeholders)
# AttribIdent()
AttribIdentExp=AttribIdent(TestedResponses=RespVerifExp, NoAttrib=PrelCalcExp$NoAttrib,
NoStakeholders=PrelCalcExp$NoStakeholders, NameStakeholders=PrelCalcExp$NameStakeholders)
AttribIdentExp
```

AttribPict

Description

Draws a picture of stakeholder attributes in the form of three overlapping circles.

Usage

`AttribPict(path, tofile, AttribIdent, CollabPotential)`
BenefCost

Arguments

- **path**
 a path of a particular catalogue in which pictures are saved, set path="" when tofile=0

- **tofile**
 logical. 1=save-to-file. 0=show-on-screen

- **AttribIdent**
 stakeholder attributes. The $Mean or the $Fra from the AttribIdent function should be used

- **CollabPotential**
 potential for collaboration. The $Mean or the $Fra from the CollabPotential function should be used

Details

The function draws a picture of stakeholder attributes in the form of three overlapping circles in different colours

Value

- **drow**
 A drow of stakeholder attributes

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

Examples

```r
# first import DataExp
data(DataExp)
# then execute PrelCalc(), RespVerif(), AttribIdent(), CollabPotential()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15),NoPow=c(3,8,14,16),
NoUrg=c(4,6,10,12),NoLeg=c(5,7,9,17),NoBen=18:22,NoCos=23:27)
RespVerifExp=RespVerif(CountResponses=PrelCalcExp$CountResponses,
NoStakeholders=PrelCalcExp$NoStakeholders)
AttribIdentExp=AttribIdent( TestedResponses=RespVerifExp, NoAttrib=PrelCalcExp$NoAttrib,
NoStakeholders=PrelCalcExp$NoStakeholders, NameStakeholders=PrelCalcExp$NameStakeholders)
CollabPotentialExp=CollabPotential(AttribIdent=AttribIdentExp)
# AttribPict()
AttribPict(path="",tofile=0,AttribIdent=AttribIdentExp$Mean,CollabPotential=CollabPotentialExp$Mean)
```

BenefCost

Description

Calculates the benefit indicator (normalized on the 0-1 scale) and the cost indicator (normalized on the 0-1 scale), and performs a Student’s t-test (with H0 stating that the mean of benefits and the mean of costs are equal)
Usage

Benecost(CountResponses)

Arguments

CountResponses the number of stakeholder groups x 30 matrix comprising counted responses to particular items. The $CountResponses from the PreCalc function should be used.

Details

Based on responses to relevant items, the function calculates the benefit indicator (normalized on the 0-1 scale) and the cost indicator (normalized on the 0-1 scale). Subsequently, it performs a Student's t-test (with H0 stating that the mean of benefits and the mean of costs are equal) with a view to ascertaining whether benefits are greater than costs (which is indicated by the "+" sign) or vice versa (which is indicated by the "-" sign).

Value

BenecostInd the benefit indicator and the cost indicator

BenecostTest the results of Student's t-tests

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

Examples

```r
# first import DataExp
data(DataExp)
# then execute PrelCalc()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15),NoPow=c(3,8,14,16), NoUrg=c(4,6,10,12),NoLeg=c(5,7,9,17),NoBen=18:22,NoCos=23:27)
# Benecost()
BenefcostExp=Benefcost(CountResponses=PrelCalcExp$CountResponses)
BenefcostExp
```

CollabPotential

Description

Determines the potential of particular stakeholder groups for collaboration

Usage

CollabPotential(AttribIdent)
Arguments

AttribIdent Identifies stakeholder attributes. The $Mean or $Fra from the AttribIdent function should be used.

Details

Based on responses to items measuring Power, Legitimacy and Urgency, the function determines the potential of particular stakeholder groups for collaboration ("high" and "low")

Value

Mean the potential for collaboration determined on the basis of the mean value
Fra the potential for collaboration determined on the basis of the fractions of responses

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

Examples

```r
# first import DataExp
data(DataExp)
# then execute PrelCalc(), RespVerif(), AttribIdent()
```

DataExp

DataExp

Description

Example of data collected via survey research

Usage

data(DataExp)
Format

A data frame with 112 observations on the following 39 variables.

