Package ‘StatMatch’

March 15, 2019

Version 1.3.0
Title Statistical Matching or Data Fusion
Author Marcello D’Orazio
Maintainer Marcello D’Orazio <mdo.statmatch@gmail.com>
Depends R (>= 2.7.0), proxy, clue, survey, RANN, lpSolve
Suggests MASS, Hmisc, mipfp, R.rsp
Description Integration of two data sources referred to the same target population which share a number of variables. Some functions can also be used to impute missing values in data sets through hot deck imputation methods. Methods to perform statistical matching when dealing with data from complex sample surveys are available too.
License GPL (>= 2)
VignetteBuilder R.rsp
NeedsCompilation no
Repository CRAN
Date/Publication 2019-03-15 21:13:55 UTC

R topics documented:

StatMatch-package .. 2
comb.samples ... 3
comp.prop .. 8
create.fused ... 11
fact2dummy ... 13
Fbwidths.by.x .. 14
Frechet.bounds.cat ... 18
gower.dist .. 21
harmonize.x ... 24
mahalanobis.dist ... 29
maximum.dist ... 30
mixed.mtc ... 32
NND.hotdeck .. 37
pBayes .. 41
Statistical Matching or Data Fusion

Description

Functions to perform statistical matching (aka data fusion), i.e. the integration of two data sources. Some functions can also be used to impute missing values in data sets through hot deck imputation methods.

Details

Statistical matching (aka data fusion) aims at integrating two data sources (typically samples) referred to same target population and sharing a number of variables. The final objective is that of studying the relationship of variables not jointly observed in a single data sources. The integration can be performed at micro (a synthetic or fused file is the output) or macro level (goal is estimation of correlation coefficients, regression coefficients, contingency tables, etc.). Nonparametric hot deck imputation methods (random, rank and nearest neighbour donor) can be used to derive the synthetic data set. In alternative it is possible to use a mixed (parametric-nonparametric) procedure based on predictive mean matching. Methods to perform statistical matching when dealing with data from complex sample surveys are available too. Finally some functions can be used to explore the uncertainty due to the typical matching framework. For major details see D’Orazio et al. (2006) or the package vignette.

Author(s)

Marcello D’Orazio

Maintainer: Marcello D’Orazio <mdo.statmatch@gmail.com>

References

Description

This function permits to cross-tabulate two categorical variables, Y and Z, observed separately in two independent surveys (Y is collected in survey A and Z is collected in survey B) carried out on the same target population. The two surveys share a number of common variables X. When it is available a third survey C, carried on the same population, in which both Y and Z are collected, these data are used as a source of auxiliary information.

The statistical matching is performed by carrying out calibration of the survey weights, as suggested in Renssen (1998).

It is possible also to use the function to derive the estimates that a unit falls in one of the categories of the target variable (estimation are based on Liner Probability Models and are obtained as a by-product of the Renssen’s method).

Usage

```
comb.samples(svy.A, svy.B, svy.C=NULL, y.lab, z.lab, form.x, 
estimation=NULL, micro=FALSE, ...)
```

Arguments

- `svy.A`: A `svydesign` R object that stores the data collected in the survey A and all the information concerning the corresponding sampling design. This object can be created by using the function `svydesign` in the package `survey`. All the variables specified in `form.x` and by `y.lab` must be available in `svy.A`.

- `svy.B`: A `svydesign` R object that stores the data collected in the survey B and all the information concerning the corresponding sampling design. This object can be created by using the function `svydesign` in the package `survey`. All the variables specified in `form.x` and by `z.lab` must be available in `svy.B`.

- `svy.C`: A `svydesign` R object that stores the data collected in the the survey C and all the information concerning the corresponding sampling design. This object can be created by using the function `svydesign` in the package `survey`. When `svy.C=NULL` (default), i.e. no auxiliary information is available, the function returns an estimate of the contingency table of Y vs. Z under the Conditional Independence assumption (CIA) (see Details for major information). When `svy.C` is available, if `estimation="incomplete"` then it must contain at least `y.lab` and `z.lab` variables. On the contrary, when `estimation="synthetic"` all the variables specified in `form.x`, `y.lab` and `z.lab` must be available in `svy.C`.

- `y.lab`: A string providing the name of the Y variable, available in survey A and in survey C (if available). The Y variable can be a categorical variable (factor in R) or a continuous one (in this latter case `z.lab` should be categorical).
A string providing the name of the Z variable available in survey B and in survey C (if available). The Z variable can be a categorical variable (factor in R) or a continuous one (in this latter case y.lab should be categorical).

form.x

A R formula specifying the matching variables (subset of the X variables) collected in all the surveys, and how have to be considered in combining samples. For instance, form.x = ~x1+x2 means that the variables x1 and x2 have to be considered marginally without taking into account their cross-tabulation: just their marginal distribution is considered. In order to skip the intercept the formula has to be written as form.x = ~x1+x2-1.

When dealing with categorical variables, form.x =~x1:x2-1 means that the joint distribution of the two variables (table of x1 vs. x2) has to be considered.

To better understand the usage of form.x see model.matrix (see also formula).

Due to weights calibration features, it is preferable to work with categorical X variables. In some cases, procedure may be successful when a single continuous variable is considered jointly with one or more categorical variables but, often, it may be necessary to categorize the continuous variable (see Details).

estimation

A character string that identifies the method to be used to estimate the table of Y vs. Z when data from survey C are available. As suggested in Renssen (1998), two alternative methods are available: (i) Incomplete Two-Way Stratification (estimation = "incomplete", or estimation = "ITWS", the default one) and (ii) Synthetic Two-Way Stratification (estimation = "synthetic" or estimation = "STWS"). In the first case (estimation = "incomplete") only Y and Z variables must be available in svy.C. On the contrary, when estimation = "synthetic" the survey C must contain all the X variables specified via form.x, as well as the Y and Z variables. See Details for further information.

micro

Logical, when TRUE predictions of Z in A and of Y in B are provided. In particular when Y and Z are both categorical variables it is provided the estimated probability that a unit falls in each of the categories of the given variable. These probabilities are estimated as a by-product of the whole procedure by considering Linear Probability Models, as suggested in Renssen (1998) (see Details).

Further arguments that may be necessary for calibration. In particular, the argument calfun allows to specify the calibration function:

(i) calfun = "linear" for linear calibration (default);
(ii) calfun = "raking" to rake the survey weights; and
(iii) calfun = "logit" for logit calibration. See calibrate for major details.

Note that when calfun = "linear" calibration may return negative weights. Generally speaking, in sample surveys weights are expected to be greater than or equal to 1, i.e. bounds = c(1, Inf).

The number of iterations used in calibration can be modified by using the argument maxit (by default maxit = 50).

See calibrate for further details.
Details

This function estimates the contingency table of Y vs. Z by performing a series of calibrations of the survey weights. In practice, the estimation is carried out on data in survey C by exploiting all the information from surveys A and B. When survey C is not available, the table of Y vs. Z is estimated under the assumption of Conditional Independence (CIA), i.e. \(p(Y, Z) = p(Y|X) \times p(Z|X) \times p(X) \).

When data from survey C are available (Renssen, 1998), the table of Y vs. Z can be estimated by: Incomplete Two-Way Stratification (ITWS) or Synthetic Two-Way Stratification (STWS). In the first case (ITWS) the weights of the units in survey C are calibrated so that the new weights allow to reproduce the marginal distributions of Y estimated on survey A, and that of Z estimated on survey B. Note that the distribution of the X variables in survey A and in survey B, must be harmonized before performing ITWS (see `harmonize.x`).

The Synthetic Two-Way Stratification allows to estimate the table of Y vs. Z by considering also the X variables observed in C. This method consists in correcting the table of Y vs. Z estimated under the CIA according to the relationship between Y and Z observed in survey C (for major details see Renssen, 1998).

When the argument `micro` is set to `TRUE` the function provides also Z.A and Y.B. The first data.frame has the same rows as `svy.A` and the number of columns equals the number of categories of the Z variable specified via `z.lab`. Each row provides the estimated probabilities of assuming a value in the various categories. The same happens for Y.B which presents the estimated probabilities of assuming a category of y.lab for each unit in B. The estimated probabilities are obtained by applying the linear probability models (for major details see Renssen, 1998). Unfortunately, such models may provide estimated probabilities less than 0 or greater than 1. Much caution should be used in using such predictions for practical purposes.

Value

A R list with the results of the calibration procedure according to the input arguments.

- `yz.CIA`:
 The table of Y (y.lab) vs. Z (z.lab) estimated under the Conditional Independence Assumption (CIA).

- `cal.C`:
 The survey object `svy.C` after the calibration. Only when `svy.C` is provided.

- `yz.est`:
 The table of Y (y.lab) vs. Z (z.lab) estimated under the method specified via `estimation` argument. Only when `svy.C` is provided.

- `Z.A`:
 Only when `micro=TRUE`. It is a data frame with the same rows as in `svy.A` and the number of columns is equal to the number of categories of the variable `z.lab`. Each row provides the estimated probabilities for a unit being in the various categories of `z.lab`.

- `Y.B`:
 Only when `micro=TRUE`. It is a data frame with the same rows as in `svy.B` and the number of columns is equal to the number of categories of `y.lab`. Each row provides the estimated probabilities for a unit being in the various categories of `y.lab`.

- `call`:
 Stores the call to this function with all the values specified for the various arguments (`call=match.call()`).
Author(s)
Marcello D’Orazio <mdo.statmatch@gmail.com>

References

See Also
calibrate, svydesign, harmonize.x

Examples
data(quine, package="MASS") # loads quine from MASS
str(quine)
quine$c.Days <- cut(quine$Days, c(-1, seq(0,20,10),100))
table(quine$c.Days)

split quine in two subsets
suppressWarnings(RNGversion("3.5.0"))
set.seed(124)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, c("Eth","Sex","Age","Lrn")]
quine.B <- quine[-lab.A, c("Eth","Sex","Age","c.Days")]

create svydesign objects
require(survey)
quine.A$f <- 70/nrow(quine) # sampling fraction
quine.B$f <- (nrow(quine)-70)/nrow(quine)
svy.qA <- svydesign(~1, fpc=f, data=quine.A)
svy.qB <- svydesign(~1, fpc=f, data=quine.B)

Harmonizazion wrt the joint distribution
of (‘Sex’ x ‘Age’ x ‘Eth’)

vector of population total known
estimated from the full data set
note the formula!
tot.m <- colSums(model.matrix(~Eth:Sex:Age-1, data=quine))
tot.m

out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, x.tot=tot.m,
form.x=~Eth:Sex:Age-1, cal.method="linear")

estimation of ‘Lrn’ vs. ‘c.Days’ under the CIA
comb.samples

```r
svy.qA.h <- out.hz$cal.A
svy.qB.h <- out.hz$cal.B

out.1 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
  svy.C=NULL, y.lab="Lrn", z.lab="c.Days",
  form.x="Eth:Sex:Age-1")

out.1$yz.CIA
addmargins(out.1$yz.CIA)

# incomplete two-way stratification
# select a sample C from quine
# and define a survey object
supressWarnings(RNGversion("3.5.0"))
set.seed(4321)
lab.C <- sample(nrow(quine), 50, replace=TRUE)
quine.C <- quine[lab.C, c("Lrn","c.Days")]
quine.C$F <- 50/nrow(quine) # sampling fraction
svy.qC <- svydesign(~1, fpc=~F, data=quine.C)

# call comb.samples
out.2 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
  svy.C=svy.qC, y.lab="Lrn", z.lab="c.Days",
  form.x="Eth:Sex:Age-1", estimation="incomplete",
  calfun="linear", maxit=100)

summary(weights(out.2$cal.C))
out.2$yz.est # estimated table of 'Lrn' vs. 'c.Days'
# difference wrt the table 'Lrn' vs. 'c.Days' under CIA
addmargins(out.2$yz.est)-addmargins(out.2$yz.CIA)

# synthetic two-way stratification
# only macro estimation
quine.C <- quine[lab.C, ]
quine.C$F <- 50/nrow(quine) # sampling fraction
svy.qC <- svydesign(~1, fpc=~F, data=quine.C)

out.3 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
  svy.C=svy.qC, y.lab="Lrn", z.lab="c.Days",
  form.x="Eth:Sex:Age-1", estimation="synthetic",
  calfun="linear",bounds=c(-.5,Inf), maxit=100)

summary(weights(out.3$cal.C))
out.3$yz.est # estimated table of 'Lrn' vs. 'c.Days'
# difference wrt the table of 'Lrn' vs. 'c.Days' under CIA
addmargins(out.3$yz.est)-addmargins(out.3$yz.CIA)
# diff wrt the table of 'Lrn' vs. 'c.Days' under incomplete 2w
```
comp.prop

Compares two distributions of the same categorical variable

Description

This function compares two (estimated) distributions of the same categorical variable(s).

Usage

```r
comp.prop(p1, p2, n1, n2==NULL, ref=FALSE)
```

Arguments

- **p1** A vector or an array containing relative or absolute frequencies for one or more categorical variables. Usually it is the output of the function `xtabs` or `table`.
- **p2** A vector or an array containing relative or absolute frequencies for one or more categorical variables. Usually it is the output of the function `xtabs` or `table`. If `ref = FALSE` then `p2` is a further estimate of the distribution of the categorical variable(s) being considered. On the contrary (`ref = TRUE`) it is the ‘reference’ distribution (the distribution considered true or a reliable estimate).
- **n1** The size of the sample on which `p1` has been estimated.
- **n2** The size of the sample on which `p2` has been estimated, required just when `ref = FALSE` (`p2` is estimated on another sample and is not the reference distribution).
- **ref** Logical. When `ref = TRUE`, `p2` is the reference distribution (true or reliable estimate of distribution), on the contrary when `ref = FALSE` it is an estimate of the distribution derived from another sample with sample size `n2`.

```r
addmargins(out.3$yz.est)-addmargins(out.2$yz.CIA)

# synthetic two-way stratification
# with micro predictions

out.4 <- comb.samples(svy.A=svy.qA.h, svy.B=svy.qB.h,
  svy.C=svy.qC, y.lab="Lrn", z.lab="c.Days",
  form.x="Eth:Sex:Age-1", estimation="synthetic",
  micro=TRUE, calfun="linear", bounds=c(.5,Inf),
  maxit=100)

head(out.4$Z.A)
head(out.4$Y.B)
```
Details

This function computes some similarity or dissimilarity measures between marginal (joint) distribution of categorical variables(s). The following measures are considered:

Dissimilarity index or total variation distance:

\[
\Delta_{12} = \frac{1}{2} \sum_{j=1}^{J} |p_{1,j} - p_{2,j}|
\]

where \(p_{s,j} \) are the relative frequencies (\(0 \leq p_{s,j} \leq 1 \)). The dissimilarity index ranges from 0 (minimum dissimilarity) to 1. It can be interpreted as the smallest fraction of units that need to be reclassified in order to make the distributions equal. When \(p_2 \) is the reference distribution (true or expected distribution under a given hypothesis) than, following the Agresti’s rule of thumb (Agresti 2002, pp. 329–330), values of \(\Delta_{12} \leq 0.03 \) denotes that the estimated distribution \(p_1 \) follows the true or expected pattern quite closely.

Overlap between two distributions:

\[
O_{12} = \sum_{j=1}^{J} \min(p_{1,j}, p_{2,j})
\]

It is a measure of similarity which ranges from 0 to 1 (the distributions are equal). It is worth noting that \(O_{12} = 1 - \Delta_{12} \).

Bhattacharyya coefficient:

\[
B_{12} = \sum_{j=1}^{J} \sqrt{p_{1,j} \times p_{2,j}}
\]

It is a measure of similarity and ranges from 0 to 1 (the distributions are equal).

Hellinger’s distance:

\[
d_{H,12} = \sqrt{1 - B_{12}}
\]

It is a dissimilarity measure ranging from 0 (distributions are equal) to 1 (max dissimilarity). It satisfies all the properties of a distance measure (\(0 \leq d_{H,12} \leq 1 \); symmetry and triangle inequality). Hellinger’s distance is related to the dissimilarity index, and it is possible to show that:

\[
d_{H,12}^2 \leq \Delta_{12} \leq d_{H,12} \sqrt{2}
\]

Alongside with those similarity/dissimilarity measures the Pearson’s Chi-squared is computed. Two formulas are considered. When \(p_2 \) is the reference distribution (true or expected under some hypothesis, ref=TRUE):

\[
\chi^2_p = n_1 \sum_{j=1}^{J} \frac{(p_{1,j} - p_{2,j})^2}{p_{2,j}}
\]
When \(p2 \) is a distribution estimated on a second sample then:

\[
\chi^2_P = \sum_{i=1}^{J} \sum_{j=1}^{J} n_i \frac{(p_{i,j} - p_{+j})^2}{p_{+j}}
\]

where \(p_{+j} \) is the expected frequency for category \(j \), obtained as follows:

\[
p_{+j} = \frac{n_1 p_{1,j} + n_2 p_{2,j}}{n_1 + n_2}
\]

being \(n_1 \) and \(n_2 \) the sizes of the samples.

The Chi-Square value can be used to test the hypothesis that two distributions are equal (\(df = J-1 \)). Unfortunately such a test would not be useful when the distribution are estimated from samples selected from a finite population using complex selection schemes (stratification, clustering, etc.). In such a case different alternative corrected Chi-square tests are available (cf. Sarndal et al., 1992, Sec. 13.5). One possibility consist in dividing the Pearson’s Chi-square test by the generalised design effect of both the surveys. Its estimation is not straightforward (sampling design variables need to be available). Generally speaking, the generalised design effect is smaller than 1 in the presence of stratified random sampling designs, while it exceeds 1 the presence of a two stage cluster sampling design. For the purposes of analysis it is reported the value of the generalised design effect \(g \) that would determine the acceptance of the null hypothesis (equality of distributions) in the case of \(\alpha = 0.05 \) (\(df = J-1 \)), i.e. values of \(g \) such that

\[
\frac{\chi^2_P}{g} \leq \chi^2_{J-1,0.05}
\]

Value

A list object with two or three components depending on the argument \(ref \).

- **meas**
 A vector with the measures of similarity/dissimilarity between the distributions: dissimilarity index ("tvd"), overlap ("overlap"), Bhattacharyya coefficient ("bhatt") and Hellinger’s distance ("hell").

- **chi.sq**
 A vector with the following values: Pearson’s Chi-square ("Pearson"), the degrees of freedom ("df"), the percentile of a Chi-squared distribution ("q0.05") and the largest admissible value of the generalised design effect that would determine the acceptance of H0 (equality of distributions).

- **p.exp**
 When \(ref=FALSE \) it is reported the value of the reference distribution \(p_{+j} \) estimated used in deriving the Chi-square statistic and also the dissimilarity index. On the contrary (\(ref=FALSE \)) it is set equal to the argument \(p2 \).

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

create.fused

Creates a matched (synthetic) dataset

Description

Creates a synthetic data frame after the statistical matching of two data sources at micro level.

Usage

create.fused(data.rec, data.don, mtc.ids,
 z.vars, dup.x=FALSE, match.vars=NULL)

Arguments

data.rec A matrix or data frame that plays the role of recipient in the statistical matching application.

data.don A matrix or data frame that that plays the role of donor in the statistical matching application.
A matrix with two columns. Each row must contain the name or the index of the recipient record (row) in `data.don` and the name or the index of the corresponding donor record (row) in `data.don`. Note that this type of matrix is returned by the functions `NND.hotdeck`, `RANDwNND.hotdeck`, `rankNND.hotdeck`, and `mixed.mtc`.

A character vector with the names of the variables available only in `data.don` that should be “donated” to `data.rec`.

Logical. When TRUE the values of the matching variables in `data.don` are also “donated” to `data.rec`. The names of the matching variables have to be specified with the argument `match.vars`. To avoid confusion, the matching variables added to `data.rec` are renamed by adding the suffix “don”. By default `dup.x=FALSE`.

A character vector with the names of the matching variables. It has to be specified only when `dup.x=TRUE`.

This function allows to create the synthetic (or fused) data set after the application of a statistical matching in a micro framework. For details see D’Orazio et al. (2006).

The data frame `data.rec` with the `z.vars` filled in and, when `dup.x=TRUE`, with the values of the matching variables `match.vars` observed on the donor records.

Marcello D’Orazio <mdo.statmatch@gmail.com>

See Also

`NND.hotdeck` `RANDwNND.hotdeck` `rankNND.hotdeck`

Examples

```r
lab <- c(1:15, 51:65, 101:115)
iris.rec <- iris[lab, c(1:3,5)]  # recipient data.frame
iris.don <- iris[-lab, c(1:2,4:5)]  # donor data.frame

# Now iris.rec and iris.don have the variables
# "Sepal.Length", "Sepal.Width" and "Species"
# in common.
# "Petal.Length" is available only in iris.rec
# "Petal.Width" is available only in iris.don
```
find the closest donors using NND hot deck;
distances are computed on "Sepal.Length" and "Sepal.Width"

```r
cmod <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
                     match.vars=c("Sepal.Length", "Sepal.Width"),
                     don.class="Species")
```

create synthetic data set, without the
duplication of the matching variables

```r
fused.0 <- create.fused(data.rec=iris.rec, data.don=iris.don,
                         mtc.ids=out.NND$mtc.ids, z.vars="Petal.Width")
```

create synthetic data set, with the "duplication"
of the matching variables

```r
fused.1 <- create.fused(data.rec=iris.rec, data.don=iris.don,
                         mtc.ids=out.NND$mtc.ids, z.vars="Petal.Width",
                         dup.x=TRUE, match.vars=c("Sepal.Length", "Sepal.Width"))
```

fact2dummy
Transforms a categorical variable in a set of dummy variables

Description

Transforms a factor or more factors contained in a data frame in a set of dummy variables.

Usage

```r
fact2dummy(data, all=TRUE, lab="x")
```

Arguments

- **data**
 A factor or a data frame that contains one or more factors (columns whose class is “factor” or “ordered”) that have to be substituted by dummy variables.

- **all** Logical. When all=TRUE (default) the output matrix will contain as many dummy variables as the number of the levels of the factor variable. On the contrary, when all=FALSE, the dummy variable related to the last level of the factor is dropped.

- **lab** A character string with the name of the variable to be pasted with its levels. This is used only when data is a factor. By default it is set to “x”.

Details

This function substitutes categorical variables in the input data frame (columns whose class is “factor” or “ordered”) with the corresponding dummy variables.
Value

A matrix with the dummy variables instead of initial factor variables.

Author(s)

Marcello D'Orazio <mdo.statmatch@gmail.com>

See Also

gower.dist

Examples

```r
x <- runif(5)
y <- factor(c(1,2,1,2,2))
z <- ordered(c(1,2,3,2,2))
xyz <- data.frame(x,y,z)
fact2dummy(xyz)
fact2dummy(xyz, all=FALSE)
```

```r
# example with iris data frame
str(iris)
ir.mat <- fact2dummy(iris)
head(ir.mat)
```

fbwidths.by.x
Computes the Frechet bounds of cells in a contingency table by considering all the possible subsets of the common variables.

Description

This function permits to compute the bounds for cell probabilities in the contingency table Y vs. Z starting from the marginal tables (X vs. Y), (X vs. Z) and the joint distribution of the X variables, by considering all the possible subsets of the X variables. In this manner it is possible to identify which subset of the X variables produces the major reduction of the average width of conditional bounds.

Usage

```r
fbwidths.by.x(tab.x, tab.xy, tab.xz, deal.sparse="discard",
              nA=NULL, nB=NULL, ...)
```
Arguments

tab.x A R table crossing the X variables. This table must be obtained by using the function `xtabs` or `table`, e.g.,
 `tab.x <- xtabs(~x1+x2+x3^3, data=data.all)`.

tab.xy A R table of X vs. Y variable. This table must be obtained by using the function `xtabs` or `table`, e.g.,
 `table.xy <- xtabs(~x1+x2+x3+y, data=data.A)`.
 A single categorical Y variables is allowed. One or more categorical variables can be considered as X variables (common variables). The same X variables in tab.x must be available in tab.xy. Moreover, it is assumed that the joint distribution of the X variables computed from tab.xy is equal to tab.x; a warning is produced if this is not true.

tab.xz A R table of X vs. Z variable. This table must be obtained by using the function `xtabs` or `table`, e.g.,
 `tab.xz <- xtabs(~x1+x2+x3+z, data=data.B)`.
 A single categorical Z variable is allowed. One or more categorical variables can be considered as X variables (common variables). The same X variables in tab.x must be available in tab.xz. Moreover, it is assumed that the joint distribution of the X variables computed from tab.xz is equal to tab.x; a warning is produced if this is not true.

deal.sparse Text, how to estimate the cell relative frequencies when dealing with too sparse tables. When `deal.sparse`="discard" (default) no estimation is performed if tab.xy or tab.xz is too sparse. When `deal.sparse`="relfreq" the standard estimator (cell count divided by the sample size) is considered. Note that here sparseness is measured by number of cells with respect to the sample size; sparse table are those where the number of cells exceeds the sample size (see Details).

nA Integer, sample size of file A used to estimate tab.xy. If NULL, it is obtained as sum of frequencies in tab.xy.

nB Integer, sample size of file B used to estimate tab.xz. If NULL, it is obtained as sum of frequencies in tab.xz.

... Additional arguments that may be required when deriving an estimate of uncertainty by calling `frechet.bounds.cat`.

Details

This function permits to compute the Frechet bounds for the frequencies in the contingency table of Y vs. Z, starting from the conditional distributions \(P(Y|X)\) and \(P(Z|X)\) (for details see `frechet.bounds.cat`), by considering all the possible subsets of the X variables. In this manner it is possible to identify the subset of the X variables, with highest association with both Y and Z, that permits to reduce the uncertainty concerning the distribution of Y vs. Z.

The uncertainty is measured by the average of the widths of the bounds for the cells in the table Y vs. Z:

\[
\bar{d} = \frac{1}{J \times K} \sum_{j,k} \left(p_{Y=j,Z=k}^{(up)} - p_{Y=j,Z=k}^{(low)} \right)
\]
For details see Frechet.bounds.cat.

Provided that uncertainty, measured in terms of \bar{d}, tends to reduce when conditioning on a higher number of X variables. Two penalties are introduced to account for the additional number of cells to be estimated when adding a X variable. The first penalty, introduced in D’Orazio et al. (2017), is:

$$g_1 = \log \left(1 + \frac{H_{D_m}}{H_{D_Q}}\right)$$

Where H_{D_m} is the number of cell in the table obtained by crossing the given subset of X variables and the H_{D_Q} is the number of cell in the table achieved by crossing all the available X variables. A second penalty takes into account the number of cells to estimate with respect to the sample size (D’Orazio et al., 2019). It is obtained as:

$$g_2 = \max \left[\frac{1}{n_A - H_{D_m} \times J}, \frac{1}{n_B - H_{D_m} \times K}\right]$$

with $n_A > H_{D_m} \times J$ and $n_B > H_{D_m} \times K$. In practice, it is considered the number of cells to estimate compared to the sample size. This criterion is considered to measure sparseness too. In particular, for the purposes of this function, tables are NOT considered sparse when:

$$\min \left[\frac{n_A}{H_{D_m} \times J}, \frac{n_B}{H_{D_m} \times K}\right] > 1$$

This rule is applied when deciding how to proceed with estimation in case of sparse table (argument dealNsparse). Note that sparseness can be measured in different manners. The outputs include also the empty cells in each table (due to statistical zeros or structural zeros) and the Cohen’s effect size with respect to the case of uniform distribution of frequencies across cells (the value $1/\text{no. of cells}$ in every cell):

$$\omega_{eq} = \sqrt{H \sum_{h=1}^{H} (\hat{p}_h - 1/H)^2}$$

values of ω_{eq} jointly with $n/H \leq 1$ usually indicate severe sparseness.