ID a factor with levels Consulting Agencies Firms Local Residents Project Implementers Research Units Local Authorities

pyt1 a numeric vector on a five-point Likert scale. I have a positive view on the implementation of the project (Attitude).

pyt2 a numeric vector on a five-point Likert scale. I have effective power over the implementation of the project (Power).

pyt3 a numeric vector on a five-point Likert scale. I think that the implementation of the project is urgent (Urgency).

pyt4 a numeric vector on a five-point Likert scale. I am entitled to be consulted about the implementation of the project (Legitimacy).

pyt5 a numeric vector on a five-point Likert scale. The project should be implemented as soon as possible (Urgency).

pyt6 a numeric vector on a five-point Likert scale. It is justified to consult me about the implementation of the project (Legitimacy).

pyt7 a numeric vector on a five-point Likert scale. Changes to the implementation of the project depends on me (Power).

pyt8 a numeric vector on a five-point Likert scale. Given my role in the project, I should be consulted about its implementation (Legitimacy).

pyt9 a numeric vector on a five-point Likert scale. In my opinion, the implementation of the project is a matter of urgency (Urgency).

pyt10 a numeric vector on a five-point Likert scale. My attitude to the implementation of the project is unambiguously positive (Attitude).

pyt11 a numeric vector on a five-point Likert scale. The implementation of the project is very important to me (Urgency).

pyt12 a numeric vector on a five-point Likert scale. Implementers of the project can count on me for support (Attitude).

pyt13 a numeric vector on a five-point Likert scale. My power over the implantation of the project is considerable (Power).

pyt14 a numeric vector on a five-point Likert scale. I support the implantation of the project (Attitude).

pyt15 a numeric vector on a five-point Likert scale. I am in a position to influence the implantation of the project (Power).

pyt16 a numeric vector on a five-point Likert scale. My role in the project justifies consulting me about its implementation (Legitimacy).

prof1 a numeric vector on a five-point Likert scale. The implementation of the project will generate new jobs.

prof2 a numeric vector on a five-point Likert scale. The implementation of the project will enhance the technological potential of the region.

prof3 a numeric vector on a five-point Likert scale. Thanks to the implementation of the project, more results of scientific research will be put into practice.
prof4 a numeric vector on a five-point Likert scale. The implementation of the project will translate into a greater number of patents and inventions.

prof5 a numeric vector on a five-point Likert scale. Thanks to the implementation of the project, local infrastructure will be modernized.

cost1 a numeric vector on a five-point Likert scale. The implementation of the project will translate into a greater number of patents and inventions.

cost2 a numeric vector on a five-point Likert scale. The implementation of the project will translate into a greater number of patents and inventions.

cost3 a numeric vector on a five-point Likert scale. Thanks to the implementation of the project, local infrastructure will be modernized.

cost4 a numeric vector on a five-point Likert scale. The implementation of the project will positively affect the environment.

cost5 a numeric vector on a five-point Likert scale. The implementation of the project will negatively affect the environment.

my1 a numeric vector on a five-point Likert scale. I have influence over Consulting Agencies.

my2 a numeric vector on a five-point Likert scale. I have influence over Firms.

my3 a numeric vector on a five-point Likert scale. I have influence over Local Residents.

my4 a numeric vector on a five-point Likert scale. I have influence over Project Implementers.

my5 a numeric vector on a five-point Likert scale. I have influence over Research Units.

my6 a numeric vector on a five-point Likert scale. I have influence over Local Authorities.

me1 a numeric vector on a five-point Likert scale. Consulting Agencies have influence over me.

me2 a numeric vector on a five-point Likert scale. Firms have influence over me.

me3 a numeric vector on a five-point Likert scale. Local Residents have influence over me.

me4 a numeric vector on a five-point Likert scale. Project Implementers have influence over me.

me5 a numeric vector on a five-point Likert scale. Research Units have influence over me.

me6 a numeric vector on a five-point Likert scale. Local Authorities have influence over me.