Value

A list with the estimated bounds for the cells in the table of Y vs. Z for each possible subset of the X variables. The final component in the list, sum.unc, is a data.frame that summarizes the main results. In particular, it reports the number of X variables ("x.vars"), the number of cells in each of the input tables and the cells with frequency equal to 0 (columns ending with freqP). Moreover, it reported the value ("av. n") of the rule used to decide whether we are dealing with a sparse case (see Details) and the Cohen’s effect size measured for the table crossing the considered combination of the X variables. Finally, it is provided the average width of the uncertainty intervals ("av. width"), the penalty terms g_1 and g_2 ("penalty1" and "penalty2" respectively), and the penalized average widths ("av. width.pen1" and "av. width.pen2", where av.width.pen1=av.width+pen1 and av.width.pen2=av.width+pen2).
Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

See Also

Frechet.bounds.cat.harmonize.x

Examples

```r
data(quine, package="MASS") # loads quine from MASS
str(quine)
quine$c.Days <- cut(quine$Days, c(-1, seq(0,50,10),100))
table(quine$c.Days)

# split quine in two subsets
suppressWarnings(RNGversion("3.5.0"))
set.seed(4567)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.B <- quine[-lab.A, c(1:3,6)]

# compute the tables required by Fbwidths.by.x()
freq.xA <- xtabs(~Eth+Sex+Age, data=quine.A)
freq.xB <- xtabs(~Eth+Sex+Age, data=quine.B)
freq.xy <- xtabs(~Eth+Sex+Age+Lrn, data=quine.A)
freq.xz <- xtabs(~Eth+Sex+Age+c.Days, data=quine.B)

# apply Fbwidths.by.x()
bounds.yz <- Fbwidths.by.x(tab.x=freq.xA+freq.xB, tab.xy=freq.xy, tab.xz=freq.xz)

bounds.yz$sum.unc
```
Description

This function permits to derive the bounds for cell probabilities of the table Y vs. Z starting from the marginal tables (X vs. Y), (X vs. Z) and the joint distribution of the X variables.

Usage

Frechet.bounds.cat(tab.x, tab.xy, tab.xz, print.f="tables", align.margins = FALSE,
 tol= 0.001, warn = TRUE)

Arguments

- **tab.x**: A R table crossing the X variables. This table must be obtained by using the function `xtabs` or `table`, e.g.
  ```r
tab.x <- xtabs(~x1+x2+x3, data=data.all).
  ```
 When `tab.x` = NULL then only `tab.xy` and `tab.xz` must be supplied.

- **tab.xy**: A R table of X vs. Y variable. This table must be obtained by using the function `xtabs` or `table`, e.g.
  ```r
table.xy <- xtabs(~x1+x2+x3+y, data=data.A).
  ```
 A single categorical Y variable is allowed. One or more categorical variables can be considered as X variables (common variables). Obviously, the same X variables in `tab.x` must be available in `tab.xy`. Usually, it is assumed that the joint distribution of the X variables computed from `tab.xy` is equal to `tab.x` (a warning appears if any absolute difference is greater than `tol`). Note that when marginal distribution of X in `tab.xy` is not equal to that of `tab.x` it is possible to ask their alignment (see argument `align.margins`).
 When `tab.x` = NULL then `tab.xy` should be a one–dimensional table providing the marginal distribution of the Y variable.

- **tab.xz**: A R table of X vs. Z variable. This table must be obtained by using the function `xtabs` or `table`, e.g.
  ```r
tab.xz <- xtabs(~x1+x2+x3+z, data=data.B).
  ```
 A single categorical Z variable is allowed. One or more categorical variables can be considered as X variables (common variables). The same X variables in `tab.x` must be available in `tab.xz`. Usually, it is assumed that the joint distribution of the X variables computed from `tab.xz` is equal to `tab.x` (a warning appears if any absolute difference is greater than `tol`). Note that when marginal distribution of X in `tab.xz` is not equal to that of `tab.x` it is possible to ask their alignment (see argument `align.margins`).
 When `tab.x` = NULL then `tab.xz` should be a one–dimensional table providing the marginal distribution of the Z variable.

- **print.f**: A string: when `print.f="tables"` (default) all the cells’ estimates will be saved as tables in a list. On the contrary, if `print.f="data.frame"`, they will be saved as columns of a data.frame.
align.margins

Logical (default FALSE). When when TRUE the distribution of X variables in tab.xy is aligned with the distribution resulting from tab.x, without affecting the marginal distribution of Y. Similarly, the distribution of X variables in tab.xz is aligned with the distribution resulting from tab.x without affecting the marginal distribution of Z. The alignment is performed by running IPF algorithm as implemented in the function `estimate` in the package `mipfp`. Note that to avoid lack of convergence due to combinations of Xs encountered in one table but not in the other (statistical 0s), before running IPF a small constant (1e-06) is added to empty cells in tab.xy and tab.xz.

tol

Tolerance used in comparing joint distributions as far as X variables are considered (default tol = 0.001); estimation of cells bounds would require that distribution of X variables computed from tab.xy and tab.xz should be approximately equal to that in tab.x, on contrary incoherences in estimated cells' bounds could happen. In case of not-coherent marginal distributions it is suggested to get them aligned by setting align.margins=TRUE.

warn

Logical, when TRUE (default) return warnings when marginal distributions of X variables show differences grater than tol.

Details

This function permits to compute the expected conditional Frechet bounds for the relative frequencies in the contingency table of Y vs. Z, starting from the distributions P(Y|X), P(Z|X) and P(X). The expected conditional bounds for the relative frequencies \(p_{j,k} \) in the table Y vs. Z are:

\[
p_{Y=j,Z=k}^{(low)} = \sum_i p_{X=i} \max(0; p_{Y=j|X=i} + p_{Z=k|X=i} - 1)
\]

\[
p_{Y=j,Z=k}^{(up)} = \sum_i p_{X=i} \min(p_{Y=j|X=i}; p_{Z=k|X=i})
\]

The relative frequencies \(p_{X=i} = n_i/n \) are computed from the frequencies in tab.x; the relative frequencies \(p_{Y=j|X=i} = n_{ij}/n_i \) are derived from tab.xy, finally, \(p_{Z=k|X=i} = n_{ik}/n_i \) are derived from tab.xz.

Estimation requires that all the starting tables share the same marginal distribution of the X variables.

This function returns also the unconditional bounds for the relative frequencies in the contingency table of Y vs. Z, i.e. computed also without considering the X variables:

\[
\max\{0; p_{Y=j} + p_{Z=k} - 1\} \leq p_{Y=j,Z=k} \leq \min\{p_{Y=j}; p_{Z=k}\}
\]

These bounds represent the unique output when tab.x = NULL.

Finally, the contingency table of Y vs. Z estimated under the Conditional Independence Assumption (CIA) is obtained by considering:

\[
p_{Y=j,Z=k} = p_{Y=j|X=i} \times p_{Z=k|X=i} \times p_{X=i}.
\]
When \(\text{tab.} x = \text{NULL} \) then it is also provided the expected table under the assumption of independence between \(Y \) and \(Z \):

\[
p_{Y=j, Z=k} = p_{Y=j} \times p_{Z=k}.
\]

The presence of too many cells with 0s in the input contingency tables is an indication of sparseness; this is an unappealing situation when estimating the cells’ relative frequencies needed to derive the bounds; in such cases the corresponding results may be unreliable. A possible alternative way of working consists in estimating the required parameters by considering a pseudo-Bayes estimator (see \(\text{pBayes} \)); in practice the input \(\text{tab.} x \), \(\text{tab.} xy \) and \(\text{tab.} xz \) should be the ones provided by the \(\text{pBayes} \) function.

Value

When \(\text{print.f="tables"} \) (default) a list with the following components:

- low.u: The estimated lower bounds for the relative frequencies in the table \(Y \) vs. \(Z \) without conditioning on the \(X \) variables.
- up.u: The estimated upper bounds for the relative frequencies in the table \(Y \) vs. \(Z \) without conditioning on the \(X \) variables.
- CIA: The estimated relative frequencies in the table \(Y \) vs. \(Z \) under the Conditional Independence Assumption (CIA).
- low.cx: The estimated lower bounds for the relative frequencies in the table \(Y \) vs. \(Z \) when conditioning on the \(X \) variables.
- up.cx: The estimated upper bounds for the relative frequencies in the table \(Y \) vs. \(Z \) when conditioning on the \(X \) variables.
- uncertainty: The uncertainty associated to input data, measured in terms of average width of uncertainty bounds with and without conditioning on the \(X \) variables.

When \(\text{print.f="data.frame"} \) the output list contains just two components:

- bounds: A data.frame whose columns reports the estimated uncertainty bounds.
- uncertainty: The uncertainty associated to input data, measured in terms of average width of uncertainty bounds with and without conditioning on the \(X \) variables.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

See Also

`fbwidths.by.x`, `harmonize.x`

Examples

data(quine, package="MASS") # loads quine from MASS
str(quine)

split quine in two subsets
suppressWarnings(RNGversion("3.5.0"))
set.seed(7654)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, 1:3]

compute the tables required by Frechet.bounds.cat()
freq.xA <- xtabs(~Sex+Age, data=quine.A)
freq.xB <- xtabs(~Sex+Age, data=quine.B)

freq.xy <- xtabs(~Sex+Age+Eth, data=quine.A)
freq.xz <- xtabs(~Sex+Age+Lrn, data=quine.B)

apply Frechet.bounds.cat()
bounds.yz <- Frechet.bounds.cat(tab.x=freq.xA+freq.xB, tab.xy=freq.xy,
 tab.xz=freq.xz, print.f="data.frame")
bounds.yz

harmonize distr. of Sex vs. Age during computations
in Frechet.bounds.cat()

compare marg. distribution of Xs in A and B vs. pooled estimate
comp.prop(p1=margin.table(freq.xy,c(1,2)), p2=freq.xA+freq.xB,
 n1=nrow(quine.A), n2=nrow(quine.A)+nrow(quine.B), ref=TRUE)

comp.prop(p1=margin.table(freq.xz,c(1,2)), p2=freq.xA+freq.xB,
 n1=nrow(quine.A), n2=nrow(quine.A)+nrow(quine.B), ref=TRUE)

bounds.yz <- Frechet.bounds.cat(tab.x=freq.xA+freq.xB, tab.xy=freq.xy,
 tab.xz=freq.xz, print.f="data.frame", align.margins=TRUE)
bounds.yz

gower.dist Computes the Gower's Distance

Description

This function computes the Gower’s distance (dissimilarity) between units in a dataset or between observations in two distinct datasets.
Usage

gower.dist(data.x, data.y=data.x, rngs=NULL, KR.corr=TRUE, var.weights = NULL)

Arguments

data.x A matrix or a data frame containing variables that should be used in the computation of the distance. Columns of mode numeric will be considered as interval scaled variables; columns of mode character or class factor will be considered as categorical nominal variables; columns of class ordered will be considered as categorical ordinal variables and, columns of mode logical will be considered as binary asymmetric variables (see Details for further information).

Missing values (NA) are allowed.

If only data.x is supplied, the dissimilarities between rows of data.x will be computed.

data.y A numeric matrix or data frame with the same variables, of the same type, as those in data.x. Dissimilarities between rows of data.x and rows of data.y will be computed. If not provided, by default it is assumed equal to data.x and only dissimilarities between rows of data.x will be computed.

rngs A vector with the ranges to scale the variables. Its length must be equal to number of variables in data.x. In correspondence of nonnumeric variables, just put 1 or NA. When rngs=NULL (default) the range of a numeric variable is estimated by jointly considering the values for the variable in data.x and those in data.y. Therefore, assuming rngs=NULL, if a variable “X1” is considered:

rngs["X1"] <- max(data.x[,"X1"], data.y[,"X1"]) - min(data.x[,"X1"], data.y[,"X1"])

KR.corr When TRUE (default) the extension of the Gower’s dissimilarity measure proposed by Kaufman and Rousseeuw (1990) is used. Otherwise, when KR.corr=FALSE, the Gower’s (1971) formula is considered.

var.weights By default (NULL) each variable has the same weight (value 1) when calculating the overall distance (weighted average of distances on single variables; see Details). User can specify different weights for the different variables by providing a numeric value for each of the variables contributing to the distance. In other words, var.weights should be set equal to a numeric vector having length equal to the number of variables considered in calculating distance. Entered weights are scales to sum up to 1.

Details

This function computes distances between records when variables of different type (categorical and continuous) have been observed. In order to handle different types of variables, the Gower’s dissimilarity coefficient (Gower, 1971) is used. By default (KR.corr=TRUE) the Kaufman and Rousseeuw (1990) extension of the Gower’s dissimilarity coefficient is used.
The final dissimilarity between the \(i\)th and \(j\)th unit is obtained as a weighted sum of dissimilarities for each variable:

\[
d(i,j) = \frac{\sum_k \delta_{ijk} d_{ijk} w_k}{\sum_k \delta_{ijk} w_k}
\]

In particular, \(d_{ijk}\) represents the distance between the \(i\)th and \(j\)th unit computed considering the \(k\)th variable, while \(w_k\) is the weight assigned to variable \(k\) (by default 1 for all the variables, unless different weights are provided by user with argument \text{varNweights}). Distance depends on the nature of the variable:

- **logical** columns are considered as asymmetric binary variables, for such case \(d_{ijk} = 0\) if \(x_{ik} = x_{jk} = \text{TRUE}\), 1 otherwise;
- **factor** or **character** columns are considered as categorical nominal variables and \(d_{ijk} = 0\) if \(x_{ik} = x_{jk}\), 1 otherwise;
- **numeric** columns are considered as interval-scaled variables and

\[
d_{ijk} = \frac{|x_{ik} - x_{jk}|}{R_k}
\]

being \(R_k\) the range of the \(k\)th variable. The range is the one supplied with the argument \text{rngs} (\text{rngs}[k]) or the one computed on available data (when \text{rngs=NULL});

- **ordered** columns are considered as categorical ordinal variables and the values are substituted with the corresponding position index, \(r_{ik}\) in the factor levels. When \text{KR.corr=FALSE} these position indexes (that are different from the output of the R function \text{rank}) are transformed in the following manner

\[
z_{ik} = \frac{(r_{ik} - 1)}{\max (r_{ik}) - 1}
\]

These new values, \(z_{ik}\), are treated as observations of an interval scaled variable.

As far as the weight \(\delta_{ijk}\) is concerned:

- \(\delta_{ijk} = 0\) if \(x_{ik} = \text{NA}\) or \(x_{jk} = \text{NA}\);
- \(\delta_{ijk} = 0\) if the variable is asymmetric binary and \(x_{ik} = x_{jk} = 0\) or \(x_{ik} = x_{jk} = \text{FALSE}\);
- \(\delta_{ijk} = 1\) in all the other cases.

In practice, NAs and couple of cases with \(x_{ik} = x_{jk} = \text{FALSE}\) do not contribute to distance computation.

Value

A matrix object with distances between rows of \text{data.x} and those of \text{data.y}.

Author(s)

Marcello D'Orazio <mdo.statmatch@gmail.com>

References

See Also
daisy, dist

Examples

```r
x1 <- as.logical(rbinom(10, 1, 0.5))
x2 <- sample(letters, 10, replace=TRUE)
x3 <- rnorm(10)
x4 <- ordered=cut(x3, -4:4, include.lowest=TRUE)
x <- data.frame(x1, x2, x3, x4, stringsAsFactors = FALSE)

# matrix of distances between observations in x
dx <- gower.dist(x)
head(dx)

# matrix of distances between first obs. in x
# and the remaining ones
gower.dist(data.x=x[1:6,], data.y=x[7:10,], var.weights = c(1,2,5,2))
```

harmonize.x

Harmonizes the marginal (joint) distribution of a set of variables observed independently in two sample surveys referred to the same target population

Description

This function permits to harmonize the marginal or the joint distribution of a set of variables observed independently in two sample surveys carried out on the same target population. This harmonization is carried out by using the calibration of the survey weights of the sample units in both the surveys according to the procedure suggested by Renssen (1998).

Usage

```r
harmonize.x(svy.A, svy.B, form.x, x.tot=NULL, cal.method="linear", ...)
```

Arguments

svy.A A `svydesign` R object that stores the data collected in the the survey A and all the information concerning the corresponding sampling design. This object can be created by using the function `svydesign` in the package `survey`.

svy.B A `svydesign` R object that stores the data collected in the the survey B and all the information concerning the corresponding sampling design. This object can be created by using the function `svydesign` in the package `survey`.
A R formula specifying which of the variables, common to both the surveys, have to be considered, and how have to be considered. For instance

\(\text{form.x} = \text{x1} + \text{x2} \) means that the marginal distribution of the variables \text{x1} and \text{x2} have to be harmonized and there is also an ‘Intercept’. In order to skip the intercept the formula has to be written in the following manner

\(\text{form.x} = \text{x1} + \text{x2} - 1 \).

When dealing with categorical variables, the formula \(\text{form.x} = \text{x1} + \text{x2} - 1 \) means that the harmonization has to be carried out by considering the joint distribution of the two variables (\text{x1} vs. \text{x2}). To better understand how \text{form.x} works see \text{model.matrix} (see also \text{formula}).

Due to weights calibration features, it is preferable to work with categorical \text{X} variables. In some cases, the procedure may be successful when a single continuous variable is considered jointly with one or more categorical variables.

When dealing with several continuous variable it may be preferable to categorize them.

\(\text{calNmethod} \) A string that specifies how the calibration of the weights in \text{svyA} and \text{svyB} has to be carried out. By default linear calibration is performed (\text{calNmethod} = \text{"linear"}). In particular, the calibration is carried out by mean of the function \text{calibrate} in the package \text{survey}.

Alternatively, it is possible to rake the origin survey weights by specifying \text{calNmethod} = \text{"raking"}. Finally, it is possible to perform a simple post-stratification by setting \text{calNmethod} = \text{"poststratify"}. Note that in this case the weights adjustments are carried out by considering the function \text{postStratify} in the package \text{survey}.

Further arguments that may be necessary for calibration or post-stratification.

The number of iterations used in calibration can be modified too by using the argument \text{maxit} (by default \text{maxit} = 50).

See \text{calibrate} for further details.

Details

This function harmonizes the totals of the \text{X} variables, observed in both survey \text{A} and survey \text{B}, to be equal to given known totals specified via \text{x.tot}. When these totals are not known (\text{x.tot} = \text{NULL}) they are estimated by combining the estimates derived from the two separate surveys. The harmonization is carried out according to a procedure suggested by Renssen (1998) based on calibration of survey weights (for major details on calibration see Sarndal and Lundstrom, 2005). The procedure is particularly suited to deal with categorical \text{X} variables, in this case it permits to harmonize the
joint or the marginal distribution of the categorical variables being considered. Note that an incomplete crossing of the X variables can be considered: i.e. harmonisation wrt to the joint distribution of $X_1 \times X_2$ and the marginal distribution of X_3.

The calibration procedure may not produce the final result due to convergence problems. In this case an error message appears. In order to reach convergence it may be necessary to launch the procedure with less constraints (i.e a reduced number of population totals) by joining adjacent categories or by discarding some variables.

In some limited cases, it could be possible to consider both categorical and continuous variables. In this situation it may happen that calibration is not successful. In order to reach convergence it may be necessary to categorize the continuous X variables.

Post-stratification is a special case of calibration; all the weights of the units in a given post-stratum are modified so as to reproduce the known total for that post-stratum. Post-stratification avoids problems of convergence but, on the other hand, it may produce final weights with a higher variability than those derived from the calibration.

Value

A R with list the results of calibration procedures carried out on survey A and survey B, respectively. In particular the following components will be provided:

- cal.A: The survey object svy.A after the calibration; in particular, the weights now are calibrated with respect to the totals of the X variables.
- cal.B: The survey object svy.B after the calibration; in particular, the weights now are calibrated with respect to the totals of the X variables.
- weights.A: The new calibrated weights associated to the the units in svy.A.
- weights.B: The new calibrated weights associated to the the units in svy.B.
- call: Stores the call to this function with all the values specified for the various arguments (call=match.call()).

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References

See Also

comb.samples, calibrate, svydesign, postStratify,
Examples

```r
data(quine, package="MASS")  # loads quine from MASS
str(quine)

# split quine in two subsets
suppressWarnings(RNGversion("3.5.0"))
set.seed(7654)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.A <- quine[lab.A, c("Eth","Sex","Age","Lrn")]
quine.B <- quine[-lab.A, c("Eth","Sex","Age","Days")]

# create svydesign objects
require(survey)
quine.A$f <- 70/nrow(quine)  # sampling fraction
quine.B$f <- (nrow(quine)-70)/nrow(quine)
svy.qA <- svydesign(~1, fpc=f, data=quine.A)
svy.qB <- svydesign(~1, fpc=f, data=quine.B)

# example (1)
# Harmonization of the distr. of Sex vs Age
# using post stratification

# (1.a) known population totals
# the population total are computed on the full data frame
tot.sex.age <- xtabs(~Sex+Age, data=quine)
tot.sex.age

out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, form.x=~Sex+Age,
                        x.tot=tot.sex.age, cal.method="poststratify")

tot.A <- xtabs(out.hz$weights.A~Sex+Age, data=quine.A)
tot.B <- xtabs(out.hz$weights.B~Sex+Age, data=quine.B)
tot.sex.age-tot.A
tot.sex.age-tot.B

# (1.b) unknown population totals (x.tot=NULL)
# the population total is estimated by combining totals from the
# two surveys

out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, form.x=~Sex+Age,
                        x.tot=NULL, cal.method="poststratify")

tot.A <- xtabs(out.hz$weights.A~Sex+Age, data=quine.A)
tot.B <- xtabs(out.hz$weights.B~Sex+Age, data=quine.B)
tot.A
tot.A-tot.B
```

```
# example (2)
# Harmonizazion wrt the maginal distribution
# of 'Eth', 'Sex' and 'Age'
# using linear calibration

# (2.a) vector of population total known
# estimated from the full data set
# note the formula! only marginal distribution of the
# variables are considered
tot.m <- colSums(model.matrix(~Eth+Sex+Age-1, data=quine))
tot.m

out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, x.tot=tot.m,
                        form.x=Eth+Sex+Age-1, cal.method="linear")

summary(out.hz$weights.A)  # check for negative weights
summary(out.hz$weights.B)  # check for negative weights

tot.m
svytable(formula=~Eth, design=out.hz$cal.A)
svytable(formula=~Eth, design=out.hz$cal.B)

svytable(formula=~Sex, design=out.hz$cal.A)
svytable(formula=~Sex, design=out.hz$cal.B)

# Note: margins are equal but joint distributions are not!
svytable(formula=~Sex+Age, design=out.hz$cal.A)
svytable(formula=~Sex+Age, design=out.hz$cal.B)

# (2.b) vector of population total unknown
out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, x.tot=NULL,
                        form.x=Eth+Sex+Age-1, cal.method="linear")
svytable(formula=~Eth, design=out.hz$cal.A)
svytable(formula=~Eth, design=out.hz$cal.B)

svytable(formula=~Sex, design=out.hz$cal.A)
svytable(formula=~Sex, design=out.hz$cal.B)

#--------------------------------------------
# example (3)
# Harmonizazion wrt the joint distribution of 'Sex' vs. 'Age'
# and the marginal distribution of 'Eth'
# using raking

# vector of population total known
# estimated from the full data set
# note the formula!
tot.m <- colSums(model.matrix(~Eth+(Sex:Age)-1, data=quine))
tot.m

out.hz <- harmonize.x(svy.A=svy.qA, svy.B=svy.qB, x.tot=tot.m,
                        form.x=Eth+(Sex:Age)-1, cal.method="raking")
mahalanobis.dist

summary(out.hz$weights.A) # check for negative weights
summary(out.hz$weights.B) # check for negative weights

tot.m
svytable(formula=~Eth, design=out.hz$cal.A)
svytable(formula=~Eth, design=out.hz$cal.B)

svytable(formula=~Sex+Age, design=out.hz$cal.A)
svytable(formula=~Sex+Age, design=out.hz$cal.B)

mahalanobis.dist

Comes the Mahalanobis Distance

Description

This function computes the Mahalanobis distance among units in a dataset or between observations in two distinct datasets.

Usage

mahalanobis.dist(data.x, data.y=NULL, vc=Null)

Arguments

data.x A matrix or a data frame containing variables that should be used in the computation of the distance between units. Only continuous variables are allowed. Missing values (NA) are not allowed.

When only data.x is supplied, the distances between rows of data.x is computed.

data.y A numeric matrix or data frame with the same variables, of the same type, as those in data.x (only continuous variables are allowed). Dissimilarities between rows of data.x and rows of data.y will be computed. If not provided, by default it is assumed data.y=data.x and only dissimilarities between rows of data.x will be computed.

vc Covariance matrix that should be used in distance computation. If it is not supplied (vc = NULL) it is estimated from the input data. In particular, when vc = NULL and only data.x is supplied then the covariance matrix is estimated from data.x (i.e. vc = var(data.x)). On the contrary when vc = NULL and both data.x and data.y are available then the covariance matrix is estimated on the joined data sets (i.e. vc = var(rbind(data.x, data.y))).
The Mahalanobis distance is calculated by means of:

\[ d(i, j) = \sqrt{(x_i - x_j)^T S^{-1} (x_i - x_j)} \]

The covariance matrix \( S \) is estimated from the available data when \( vc=NULL \), otherwise the one supplied via the argument \( vc \) is used.

Value

A matrix object with distances among rows of \( data.x \) and those of \( data.y \).

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


See Also

mahalanobis

Examples

```r
md1 <- mahalanobis.dist(iris[1:6,1:4])
md2 <- mahalanobis.dist(data.x=iris[1:6,1:4], data.y=iris[51:60, 1:4])
vv <- var(iris[,1:4])
md1a <- mahalanobis.dist(data.x=iris[1:6,1:4], vc=vv)
md2a <- mahalanobis.dist(data.x=iris[1:6,1:4], data.y=iris[51:60, 1:4], vc=vv)
```

maximum.dist

Computes the Maximum Distance

Description

This function computes the Maximum distance (or \( L^\infty \) norm) between units in a dataset or between observations in two distinct datasets.

Usage

maximum.dist(data.x, data.y=data.x, rank=FALSE)
maximum.dist

Arguments

data.x  A matrix or a data frame containing variables that should be used in the computation of the distance. Only continuous variables are allowed. Missing values (NA) are not allowed.

When only data.x is supplied, the distances between rows of data.x are computed.

data.y  A numeric matrix or data frame with the same variables, of the same type, as those in data.x (only continuous variables are allowed). Dissimilarities between rows of data.x and rows of data.y will be computed. If not provided, by default it is assumed data.y=data.x and only dissimilarities between rows of data.x will be computed.

rank  Logical, when TRUE the original values are substituted by their ranks divided by the number of values plus one (following suggestion in Kovar et al. 1988). This rank transformation permits to remove the effect of different scales on the distance computation. When computing ranks the tied observations assume the average of their position (ties.method = "average" in calling the rank function).

Details

This function computes the $L^\infty$ distance also know as minimax distance. In practice the distance between two records is the maximum of the absolute differences on the available variables:

$$d(i,j) = \max \{|x_{1i} - x_{1j}|, |x_{2i} - x_{2j}|, \ldots, |x_{Ki} - x_{Kj}|\}$$

When rank=TRUE the original values are substituted by their ranks divided by the number of values plus one (following suggestion in Kovar et al. 1988).

Value

A matrix object with distances between rows of data.x and those of data.y.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


See Also

rank,
Examples

```r
md1 <- maximum.dist(iris[1:10,1:4])
m2 <- maximum.dist(iris[1:10,1:4], rank=TRUE)

d3 <- maximum.dist(data.x=iris[1:50,1:4], data.y=iris[51:100,1:4])
d4 <- maximum.dist(data.x=iris[1:50,1:4], data.y=iris[51:100,1:4], rank=TRUE)
```

Description

This function implements some mixed methods to perform statistical matching between two data sources.

Usage