Examples

data(DataExp)

Histograms

Description

Draws histograms of responses

Usage

Histograms(path, tofile, CountResponses)
ImpactAnalysis

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>a path of a particular catalogue in which pictures are saved, set path=0</td>
</tr>
<tr>
<td>tofile</td>
<td>logical. 1=save-to-file. 0=show-on-screen</td>
</tr>
<tr>
<td>CountResponses</td>
<td>the result of the PrelCalc function</td>
</tr>
</tbody>
</table>

Details

The function draws histograms of responses

Value

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histograms</td>
<td>Histograms of responses</td>
</tr>
</tbody>
</table>

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piort Zientar

Examples

```r
# first import DataExp
data(DataExp)
# then execute PrelCalc()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15), NoPow=c(3,8,14,16),
                    NoUrg=c(4,6,10,12), NoLeg=c(5,7,9,17), NoBen=18:22, NoCos=23:27)
# Histograms()
Histograms(path=0, tofile=0, CountResponses=PrelCalcExp$CountResponses)
```

Description

Calculates, based on the Leontief model, \(qS \) or the reduction in stakeholder ineffectiveness

Usage

ImpactAnalysis(data, BenefCost, NoStakeholders, NameStakeholders)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>data gathered from a questionnaire employing a five-point Likert scale. The csv file is preferable due to the volume of data</td>
</tr>
<tr>
<td>BenefCost</td>
<td>the benefit indicator and the cost indicator. The $BenefCostInd from the BenefCost function should be used</td>
</tr>
<tr>
<td>NoStakeholders</td>
<td>the number of stakeholder groups (from the PrelCalc function)</td>
</tr>
<tr>
<td>NameStakeholders</td>
<td>the names of stakeholder groups (from the PrelCalc function)</td>
</tr>
</tbody>
</table>
Details

The function calculates, based on the Leontief model, \(q_S \) or the reduction in stakeholder ineffectiveness and then determines the stakeholder influence (SI) indicator, as described by Hester and Adams (2013). In addition, it calculates the indicator of benefits and the indicator of costs, factoring in the Leontief coefficient matrix.

Value

leontief

the first two columns show the indicator of benefits and the indicator of costs. The middle column indicates \(q_S \). The two final columns show the indicator of benefits and the indicator of costs, factoring in the Leontief coefficient matrix

MyImpact,OnMeImpact,MeanImpact

matrices of impact-based stakeholder relationships

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

References

Hester and Adams (2013)

Examples

```
# first import DataExp
data(DataExp)
# then execute PrelCalc(), BenefCost()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15),NoPow=c(3,8,14,16),
NoUrg=c(4,6,10,12),NoLeg=c(5,7,9,17),NoBen=18:22,NoCos=23:27)
BenefCostExp=BenefCost(CountResponses=PrelCalcExp$CountResponses)
# ImpactAnalysis()
ImpactAnalysisExp=ImpactAnalysis(data=DataExp, BenefCost=BenefCostExp$BenefCostInd,
NoStakeholders=PrelCalcExp$NoStakeholders, NameStakeholders=PrelCalcExp$NameStakeholders)
ImpactAnalysisExp
```

Description

Performs preliminary calculations on raw data. Counts responses to items measuring stakeholder attributes as well as benefits and costs from a questionnaire employing a five-point Likert scale.

Usage

```
PrelCalc(data, NoAtt, NoPow, NoUrg, NoLeg, NoBen, NoCos)
```
Arguments

- **data**: data gathered from a questionnaire employing a five-point Likert scale. The csv file is preferable due to the volume of data.
- **NoAtt**: indicates col numbers related to the Attitude construct
- **NoPow**: indicates col numbers related to the Power construct
- **NoUrg**: indicates col numbers related to the Urgency construct
- **NoLeg**: indicates col numbers related to the Legitimacy construct
- **NoBen**: indicates col numbers related to the Benefits construct
- **NoCos**: indicates col numbers related to the Costs construct

Details

Data are collected by means of a questionnaire survey with a five-point Likert scale. PrelCalc performs preliminary calculations on raw data, counting responses to items measuring all the constructs (Attitude, Power, Urgency, Legitimacy, Benefits, Costs). These denote stakeholder attributes and benefits/costs. In addition, it identifies particular stakeholder groups (based on their names).