```r
mixed.mtc(data.rec, data.don, match.vars, y.rec, z.don, method="ML",
rho.yz=NULL, micro=FALSE, constr.alg="Hungarian")
```

Arguments

- `data.rec` A matrix or data frame that plays the role of *recipient* in the statistical matching application. This data set must contain all variables (columns) that should be used in statistical matching, i.e. the variables called by the arguments `match.vars` and `y.rec`. Note that continuous variables are expected, if there are some categorical variables they are re-coded into dummies. Missing values (NA) are not allowed.

- `data.don` A matrix or data frame that plays the role of *donor* in the statistical matching application. This data set must contain all the numeric variables (columns) that should be used in statistical matching, i.e. the variables called by the arguments `match.vars` and `z.don`. Note that continuous variables are expected, if there are some categorical variables they are re-coded into dummies. Missing values (NA) are not allowed.

- `match.vars` A character vector with the names of the common variables (the columns in both the data frames) to be used as matching variables (X).

- `y.rec` A character vector with the name of the target variable Y that is observed only for units in `data.rec`. Only one continuous variable is allowed.

- `z.don` A character vector with the name of the target variable Z that is observed only for units in `data.don`. Only one continuous variable is allowed.

- `method` A character vector that identifies the method that should be used to estimate the parameters of the regression models: Y vs. X and Z vs. X. Maximum Likelihood method is used when `method="ML"` (default); on the contrary, when `method="MS"` the parameters are estimated according to approach proposed by Moriarity and Scheuren (2001 and 2003). See Details for further information.
rho.yz  A numeric value representing a guess for the correlation between the Y (y.rec) and the Z variable (z.don) that are not jointly observed. When method="MS" then the argument cor.yz must specify the value of the correlation coefficient $\rho_{YZ}$; on the contrary, when method="ML", it must specify the partial correlation coefficient between Y and Z given X ($\rho_{YZ|X}$).

By default (rho.yz=NULL). In practice, in absence of auxiliary information concerning the correlation coefficient or the partial correlation coefficient, the statistical matching is carried out under the assumption of independence between Y and Z given X (Conditional Independence Assumption, CIA), i.e. $\rho_{YZ|X} = 0$.

micro  Logical. When micro=FALSE (default) only the parameters’ estimates are returned. On the contrary, when micro=TRUE the function returns also data.rec filled in with the values for the variable Z. The donors for filling in Z in data.rec are identified using a constrained distance hot deck method. In this case, the number of units (rows) in data.don must be greater or equal to the number of units (rows) in data.rec. See next argument and Details for further information.

constralg  A string that has to be specified when micro=TRUE, in order to solve the transportation problem involved by the constrained distance hot deck method. Two choices are available: “lpSolve” and “Hungarian”. In the first case, constralg="lpSolve", the transportation problem is solved by means of the function lp.transport available in the package lpSolve. When constralg="Hungarian" (default) the transportation problem is solved using the Hungarian method implemented in the function solve_LSAP available in the package clue (Hornik, 2012). Note that Hungarian algorithm is more efficient and requires less processing time.

Details

This function implements some mixed methods to perform statistical matching. A mixed method consists of two steps:

1. adoption of a parametric model for the joint distribution of $(X, Y, Z)$ and estimation of its parameters;

2. derivation of a complete “synthetic” data set (recipient data set filled in with values for the Z variable) using a nonparametric approach.

In this case, as far as (1) is concerned, it is assumed that $(X, Y, Z)$ follows a multivariate normal distribution. Please note that if some of the $X$ are categorical, then they are recoded into dummies before starting with the estimation. In such a case, the assumption of multivariate normal distribution may be questionable.

The whole procedure is based on the imputation method known as predictive mean matching. The procedure consists of three steps:

step 1a) Regression step: the two linear regression models Y vs. X and Z vs. X are considered and their parameters are estimated.

step 1b) Computation of intermediate values. For the units in data.rec the following intermediate values are derived:

$$\tilde{z}_a = \hat{\alpha}_Z + \hat{\beta}_{ZX}x_a + \epsilon_a$$
for each \( a = 1, \ldots, n_A \), being \( n_A \) the number of units in \texttt{data.rec} (rows of \texttt{data.rec}). Note that, \( e_a \) is a random draw from the multivariate normal distribution with zero mean and estimated residual variance \( \hat{\sigma}_{Z|X} \).

Similarly, for the units in \texttt{data.don} the following intermediate values are derived:

\[
\tilde{y}_b = \hat{\alpha}_Y + \hat{\beta}_Y X_b + e_b
\]

for each \( b = 1, \ldots, n_B \), being \( n_B \) the number of units in \texttt{data.don} (rows of \texttt{data.don}). \( e_b \) is a random draw from the multivariate normal distribution with zero mean and estimated residual variance \( \hat{\sigma}_{Y|X} \).

**step 2) Matching step.** For each observation (row) in \texttt{data.rec} a donor is chosen in \texttt{data.don} through a nearest neighbor constrained distance hot deck procedure. The distances are computed between \((y_a, \tilde{z}_a)\) and \((\tilde{y}_b, z_b)\) using Mahalanobis distance.

For further details see Sections 2.5.1 and 3.6.1 in D’Orazio et al. (2006).

In step 1a) the parameters of the regression model can be estimated by means of the Maximum Likelihood method (\texttt{method="ML"}) (see D’Orazio et al., 2006, pp. 19–23,73–75) or, using the Moriarity and Scheuren (2001 and 2003) approach (\texttt{method="MS"}) (see also D’Orazio et al., 2006, pp. 75–76). The two estimation methods are compared in D’Orazio et al. (2005).

When \texttt{method="MS"}, if the value specified for the argument \texttt{rho.yz} is not compatible with the other correlation coefficients estimated from the data, then it is substituted with the closest value compatible with the other estimated coefficients.

When \texttt{micro=FALSE} only the estimation of the parameters is performed (step 1a). Otherwise, (\texttt{micro=TRUE}) the whole procedure is carried out.

**Value**

A list with a varying number of components depending on the values of the arguments \texttt{method} and \texttt{rho.yz}.

- \texttt{mu} The estimated mean vector.
- \texttt{vc} The estimated variance–covariance matrix.
- \texttt{cor} The estimated correlation matrix.
- \texttt{res.var} A vector with estimates of the residual variances \( \sigma_{Y|Z,X} \) and \( \sigma_{Z|Y,X} \).
- \texttt{start.prho.yz} It is the initial guess for the partial correlation coefficient \( \rho_{Y,Z|X} \) passed in input via the \texttt{rho.yz} argument when \texttt{method="ML"}.
- \texttt{rho.yz} Returned in output only when \texttt{method="MS"}. It is a vector with four values: the initial guess for \( \rho_{Y,Z} \); the lower and upper bounds for \( \hat{\rho}_{Y,Z} \) in the statistical matching framework given the correlation coefficients between \( Y \) and \( X \) and the correlation coefficients between \( Z \) and \( X \) estimated from the available data; and, finally, the closest admissible value used in computations instead of the initial \texttt{rho.yz} that resulted not coherent with the others correlation coefficients estimated from the available data.
- \texttt{phi} When \texttt{method="MS"}. Estimates of the \( \phi \) terms introduced by Moriarity and Scheuren (2001 and 2003).
filled.rec  The data.rec filled in with the values of Z. It is returned only when micro=TRUE.

mtc.ids  when micro=TRUE. This is a matrix with the same number of rows of data.rec and two columns. The first column contains the row names of the data.rec and the second column contains the row names of the corresponding donors selected from the data.don. When the input matrices do not contain row names, a numeric matrix with the indexes of the rows is provided.

dist.rd  A vector with the distances between each recipient unit and the corresponding donor, returned only in case micro=TRUE.

call  How the function has been called.

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


See Also

NND.hotdeck, mahalanobis.dist

Examples

```r
reproduce the statistical matching framework
starting from the iris data.frame
suppressWarnings(RNGversion("3.5.0"))
set.seed(98765)
pos <- sample(1:150, 50, replace=FALSE)
ir.A <- iris[pos, c(1,3:5)]
ir.B <- iris[-pos, 2:5]

xx <- intersect(colnames(ir.A), colnames(ir.B))
x # common variables
```
mixed.mtc

# ML estimation method under CIA ((rho_YZ|X=0));
# only parameter estimates (micro=FALSE)
# only continuous matching variables
xx.mtc <- c("Petal.Length", "Petal.Width")
mtc.1 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
                   y.rec="Sepal.Length", z.don="Sepal.Width")

# estimated correlation matrix
mtc.1$cor

# ML estimation method under CIA ((rho_YZ|X=0));
# only parameter estimates (micro=FALSE)
# categorical variable 'Species' used as matching variable
xx.mtc <- xx
mtc.2 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
                   y.rec="Sepal.Length", z.don="Sepal.Width")

# estimated correlation matrix
mtc.2$cor

# ML estimation method with partial correlation coefficient
# set equal to 0.5 (rho_YZ|X=0.5)
# only parameter estimates (micro=FALSE)
mtc.3 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
                   y.rec="Sepal.Length", z.don="Sepal.Width",
                   rho.yz=0.5)

# estimated correlation matrix
mtc.3$cor

# ML estimation method with partial correlation coefficient
# set equal to 0.5 (rho_YZ|X=0.5)
# with imputation step (micro=TRUE)
mtc.4 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
                   y.rec="Sepal.Length", z.don="Sepal.Width",
                   rho.yz=0.5, micro=TRUE, constr.alg="Hungarian")

# first rows of data.rec filled in with z
head(mtc.4$filled.rec)

# Moriarity and Scheuren estimation method under CIA;
# only with parameter estimates (micro=FALSE)
mtc.5 <- mixed.mtc(data.rec=ir.A, data.don=ir.B, match.vars=xx.mtc,
                   y.rec="Sepal.Length", z.don="Sepal.Width",
                   method="MS")

# the starting value of rho.yz and the value used
# in computations
NND.hotdeck

Distance Hot Deck method.

Description

This function implements the distance hot deck method to match the records of two data sources that share some variables.

Usage

NND.hotdeck(data.rec, data.don, match.vars, 
don.class=NULL, dist.fun="Manhattan", 
constrained=FALSE, constr.alg="Hungarian", 
k=1, keep.t=FALSE, ...)

Arguments

data.rec A matrix or data frame that plays the role of recipient. This data frame must contain the variables (columns) that should be used, directly or indirectly, in the matching application (specified via match.vars and eventually don.class). Missing values (NA) are allowed.

data.don A matrix or data frame that plays the role of donor. The variables (columns) involved, directly or indirectly, in the computation of distance must be the same and of the same type as those in data.rec (specified via match.vars and eventually don.class).
match.vars A character vector with the names of the matching variables (the columns in both the data frames) that have to be used to compute distances between records (rows) in data.rec and those in data.don. The variables used in computing distances may contain missing values but only a limited number of distance functions can handle them (see Details for clarifications).

don.class A character vector with the names of the variables (columns in both the data frames) that have to be used to identify the donation classes. In this case the computation of distances is limited to those units of data.rec and data.doc that belong to the same donation class. The case of empty donation classes should be avoided. It would be preferable that variables used to form donation classes are defined as factor.

The variables chosen for the creation of the donation classes should NOT contain missing values (NAs).

When not specified (default), no donation classes are used. This choice may require more memory to store a larger distance matrix and a higher computational effort.

dist.fun A string with the name of the distance function that has to be used. The following distances are allowed: “Manhattan” (aka “City block”; default), “Euclidean”, “Mahalanobis”, “exact” or “exact matching”, “Gower”, “minimax” or one of the distance functions available in the package proxy. Note that the distance is computed using the function dist of the package proxy with the exception of the “Gower” (see function gower.dist for details), “Mahalanobis” (function mahalanobis.dist) and “minimax” (see maximum.dist) cases.

When dist.fun = “Manhattan”, “Euclidean”, “Mahalanobis” or “minimax” all the non numeric variables in data.rec and data.don will be converted to numeric. On the contrary, when dist.fun = “exact” or dist.fun = “exact matching”, all the variables in data.rec and data.don will be converted to character and, as far as the distance computation is concerned, they will be treated as categorical nominal variables, i.e. distance is 0 if a couple of units presents the same response category and 1 otherwise.

constrained Logical. When constrained = FALSE (default) each record in data.don can be used as a donor more than once. On the contrary, when constrained = TRUE each record in data.don can be used as a donor only k times. In this case, the set of donors is selected by solving an optimization problem, whose goal is to minimize the overall matching distance. See description of the argument constr.alg for details.

constr.alg A string that has to be specified when constrained = TRUE. Two choices are available: “lpSolve” and “hungarian”. In the first case, constr.alg = “lpSolve”, the optimization problem is solved by means of the function lp.transport available in the package lpSolve. When constr.alg = “hungarian” (default) the problem is solved using the Hungarian method, implemented in function solve_LSAP available in the package clue. Note that Hungarian algorithm is faster and more efficient if compared to constr.alg = “lpSolve” but it allows selecting a donor just once, i.e. k = 1.

k The number of times that a unit in data.don can be selected as a donor when constrained = TRUE (default k = 1). When k > 1 then optimization problem can
be solved by setting constr.alg="lpSolve". Hungarian algorithm
(constr.alg="hungarian") can be used only when k = 1.

**keep.t** Logical, when donation classes are used by setting keep.t=TRUE prints information on the donation classes being processed (by default keep.t=FALSE).

... Additional arguments that may be required by `gower.dist`,
`maximum.dist`, or `dist`.

**Details**

This function finds a donor record in `data.don` for each record in `data.rec`. In the unconstrained case, it searches for the closest donor record according to the chosen distance function. When for a given recipient record there are more donors available at the minimum distance, one of them is picked at random.

In the constrained case a donor can be used just a fixed number of times, as specified by the `k` argument, but the whole set of donors is chosen in order to minimize the overall matching distance. When `k=1` the number of units (rows) in the donor data set has to be larger or equal to the number of units of the recipient data set; when the donation classes are used, this condition must be satisfied in each donation class. For further details on nearest neighbor distance hot deck refer to Chapter 2 in D’Orazio *et al.* (2006).

This function can also be used to impute missing values in a data set using the nearest neighbor distance hot deck. In this case `data.rec` is the part of the initial data set that contains missing values on the target variable; on the contrary, `data.don` is the part of the data set without missing values on it. See R code in the Examples for details.

Please note that only “Gower” and “minimax” distance functions allow for the presence of missing values (NAs) in the variables used in computing distances. In both the cases when one of the observations presents a variable showing an NA, then this variable is excluded from the computation of distance between them.

**Value**

A R list with the following components:

- **mtc.ids** A matrix with the same number of rows of `data.rec` and two columns. The first column contains the row names of the `data.rec` and the second column contains the row names of the corresponding donors selected from the `data.don`. When the input matrices do not contain row names, a numeric matrix with the indexes of the rows is provided.

- **dist.rd** A vector with the distances between each recipient unit and the corresponding donor.

- **noad** When `constrained=FALSE`, it reports the number of available donors at the minimum distance for each recipient unit.

- **call** How the function has been called.

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>
References


See Also

RANDwNND.hotdeck

Examples

```r
create the classical matching framework
lab <- c(1:15, 51:65, 101:115)
iris.rec <- iris[lab, c(1:3,5)] # recipient data.frame
iris.don <- iris[!lab, c(1:2,4:5)] # donor data.frame

Now iris.rec and iris.don have the variables
"Sepal.Length", "Sepal.Width" and "Species"
in common.
"Petal.Length" is available only in iris.rec
"Petal.Width" is available only in iris.don

Find the closest donors donors computing distance
on "Sepal.Length" and "Sepal.Width"
unconstrained case, Euclidean distance

out.NND.1 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 match.vars=c("Sepal.Length", "Sepal.Width"))

create the synthetic data.set:
fill in "Petal.Width" in iris.rec

fused.1 <- create.fused(data.rec=iris.rec, data.don=iris.don,
 mtc.ids=out.NND.1$mtc.ids, z.vars="Petal.Width")
head(fused.1)

Find the closest donors computing distance
on "Sepal.Length", "Sepal.Width" and Species;
unconstrained case, Gower's distance

out.NND.2 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
 match.vars=c("Sepal.Length", "Sepal.Width", "Species")
```

# find the closest donors using "Species" to form donation classes
# and "Sepal.Length" and "Sepal.Width" to compute distance;
# unconstrained case.

out.NND.3 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
match.vars=c("Sepal.Length", "Sepal.Width"),
don.class="Species")

# find the donors using "Species" to form donation classes
# and "Sepal.Length" and "Sepal.Width" to compute distance;
# constrained case, "Hungarian" algorithm

library(clue)
out.NND.4 <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
match.vars=c("Sepal.Length", "Sepal.Width"),
don.class="Species", constrained=TRUE,
constr.alg="Hungarian")

# Example of Imputation of missing values.
# Introducing missing values in iris
ir.mat <- iris
miss <- rbinom(nrow(iris), 1, 0.3)
ir.mat[miss==1,"Sepal.Length"] <- NA
iris.rec <- ir.mat[miss==1,-1]
iris.don <- ir.mat[miss==0,]

# search for NND donors
imp.NND <- NND.hotdeck(data.rec=iris.rec, data.don=iris.don,
match.vars=c("Sepal.Width", "Petal.Length", "Petal.Width"),
don.class="Species")

# imputing missing values
iris.rec.imp <- create.fused(data.rec=iris.rec, data.don=iris.don,
mtc.ids=imp.NND$mtc.ids, z.vars="Sepal.Length")

# rebuild the imputed data.frame
final <- rbind(iris.rec.imp, iris.don)
head(final)

---

**pBayes**

*Pseudo-Bayes estimates of cell probabilities*

**Description**

Estimation of cells counts in contingency tables by means of the pseudo-Bayes estimator.
Usage

```r
pBayes(x, method="m.ind", const=NULL)
```

Arguments

- **x**: A contingency table with observed cell counts. Typically the output of `table` or `xtabs`. More in general an R array with the counts.
- **method**: The method for estimating the final cell frequencies. The following options are available:
  - `method = "Jeffreys"`, consists in adding 0.5 to each cell before estimation of the relative frequencies.
  - `method = "minimax"`, consists in adding \( \sqrt{(n)/c} \) to each cell before estimation of the relative frequencies, being \( n \) the sum of all the counts and \( c \) the number of cells in the table.
  - `method = "invcat"`, consists in adding 1/c to each cell before estimation of the relative frequencies.
  - `method = "user"`, consists in adding a used defined constant \( a \ (a > 0) \) to each cell before estimation of the relative frequencies. The constant \( a \) should be passed via the argument `const`.
  - `method = "m.ind"`, the prior guess for the unknown cell probabilities is obtained by considering estimated probabilities under the mutual independence hypothesis. This option is available when dealing with at least two-way contingency tables (\( \text{length}(\text{dim}(x)) \geq 2 \)).
  - `method = "h.assoc"`, the prior guess for the unknown cell probabilities is obtained by considering estimated probabilities under the homogeneous association hypothesis. This option is available when dealing with at least two-way contingency tables (\( \text{length}(\text{dim}(x)) \geq 2 \)).
- **const**: Numeric value, a user defined constant \( a \ (a > 0) \) to be added to each cell before estimation of the relative frequencies when `method = "user"`. As a general rule of thumb, it is preferable to avoid that the sum of constant over all the cells is greater than \( 0.20 \times n \).

Details

This function estimates the frequencies in a contingency table by using the pseudo-Bayes approach. In practice the estimator being considered is a weighted average of the input (observed) cells counts \( n_h \) and a suitable prior guess, \( \gamma_h \), for cells probabilities:

\[
\hat{p}_h = \frac{n}{n + K} \hat{p}_h + \frac{K}{n + K} \gamma_h
\]

\( K \) depends on the parameters of Dirichlet prior distribution being considered (for major details see Chapter 12 in Bishop et al., 1974). It is worth noting that with a constant prior guess \( \gamma_h = 1/c \ (h = 1, 2, \cdots, c) \), then \( K = 1 \) and in practice corresponds to adding 1/c to each cell before estimation of the relative frequencies (method = "invcat"); \( K = c/2 \) when the constant 0.5 is added to each cell (method = "Jeffreys"); finally \( K = \sqrt{n} \) when the quantity \( \sqrt{n}/c \) is added to each cell.
(method = "minimax"). All these cases corresponds to adding a flattening constant; the higher is the value of \( K \) the more the estimates will be shrunked towards \( \gamma_h = 1/c \) (flattening).

When method = "m.ind" the prior guess \( \gamma_h \) is estimated under the hypothesis of mutual independence between the variables crossed in the initial contingency table \( x \), supposed to be at least a two-way table. In this case the value of \( K \) is estimated via a data-driven approach by considering

\[
\hat{K} = \frac{1 - \sum_h \hat{p}_h^2}{\sum_h (\hat{\gamma}_h - \hat{p}_h)^2}
\]

On the contrary, when method = "h.assoc" the prior guess \( \gamma_h \) is estimated under the hypothesis of homogeneous association between the variables crossed in the initial contingency table \( x \).

Please note that when the input table is estimated from sample data where a weight is assigned to each unit, the weights should be used in estimating the input table, but it is suggested to rescale them so that their sum is equal to \( n \), the sample size.

Value

A list object with three components.

- **info** A vector with the sample size "n", the number of cells ("no.cells") in \( x \), the average cell frequency ("av.cfr"), the number of cells showing frequencies equal to zero ("no.0s"), the const input argument, the chosen/estimated \( K \) ("K") and the relative size of \( K \), i.e. \( K/(n + K) \) ("rel.K").

- **prior** A table having the same dimension as \( x \) with the considered prior values for the cell frequencies.

- **pseudoB** A table with having the same dimension as \( x \) providing the pseudo-Bayes estimates for the cell frequencies in \( x \).

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


Examples

data(samp.A, package="StatMatch")
tab <- xtabs(~ area5 + urb + c.age + sex + edu7, data = samp.A)
out.pb <- pBayes(x=tab, method="m.ind")
out.pb$info

out.pb <- pBayes(x=tab, method="h.assoc")
out.pb$info

out.pb <- pBayes(x=tab, method="Jeffreys")
pw.assoc

Pairwise measures between categorical variables

Description

This function computes some association and Proportional Reduction in Error (PRE) measures between a categorical nominal variable and each of the other available predictors (being also categorical variables).

Usage

pw.assoc(formula, data, weights=NULL, out.df=FALSE)

Arguments

formula A formula of the type y~x1+x2 where y denotes the name of the categorical variable (a factor in R) which plays the role of the dependent variable, while x1 and x2 are the name of the predictors (both categorical variables). Numeric variables are not allowed; eventual numerical variables should be categorized (see function cut) before being passed to pw.assoc.

data The data frame which contains the variables called by formula.

weights The name of the variable in data which provides the units' weights. Weights are used to estimate frequencies (a cell frequency is estimated by summing the weights of the units which present the given characteristic). Default is NULL (no weights available) and each unit counts 1. When case weight are provided, then they are scales so that their sum equals n, the sample size (assumed to be nrow(data)).

out.df Logical. If NULL measures will be organized in a data frame (a column for each measure).

Details

This function computes some association, PRE measures, AIC and BIC for each couple response-predictor that can be created starting from argument formula. In particular, a two-way contingency table $X \times Y$ is built for each available X variable (X in rows and Y in columns); then the following measures are considered.

Cramer's V:
\[ V = \sqrt{\frac{\chi^2}{n \times \min\{I - 1, J - 1\}}} \]

\( n \) is the sample size, \( I \) is the number of rows (categories of X) and \( J \) is the number of columns (categories of Y). Cramer’s \( V \) ranges from 0 to 1.

Bias-corrected Cramer’s \( V (V_c) \) proposed by Bergsma (2013).

Mutual information:

\[ I(X;Y) = \sum_{i,j} p_{ij} \log \left( \frac{p_{ij}}{p_i p_j} \right) \]

equal to 0 in case of independence but with infinite upper bound, i.e. \( 0 \leq I(X;Y) < \infty \). In it \( p_{ij} = \frac{n_{ij}}{n} \).

A normalized version of \( I(X;Y) \), ranging from 0 (independence) to 1 and not affected by number of categories \((I \text{ and } J)\):

\[ I(X;Y)^* = \frac{I(X;Y)}{\min(H_X, H_Y)} \]

being \( H_X \) and \( H_Y \) the entropy of the variable \( X \) and \( Y \), respectively.

Goodman-Kruskal \( \lambda(Y|X) \) (i.e. response conditional on the given predictor):

\[ \lambda(Y|X) = \frac{\sum_{i=1}^I \max_j(p_{ij}) - \max_j(p_{+j})}{1 - \max_j(p_{+j})} \]

It ranges from 0 to 1, and denotes how much the knowledge of the row variable \( X \) (predictor) helps in reducing the prediction error of the values of the column variable \( Y \) (response).

Goodman-Kruskal \( \tau(Y|X) \):

\[ \tau(Y|X) = \frac{\sum_{i=1}^I \sum_{j=1}^J p_{ij}^2 / p_i - \sum_{j=1}^J p_{+j}^2}{1 - \sum_{j=1}^J p_{+j}^2} \]

It takes values in the interval \([0,1]\) and has the same PRE meaning of the lambda.

Theil’s uncertainty coefficient:

\[ U(Y|X) = \frac{\sum_{i=1}^I \sum_{j=1}^J p_{ij} \log(p_{ij}/p_{i+}) - \sum_{j=1}^J p_{+j} \log p_{+j}}{-\sum_{j=1}^J p_{+j} \log p_{+j}} \]

It takes values in the interval \([0,1]\) and measures the reduction of uncertainty in the column variable \( Y \) due to knowing the row variable \( X \). Note that the numerator of \( U(Y|X) \) is the mutual information \( I(X;Y) \).
It is worth noting that $\lambda$, $\tau$ and $U$ can be viewed as measures of the proportional reduction of the variance of the $Y$ variable when passing from its marginal distribution to its conditional distribution given the predictor $X$, derived from the general expression (cf. Agresti, 2002, p. 56):

$$\frac{V(Y) - E[V(Y|X)]}{V(Y)}$$

They differ in the way of measuring variance, in fact it does not exist a general accepted definition of the variance for a categorical variable.

Finally, AIC (and BIC) is calculated, as suggested in Sakamoto and Akaike (1977). In particular:

$$AIC(Y|X) = -2 \sum_{i,j} n_{ij} \log \left( \frac{n_{ij}}{n_i+} \right) + 2I(J - 1)$$

$$BIC(Y|X) = -2 \sum_{i,j} n_{ij} \log \left( \frac{n_{ij}}{n_i+} \right) + I(J - 1)\log(n)$$

being $I(J - 1)$ the parameters (conditional probabilities) to estimate. Note that the R package catdap provides functions to identify the best subset of predictors based on AIC.

**Value**

When `out.df=FALSE` (default) a list object with four components:

- `V` A vector with the estimated Cramer’s V for each couple response-predictor.
- `bcV` A vector with the estimated bias-corrected Cramer’s V for each couple response-predictor.
- `mi` A vector with the estimated mutual information $I(X;Y)$ for each couple response-predictor.
- `norm.mi` A vector with the normalized mutual information $I(X;Y)^*$ for each couple response-predictor.
- `lambda` A vector with the values of Goodman-Kruscal $\lambda(Y|X)$ for each couple response-predictor.
- `tau` A vector with the values of Goodman-Kruscal $\tau(Y|X)$ for each couple response-predictor.
- `U` A vector with the values of Theil’s uncertainty coefficient $U(Y|X)$ for each couple response-predictor.
- `AIC` A vector with the values of AIC($Y\mid X$) for each couple response-predictor.
- `BIC` A vector with the values of BIC($Y\mid X$) for each couple response-predictor.
- `npar` A vector with the number of parameters (conditional probabilities) estimated to calculate AIC and BIC for each couple response-predictor.

When `out.df=TRUE` the output will be a data.frame with a column for each measure.
**Description**

This function implements a variant of the distance hot deck method. For each recipient record a subset of the closest donors is retained and then a donor is selected at random.

**Usage**

```
RANDwNND.hotdeck(data.rec, data.don, match.vars=NULL,
 don.class=NULL, dist.fun="Manhattan",
 cut.don="rot", k=NULL, weight.don=NULL,
 keep.t=FALSE, ...)
```

**Arguments**

- `data.rec` A numeric matrix or data frame that plays the role of recipient. This data frame must contain the variables (columns), specified via `match.vars` and `don.class`, that should be used in the matching. Missing values (NA) are allowed.

**Examples**