Value

- **CountResponses**: $30 \times \text{number of stakeholder groups}$ matrix of counted responses related to all the constructs
- **NoStakeholders**: the number of stakeholder groups
- **NameStakeholders**: the names of stakeholder groups
- **NoAttrib**: $\$Att, \$Pow, \$Urg, \$Leg, \$Ben, \Cos
- **NoAttrib$Att$$**: numbers in the raw data set related to the Attitude construct
- **NoAttrib$Pow$$**: col numbers in the raw data set related to the Power construct
- **NoAttrib$Urg$$**: col numbers in the raw data set related to the Urgency construct
- **NoAttrib$Leg$$**: col numbers in the raw data set related to the Legitimacy construct
- **NoAttrib$Ben$$**: col numbers in the raw data set related to the Benefits construct
- **NoAttrib$Cos$$**: col numbers in the raw data set related to the Costs construct

Author(s)

Lech Kujawski, Sebastian Susmarski, Anna Zamojska, Piotr Zientara

Examples

```r
# first import DataExp
data(DataExp)
# PrelCalc()
PrelCalcExp=PreCalc(data=DataExp, NoAtt=c(2,11,13,15), NoPow=c(3,8,14,16),
                   NoUrg=c(4,6,10,12), NoLeg=c(5,7,9,17), NoBen=18:22, NoCos=23:27)
PrelCalcExp
```
RelationPict

Description

Draws a picture of stakeholder relationships

Usage

RelationPict(path, tofile, MeanImpact, StakeholdClassif)

Arguments

path a path of a particular catalogue in which pictures are saved, set path="" when tofile=0

tofile logical. 1=save-to-file. 0=show-on-screen

MeanImpact the Leontief coefficient matrix. The $MeanImpact from the ImpactAnalysis function should be used

StakeholdClassif the result of the StakeholdClassif function

Details

The function draws a picture of stakeholder relationships with arrows and circles in different colours

Value

A picture of stakeholder relationships

Author(s)

Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientar

Examples

first import DataExp
data(DataExp)
then execute PrelCalc(), RespVerif(), AttribIdent(), CollabPotential()
BenefCost(), StakeholdClassif(), ImpactAnalysis()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15),NoPow=c(3,8,14,16),
NoUrg=c(4,6,10,12),NoLeg=c(5,7,9,17),NoBen=18:22,NoCos=23:27)
RespVerifExp=RespVerif(CountResponses=PrelCalcExp$CountResponses,
NoStakeholders=PrelCalcExp$NoStakeholders)
AttribIdentExp=AttribIdent(TestedResponses=RespVerifExp,
NoAttrib=PrelCalcExp$NoAttrib, NoStakeholders=PrelCalcExp$NoStakeholders,
NameStakeholders=PrelCalcExp$NameStakeholders)
CollabPotentialExp=CollabPotential(AttribIdent=AttribIdentExp)
BenefCostExp=BenefCost(CountResponses=PrelCalcExp$CountResponses)
Description

Performs tests of statistical significance of the means and fractions of responses.

Usage

RespVerif(CountResponses, NoStakeholders)

Arguments

CountResponses the $CountResponses result of the PreCalc function (i.e., 30 x number of stakeholder groups matrix of counted responses related to all the constructs)

NoStakeholders the number of stakeholder groups (i.e., the $NoStakeholders result of the PreCalc function)

Details

The function performs two tests of statistical significance: (1) the means and (2) the fractions of responses. As regards (1), H0 states that the mean of responses to a particular item is equal to "3" (i.e., a neutral response on a five-point Likert scale); H1 states that the mean is not equal to "3" (i.e., a two-sides alternative hypothesis). As regards (2), H0 states that the fraction of the "1" and "2" responses is equal to the fraction of the "4" and "5" responses; H1 states that the fraction of the "1" and "2" responses is not equal to the fraction of the "4" and "5" responses (i.e., a two-sides alternative hypothesis).