```r
data(quine, package="MASS") # loads quine from MASS
str(quine)

how Lrn is response variable
pw.assoc(Lrn~Age+Sex+Eth, data=quine)

usage of units' weights
quine$ww <- runif(nrow(quine), 1, 4) # random gen 1<=weights<=4
pw.assoc(Lrn~Age+Sex+Eth, data=quine, weights="ww")
```
data.don A matrix or data frame that plays the role of donor. This data frame must contain the variables (columns), specified via match.vars and don.class, that should be used in the matching.

match.vars A character vector with the names of the variables (the columns in both the data frames) that have to be used to compute distances between records (rows) in data.rec and those in data.don. When no matching variables are considered (match.vars=NULL) then all the units in the same donation class are considered as possible donors. Hence one of them is selected at random or with probability proportional to its weight (see argument weight.don). When match.vars=NULL and the donation classes are not created (don.class=NULL) then all the available records in the data.don are considered as potential donors.

don.class A character vector with the names of the variables (columns in both the data frames) that have to be used to identify donation classes. In this case the computation of distances is limited to those units in data.rec and data.don that belong to the same donation class. The case of empty donation classes should be avoided. It would be preferable that variables used to form donation classes are defined as factor.

When not specified (default), no donation classes are used. This may result in a heavy computational effort.

dist.fun A string with the name of the distance function that has to be used. The following distances can be used: “Manhattan” (aka “City block”); default), “Euclidean”, “Mahalanobis”, “exact” or “exact matching”, “Gower”, “minimax”, “difference”, or one of the distance functions available in the package proxy. Note that the distances are computed using the function dist of the package proxy with the exception of the “Gower” (see function gower.dist for details), “Mahalanobis” (function mahalanobis.dist), “minimax” (see maximum.dist) “difference” case. Note that dist.fun=”difference” computes just the difference between the values of the unique numeric matching variable considered; in practice, it should be used when the subset of the donation classes should be formed by comparing the values of the unique matching variable (for further details see the argument cut.don).

By setting dist.fun=”ANN” or dist.fun=”RANN” it is possible to search for the k nearest neighbours for each recipient record by using the the Approximate Nearest Neighbor (ANN) search as implemented in the function nn2 provided by the package RANN.

When dist.fun=”Manhattan”, “Euclidean”, “Mahalanobis” or “minimax” all the non numeric variables in data.rec and data.don will be converted to numeric. On the contrary, when dist.fun=”exact” or dist.fun=”exact matching”, all the variables in data.rec and data.don will be converted to character and, as far as the distance computation is concerned, they will be treated as categorical nominal variables, i.e. distance is 0 if a couple of units shows the same response category and 1 otherwise.

cut.don A character string that, jointly with the argument k, identifies the rule to be used to form the subset of the closest donor records.

  • cut.don=”rot”: (default) then the number of the closest donors to retain is given by $\sqrt{\frac{n_D}{k}} + 1$; being $n_D$ the total number of available donors. In
this case $k$ must not to be specified.

- **cut.don**="span": the number of closest donors is determined as the proportion $k$ of all the available donors, i.e. $[n_D \times k]$. Note that, in this case, $0 < k \leq 1$.
- **cut.don**="exact": the $k$th closest donors out of the $n_D$ are retained. In this case, $0 < k \leq n_D$.
- **cut.don**="min": the donors at the minimum distance from the recipient are retained.
- **cut.don**="k.dist": only the donors whose distance from the recipient is less or equal to the value specified with the argument $k$. Note that in this case it is not possible to use dist.fun="ANN".
- **cut.don**="lt" or **cut.don**="<": only the donors whose value of the matching variable is smaller than the value of the recipient are retained. Note that in this case it is has to be set dist.fun="difference".
- **cut.don**="le" or **cut.don**="<=": only the donors whose value of the matching variable is smaller or equal to the value of the recipient are retained. Note that in this case it is has to be set dist.fun="difference".
- **cut.don**="ge" or **cut.don**=">=": only the donors whose value of the matching variable is greater or equal to the value of the recipient are retained. Note that in this case it is has to be set dist.fun="difference".
- **cut.don**="gt" or **cut.don**=">": only the donors whose value of the matching variable is greater than the value of the recipient are retained. Note that in this case it is has to be set dist.fun="difference".

**k** Depends on the **cut.don** argument.

**weight.don** A character string providing the name of the variable with the weights associated to the donor units in data.don. When this variable is specified, then the selection of a donor among those in the subset of the closest donors is done with probability proportional to its weight (units with larger weight will have a higher chance of being selected). When **weight.don**=NULL (default) all the units in the subset of the closest donors will have the same probability of being selected.

**keep.t** Logical, when donation classes are used by setting **keep.t**=TRUE prints information on the donation classes being processed (by default **keep.t**=FALSE).

... Additional arguments that may be required by gower.dist, by maximum.dist, by dist or by nn2.

Details

This function finds a donor record for each record in the recipient data set. The donor is chosen at random in the subset of available donors. This procedure is known as random hot deck (cf. Andridge and Little, 2010). In RANDwNND.hotdeck, the number of closest donors retained to form the subset is determined according to criterion specified with the argument **cut.don**. The selection of the donor among those in the subset is carried out with equal probability (**weight.don**=NULL) or with probability proportional to a weight associated to the donors, specified via the **weight.don** argument. This procedure is is known as weighted random hot deck (cf. Andridge and Little, 2010).

The search for the subset of the closest donors can be speed up by using the Approximate Nearest Neighbor search as implemented in the function **nn2** provided by the package **RANN**. Note that this search can be used in all the cases with the exception of **cut.don**="k.dist".
Note that the same donor can be used more than once.

This function can also be used to impute missing values in a data set. In this case `data.rec` is the part of the initial data set that contains missing values; on the contrary, `data.don` is the part of the data set without missing values. See R code in the Examples for details.

**Value**

A R list with the following components:

- `mtc.ids`: A matrix with the same number of rows of `data.rec` and two columns. The first column contains the row names of the `data.rec` and the second column contains the row names of the corresponding donors selected from the `data.don`. When the input matrices do not contain row names, then a numeric matrix with the indexes of the rows is provided.

- `sum.dist`: A matrix with summary statistics concerning the subset of the closest donors. The first three columns report the minimum, the maximum and the standard deviation of the distances among the recipient record and the donors in the subset of the closest donors, respectively. The 4th column reports the cutting distance, i.e. the value of the distance such that donors at a higher distance are discarded. The 5th column reports the distance between the recipient and the donor chosen at random in the subset of the donors.

- `noad`: For each recipient unit, reports the number of donor records in the subset of closest donors.

- `call`: How the function has been called.

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>

**References**


**See Also**

`NND.hotdeck`
Examples

data(samp.A, samp.B, package="StatMatch") #loads data sets
?samp.A
?samp.B

# samp.A plays the role of recipient
# samp.B plays the role of donor
# find a donor in the in the same region ("area5") and with the same
# gender ("sex"), then only the closest k=20 donors in terms of
# "age" are considered and one of them is picked up at random
out.RND.1 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
don.class=c("area5", "sex"), dist.fun="ANN",
match.vars="age", cut.don="exact", k=20)

# create the synthetic (or fused) data.frame:
# fill in "labour5" in A
fused.1 <- create.fused(data.rec=samp.A, data.don=samp.B,
mtc.ids=out.RND.1$mtc.ids, z.vars="labour5")
head(fused.1)

# weights ("ww") are used in selecting the donor in the final step
out.RND.2 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
don.class=c("area5", "sex"), dist.fun="ANN",
match.vars="age", cut.don="exact", k=20, weight.don="ww")

fused.2 <- create.fused(data.rec=samp.A, data.don=samp.B,
mtc.ids=out.RND.2$mtc.ids, z.vars="labour5")
head(fused.2)

# find a donor in the in the same region ("area5") and with the same
# gender ("sex"), then only the donors with "age" <= to the age of the
# recipient are considered,
# then one of them is picked up at random
out.RND.3 <- RANDwNND.hotdeck(data.rec=samp.A, data.don=samp.B,
don.class=c("area5", "sex"), dist.fun="diff",
match.vars="age", cut.don="<=")

# create the synthetic (or fused) data.frame:
# fill in "labour5" in A
fused.3 <- create.fused(data.rec=samp.A, data.don=samp.B,
mtc.ids=out.RND.3$mtc.ids, z.vars="labour5")
head(fused.3)

# Example of Imputation of missing values
# introducing missing values in iris
ir.mat <- iris
miss <- rbinom(nrow(iris), 1, 0.3)
rankNND.hotdeck

Rank distance hot deck method.

Description

This function implements rank hot deck distance method. For each recipient record the closest donors is chosen by considering the distance between the percentage points of the empirical cumulative distribution function.

Usage

rankNND.hotdeck(data.rec, data.don, var.rec, var.don=var.rec, 
    don.class=NULL, weight.rec=NULL, weight.don=NULL, 
    constrained=FALSE, constr.alg="Hungarian", 
    keep.t=FALSE)

Arguments

data.rec A numeric matrix or data frame that plays the role of recipient. This data frame must contain the variable var.rec to be used in computing the percentage points of the empirical cumulative distribution function and eventually the variables that identify the donation classes (see argument don.class) and the case weights (see argument weight.rec). Missing values (NA) are not allowed.

data.don A matrix or data frame that plays the role of donor. This data frame must contain the variable var.don to be used in computing percentage points of the the empirical cumulative distribution function and eventually the variables that identify the donation classes (see argument don.class) and the case weights (see argument weight.don).
**rankNND.hotdeck**

**var.rec** A character vector with the name of the variable in \texttt{data.rec} that should be ranked.

**var.don** A character vector with the name of the variable \texttt{data.don} that should be ranked. If not specified, by default \texttt{var.don=var.rec}.

**don.class** A character vector with the names of the variables (columns in both the data frames) that identify donation classes. In each donation class the computation of percentage points is carried out independently. Then only distances between percentage points of the units in the same donation class are computed. The case of empty donation classes should be avoided. It would be preferable that the variables used to form donation classes are defined as factor. When not specified (default), no donation classes are used.

**weight.rec** Eventual name of the variable in \texttt{data.rec} that provides the weights that should be used in computing the the empirical cumulative distribution function for \texttt{var.rec} (see Details). 

**weight.don** Eventual name of the variable in \texttt{data.don} that provides the weights that should be used in computing the the empirical cumulative distribution function for \texttt{var.don} (see Details).

**constrained** Logical. When \texttt{constrained=FALSE} (default) each record in \texttt{data.don} can be used as a donor more than once. On the contrary, when \texttt{constrained=TRUE} each record in \texttt{data.don} can be used as a donor only once. In this case, the set of donors is selected by solving a transportation problem, in order to minimize the overall matching distance. See description of the argument \texttt{constr.alg} for details.

**constr.alg** A string that has to be specified when \texttt{constrained=TRUE}. Two choices are available: “lpSolve” and “Hungarian”. In the first case, \texttt{constr.alg=“lpSolve”}, the transportation problem is solved by means of the function \texttt{lp.transport} available in the package \texttt{lpSolve}. When \texttt{constr.alg=“Hungarian”} (default) the transportation problem is solved using the Hungarian method, implemented in function \texttt{solve_lsap} available in the package \texttt{clue}. Note that \texttt{constr.alg=“Hungarian”} is faster and more efficient.

**keep.t** Logical, when donation classes are used by setting \texttt{keep.t=TRUE} prints information on the donation classes being processed (by default \texttt{keep.t=FALSE}).

**Details**

This function finds a donor record for each record in the recipient data set. The chosen donor is the one at the closest distance in terms of empirical cumulative distribution (Singh et al., 1990). In practice the distance is computed by considering the estimated empirical cumulative distribution for the reference variable (\texttt{var.rec} and \texttt{var.don}) in \texttt{data.rec} and \texttt{data.don}. The empirical cumulative distribution function is estimated by:

\[
\hat{F}(y) = \frac{1}{n} \sum_{i=1}^{n} I(y_i \leq y)
\]

being \(I() = 1\) if \(y_i \leq y\) and 0 otherwise.

In presence of weights, the empirical cumulative distribution function is estimated by:
\[ \hat{F}(y) = \frac{\sum_{i=1}^{n} w_i I(y_i \leq y)}{\sum_{i=1}^{n} w_i} \]

In the unconstrained case, when there are more donors at the same distance, one of them is chosen at random.

When the donation class are introduced, then the empirical cumulative distribution function is estimated independently in each donation classes and the search of a recipient is restricted to donors in the same donation class.

A donor can be chosen more than once. To avoid it set `constrained=TRUE`. In such a case a donor can be chosen just once and the selection of the donors is carried out by solving a transportation problem with the objective of minimizing the overall matching distance (sum of the distances recipient-donor).

**Value**

A R list with the following components:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mtc.ids</code></td>
<td>A matrix with the same number of rows of <code>data.rec</code> and two columns. The first column contains the row names of the <code>data.rec</code> and the second column contains the row names of the corresponding donors selected from the <code>data.don</code>. When the input matrices do not contain row names, then a numeric matrix with the indexes of the rows is provided.</td>
</tr>
<tr>
<td><code>dist.rd</code></td>
<td>A vector with the distances between each recipient unit and the corresponding donor.</td>
</tr>
<tr>
<td><code>noad</code></td>
<td>The number of available donors at the minimum distance for each recipient unit (only in unconstrained case)</td>
</tr>
<tr>
<td><code>call</code></td>
<td>How the function has been called.</td>
</tr>
</tbody>
</table>

**Author(s)**

Marcello D’Orazio <mdo.statmatch@gmail.com>

**References**


**See Also**

`NND.hotdeck`
Examples