Value

Mean (3 x the number of stakeholder groups) x 6 matrix. The first row indicates the mean response. The second row reports stat value. The third row indicates prob. The same pattern applies to each stakeholder group.

Fra (3 x the number of stakeholder groups) x (3 x 6) matrix. The first row indicates the number of negative ("1" and "2"), neutral ("3") and positive ("4" and "5") responses. The second row reports fractions of responses. The third row reports stat/prob.
StakeholdClassif

Author(s)
Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

Examples
```r
# first import DataExp
data(DataExp)
# then execute PrelCalc()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15),NoPow=c(3,8,14,16),
NolRg=c(4,6,10,12),NoLeg=c(5,7,9,17),NoBen=18:22,NoCos=23:27)
# RespVerif
RespVerifExp=RespVerif(CountResponses=PrelCalcExp$CountResponses,
NoStakeholders=PrelCalcExp$NoStakeholders)
RespVerifExp
```

Description
Classifies stakeholder groups and suggests communication strategies

Usage
`StakeholdClassif(BenefCostTest, CollabPotential, AttribIdent)`

Arguments
- `BenefCostTest` the result of a Student's t-test (with H0 stating that the mean of benefits and the mean of costs are equal). The `$BenefCostTest` from the `BenefCost` function should be used
- `CollabPotential` the potential for collaboration. The `$Mean` or the `$Fra` from the `CollabPotential` function should be used
- `AttribIdent` identified stakeholder attributes. The `$Mean` or the `$Fra` from the `AttribIdent` function should be used

Details
The function first classifies stakeholder groups into categories, as described by Mitchell, Agle and Wood (1997). It then determines their attitudes ("supportive", "non-supportive", "mixed", "neutral", "insignificant") and, with the potential for collaboration taken into account, suggests a communication strategy vis-a-vis a particular stakeholder group.

Value
The number of stakeholder groups x 3 data frame. The first column indicates stakeholder classification. The second column shows stakeholder attitudes. The third column suggests a communication strategy.
Author(s)
Sebastian Susmarski, Lech Kujawski, Anna Zamojska, Piotr Zientara

References
Mitchell, Agle and Wood (1997)

Examples

```r
# first import DataExp
data(DataExp)
# then execute PrelCalc(), RespVerif(), AttribIdent(), BenefCost()
PrelCalcExp=PrelCalc(data=DataExp, NoAtt=c(2,11,13,15), NoPow=c(3,8,14,16),
NoUrg=c(4,6,10,12), NoLeg=c(5,7,9,17), NoBen=18, NoCos=23:27)
RespVerifExp=RespVerif(CountResponses=PrelCalcExp$CountResponses,
NoStakeholders=PrelCalcExp$NoStakeholders)
AttribIdentExp=AttribIdent(TestedResponses=RespVerifExp,
NoAttrib=PrelCalcExp$NoAttrib, NoStakeholders=PrelCalcExp$NoStakeholders,
NameStakeholders=PrelCalcExp$NameStakeholders)
CollabPotentialExp=CollabPotential(AttribIdent=AttribIdentExp)
BenefCostExp=BenefCost(CountResponses=PrelCalcExp$CountResponses)
# StakeholdClassif()
StakeholdClassifByMean=StakeholdClassif(BenefCostTest=BenefCostExp$BenefCostTest,
CollabPotential=CollabPotentialExp$Mean, AttribIdent=AttribIdentExp$Mean)
StakeholdClassifByFraction=StakeholdClassif(BenefCostTest=BenefCostExp$BenefCostTest,
StakeholdClassifByMean
StakeholdClassifByFraction
```
Index

*Topic datasets
DataExp, 7
*Topic packages
 StakeholderAnalysis-package, 2

AttribIdent, 3
AttribPict, 4

BenefCost, 5
CollabPotential, 6
DataExp, 7
Histograms, 9
ImpactAnalysis, 10
PrelCalc, 11
RelationPict, 13
RespVerif, 14

StakeholdClassif, 15
StakeholderAnalysis
 (StakeholderAnalysis-package), 2
StakeholderAnalysis-package, 2