```r
data(samp.A, samp.B, package="StatMatch") # loads data sets

samp.A plays the role of recipient
?samp.A

samp.B plays the role of donor
?samp.B

rankNND.hotdeck()
donation classes formed using "area5"
ecdf computed on "age"
UNCONSTRAINED case
out.1 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B, var.rec="age",
don.class="area5")
fused.1 <- create.fused(data.rec=samp.A, data.don=samp.B,
 mtc.ids=out.1$mtc.ids, z.vars="labour5")
head(fused.1)

as before but ecdf estimated using weights
UNCONSTRAINED case
out.2 <- rankNND.hotdeck(data.rec=samp.A, data.don=samp.B, var.rec="age",
 don.class="area5",
 weight.rec="ww", weight.don="ww")
fused.2 <- create.fused(data.rec=samp.A, data.don=samp.B,
 mtc.ids=out.2$mtc.ids, z.vars="labour5")
head(fused.2)
```

Description

This data set provides a limited number of variables observed at persons levels among those usually collected in the European Union Statistics on Income and Living Conditions Survey (EU–SILC). The data are artificially generated, just to show the application of the statistical matching techniques implemented in StatMatch.

Usage

`data(samp.A)`

Format

A data frame with 3009 observations and the following variables:
** HH.Pid ** unique unit identifier of the type aa.bb where aa identifies the Household while bb identifies the household member

** area5 ** large geographic area, factor with 5 levels: ‘NE’=North–East, ‘NO’=North–West, ‘C’=center, ‘S’=South, ‘I’=islands

** urb ** Degree of urbanization, factor with 3 levels: ‘1’=densely populated area, ‘2’=intermediate area, ‘3’=thinly populated area

** hsize ** integer, size of the household in which the person lives

** hsize5 ** factor with 5 levels derived from hsize, where the 5th level ‘>=5’ denotes 5 and more people in the household

** age ** integer, the person’s age

** c.age ** factor, age categorized in 5 classes

** sex ** factor, the person’s gender: ‘1’=male, ‘2’=female

** marital ** factor, the person’s marital status: ‘1’=never married, ‘2’=married, ‘3’=other (separated, widowed, divorced)

** edu7 ** factor, the person’s highest education level attained, follows the ISCED-97 categories: ‘0’=pre–primary education, ‘1’=primary education, ‘2’=lower secondary education, ‘3’=(upper) secondary education, ‘4’=post–secondary non tertiary education, ‘5’=first stage of tertiary education (not leading directly to an advanced research qualification), ‘6’=second stage of tertiary education (leading to an advanced research qualification)

** n.income ** numeric, the person’s net income in Euros

** c.neti ** factor, the person’s net income categorized in 7 classes of thousand of Euros

** ww ** numeric, the unit’s weight

** Details **

Please note that this data set is just for illustrative purposes. The unit’s weight do not reflect the Italian population size. The variables included are derived starting from the those usually observed in the EU–SILC survey.

** Source **

This data set is artificially created starting from the EU–SILC survey structure.

** References **

http://ec.europa.eu/eurostat/web/income-and-living-conditions/overview
**Description**

This data set provides a limited number of variables observed at persons levels among those usually collected in the European Union Statistics on Income and Living Conditions Survey (EU–SILC). The data are artificially generated, just to show the application of the statistical matching techniques implemented in **StatMatch**.

**Usage**

```r
data(samp.B)
```

**Format**

A data frame with 6686 observations and the following variables:

- **HH.P.id** unique unit identifier of the type aa.bb where aa identifies the Household while bb identifies the household member
- **area5** large geographic area, factor with 5 levels: ‘NE’=North–East, ‘NO’=North–West, ‘C’=center, ‘S’=South, ‘I’=islands
- **urb** Degree of urbanization, factor with 3 levels: ‘1’=densely populated area, ‘2’=intermediate area, ‘3’=thinly populated area
- **hsize** integer, size of the household in which the person lives
- **hsize5** factor with 5 levels derived from hsize, where the 5th level ‘>=5’ denotes 5 and more people in the household
- **age** integer, the person’s age
- **c.age** factor, age categorized in 5 classes
- **sex** factor, the person’s gender: ‘1’=male, ‘2’=female
- **marital** factor, the person’s marital status: ‘1’=never married, ‘2’=married, ‘3’=other (separated, widowed, divorced)
- **edu7** factor, the person’s highest education level attained, follows the ISCED-97 categories: ‘0’=pre–primary education, ‘1’=primary education, ‘2’=lower secondary education, ‘3’= (upper) secondary education, ‘4’= post–secondary non tertiary education, ‘5’=first stage of tertiary education (not leading directly to an advanced research qualification), ‘6’=second stage of tertiary education (leading to an advanced research qualification)
- **labour5** the person’s self–defined economic status, factor with 5 levels: ‘1’=employee working full–time or part–time, ‘2’=self–employed working full–time or part–time, ‘3’=unemployed, ‘4’=in retirement or in early retirement or has given up business, ‘5’=other status (student, permanent disabled, in compulsory military service, fulfilling domestic tasks, etc.)
- **ww** numeric, the unit’s weight
Details

Please note that this data set is just for illustrative purposes. The unit’s weight do not reflect the Italian population size. The variables included are derived starting from the those usually observed in the EU–SILC survey.

Source

This data set is artificially created starting from the EU–SILC survey structure.

References

http://ec.europa.eu/eurostat/web/income-and-living-conditions/overview

| samp.C | Artificial data set resembling EU–SILC survey |

Description

This data set provides a limited number of variables observed at persons levels among those usually collected in the European Union Statistics on Income and Living Conditions Survey (EU–SILC). The data are artificially generated, just to show the application of the statistical matching techniques implemented in StatMatch.

Usage

data(samp.C)

Format

A data frame with 980 observations and the following variables:

- **HH.P.id** unique unit identifier of the type aa.bb where aa identifies the Household while bb identifies the household member
- **area** large geographic area, factor with 5 levels: ‘NE’=North–East, ‘NO’=North–West, ‘C’=center, ‘S’=South, ‘I’=islands
- **urb** Degree of urbanization, factor with 3 levels: ‘1’=densely populated area, ‘2’=intermediate area, ‘3’=thinly populated area
- **hsize** integer, size of the household in which the person lives
- **hsize5** factor with 5 levels derived from hsize, where the 5th level ‘>=5’ denotes 5 and more people in the household
- **age** integer, the person’s age
- **c.age** factor, age categorized in 5 classes
- **sex** factor, the person’s gender: ‘1’=male, ‘2’=female
- **marital** factor, the person’s marital status: ‘1’=never married, ‘2’=married, ‘3’=other (separated, widowed, divorced)
factor, the person’s highest education level attained, follows the ISCED-97 categories: ‘0’=pre-primary education, ‘1’=primary education, ‘2’=lower secondary education, ‘3’= (upper) secondary education, ‘4’= post-secondary non tertiary education, ‘5’=first stage of tertiary education (not leading directly to an advanced research qualification), ‘6’=second stage of tertiary education (leading to an advanced research qualification)

labour5 the person’s self-defined economic status, factor with 5 levels: ‘1’=employee working full-time or part-time, ‘2’=self-employed working full-time or part-time, ‘3’=unemployed, ‘4’=In retirement or in early retirement or has given up business, ‘5’=other status (student, permanent disabled, in compulsory military service, fulfilling domestic tasks, etc.)

n.income numeric, the person’s net income in Euros

c.neti factor, the person’s net income categorized in 7 classes of thousand of Euros

ww numeric, the unit’s weight

Details

Please note that this data set is just for illustrative purposes. The unit’s weight do not reflect the Italian population size. The variables included are derived starting from the those usually observed in the EU–SILC survey.

Source

This data set is artificially created starting from the EU–SILC survey structure.

References

http://ec.europa.eu/eurostat/web/income-and-living-conditions/overview

selMtc.by.unc

Identifies the best combination if matching variables in reducing uncertainty in estimation the contingency table Y vs. Z.

Description

This function identifies the “best” subset of matching variables in terms of reduction of uncertainty when estimating relative frequencies in the contingency table Y vs. Z. The sequential procedure presented in D’Orazio et al. (2017 and 2019) is implemented. This procedure avoids exploring all the possible combinations of the available X variables as in Fbwidths.by.x.

Usage

selMtc.by.unc(tab.x, tab.xy, tab.xz, corr.d=2, nA=NULL, nB=NULL, align.margins=FALSE)
Arguments

`tab.x`  
A R table crossing the `X` variables. This table must be obtained by using the function `xtabs` or `table`, e.g.,
`tab.x <- xtabs(~x1+x2+x3, data=data.all). A minimum number of 3 variables is needed.

`tab.xy`  
A R table of `X` vs. `Y` variable. This table must be obtained by using the function `xtabs` or `table`, e.g.,
`table.xy <- xtabs(~x1+x2+x3+y, data=data.A). A single categorical `Y` variables is allowed. At least three categorical variables should be considered as `X` variables (common variables). The same `X` variables in `tab.x` must be available in `tab.xy`. Usually, it is assumed that the joint distribution of the `X` variables computed from `tab.xy` is equal to `tab.x` (a warning appears if any absolute difference is greater than `tol`). Note that when the marginal distribution of `X` in `tab.xy` is not equal to that of `tab.x` it is possible to align them before computations (see argument `align.margins`).

`tab.xz`  
A R table of `X` vs. `Z` variable. This table must be obtained by using the function `xtabs` or `table`, e.g.,
`tab.xz <- xtabs(~x1+x2+x3+z, data=data.B). A single categorical `Z` variable is allowed. At least three categorical variables should be considered as `X` variables (common variables). The same `X` variables in `tab.x` must be available in `tab.xz`. Usually, it is assumed that the joint distribution of the `X` variables computed from `tab.xz` is equal to `tab.x` (a warning appears if any absolute difference is greater than `tol`). Note that when the marginal distribution of `X` in `tab.xz` is not equal to that of `tab.x` it is possible to align them before computations (see argument `align.margins`).

`corr.d`  
Integer, indicates the penalty that should be introduced in estimating the uncertainty by means of the average width of cell bounds. When `corr.d=1` the penalty being considered is the one introduced in D’Orazio et al. (2017) (i.e. penalty1 in `Fwidths.by.x`). When `corr.d=2` (default) it is considered a penalty suggested in D’Orazio et al. (2019) (indicated as “penalty2” in `Fwidths.by.x`). Finally, no penalties are considered when `corr.d=0`.

`nA`  
Integer, sample size of file A used to estimate `tab.xy`. If NULL is obtained as sum of frequencies in `tab.xy`.

`nB`  
Integer, sample size of file B used to estimate `tab.xz`. If NULL is obtained as sum of frequencies in `tab.xz`.

`align.margins`  
Logical (default FALSE). When TRUE the distribution of `X` variables in `tab.xy` is aligned with the distribution resulting from `tab.x`, without affecting the marginal distribution of `Y`. Similarly the distribution of `X` variables in `tab.xz` is aligned with the distribution resulting from `tab.x`, without affecting the marginal distribution of `Z`. The alignment is performed by running IPF algorithm as implemented in the function `Estimate` in the package `mipfp`. To avoid lack of convergence due to combinations of `X`s encountered in one table but not in the other (statistical 0s), before running IPF a small constant (1e-06) is added to empty cells in `tab.xy` and `tab.xz`.
Details

This function follows the sequential procedure described in D’Orazio et al. (2017, 2019) to identify the combination of common variables most effective in reducing uncertainty when estimating the contingency table Y vs. Z. Initially, the available Xs are ordered according to the reduction of average width of uncertainty bounds when conditioning on each of them. Then in each step one the remaining X variables is added until the table became too sparse; in practice the procedure stops when:

$$\min \left[ \frac{n_A}{n A H D_m \times J}, \frac{n_B}{n B H D_m \times K} \right] \leq 1$$

For major details see also Fbwidths.by.x.

Value

A list with the main outcomes of the procedure.

- **ini.ord**: Average width of uncertainty bounds when conditioning on each of the available X variables. Variable most effective in reducing uncertainty comes first. The ordering determines the order in which they are entered in the sequential procedure.
- **list.xs**: List with the various combinations of the matching variables being considered in each step.
- **av.df**: Data.frame with all the relevant information for each of combination of X variables. The last row corresponds to the combination of the X variables identified as the best in reducing average width of uncertainty bounds (penalized or not depending on the input argument corr.d). For each combination of X variables the following additional information are reported: the number of cells (name starts with “nc”); the number of empty cells (name starts with “ncP”); the average relative frequency (name starts with “av.cr.f”); sparseness measured as Cohen’s effect size with respect to equiprobability (uniform distribution across cells). Finally there are the value of the stopping criterion (“min.av”), the unconditioned average width of uncertainty bounds (“avw”), the penalty term (“penalty”) and the penalized width (“avw.pen”; avw.pen=avw+penalty).

Author(s)

Marcello D’Orazio <mdo.statmatch@gmail.com>

References


See Also

Fbwidths.by.x.Frechet.bounds.cat

Examples

data(quine, package="MASS") #loads quine from MASS
str(quine)
quine$c.Days <- cut(quine$Days, c(-1, seq(0,50,10),100))
table(quine$c.Days)

# split quine in two subsets
suppressWarnings(RNGversion("3.5.0"))
set.seed(1111)
lab.A <- sample(nrow(quine), 70, replace=TRUE)
quine.B <- quine[-lab.A, c(1:3,6)]

# compute the tables required by Fbwidths.by.x()
freq.xA <- xtabs(~Eth+Sex+Age, data=quine.A)
freq.xB <- xtabs(~Eth+Sex+Age, data=quine.B)
freq.xy <- xtabs(~Eth+Sex+Age+Lrn, data=quine.A)
freq.xz <- xtabs(~Eth+Sex+Age+Quine$Days, data=quine.B)

# apply Fbwidths.by.x()
bb <- Fbwidths.by.x(tab.x=freq.xA+freq.xB,
                    tab.xy=freq.xy,  tab.xz=freq.xz,
                    warn=FALSE)
bb$sum.unc
cc <- selMtc.by.unc(tab.x=freq.xA+freq.xB,
                    tab.xy=freq.xy,  tab.xz=freq.xz, corr.d=0)
cc$ini.ord
cc$av.df
Index

*Topic **cluster**
  factRdummy, 13
  gower.dist, 21

*Topic **datasets**
  samp.A, 55
  samp.B, 57
  samp.C, 58

*Topic **manip**
  create.fused, 11

*Topic **multivariate**
  comp.prop, 8
  factRdummy, 13
  Fbwidths.by.x, 14
  Frechet.bounds.cat, 18
  gower.dist, 21
  mahalanobis.dist, 29
  maximum.dist, 30
  pBayes, 41
  pw.assoc, 44
  selMtc.by.unc, 59

*Topic **nonparametric**
  mixed.mtc, 32
  NND.hotdeck, 37
  RANDwNND.hotdeck, 47
  rankNND.hotdeck, 52

*Topic **regression**
  mixed.mtc, 32

*Topic **survey**
  comb.samples, 3
  harmonize.x, 24

  calibrate, 4, 6, 25, 26
  comb.samples, 3, 26
  comp.prop, 8
  create.fused, 11
  cut, 44

  daisy, 24
  dist, 24, 38, 39, 48, 49

  Estimate, 19, 60
  factRdummy, 13
  Fbwidths.by.x, 14, 21, 59–62
  formula, 4, 23
  Frechet.bounds.cat, 15–17, 18, 62
  gower.dist, 14, 21, 38, 39, 48, 49
  harmonize.x, 5, 6, 17, 21, 24
  lp.transport, 33, 38, 53
  mahalanobis, 30
  mahalanobis.dist, 29, 35, 38, 48
  maximum.dist, 30, 38, 39, 48, 49
  mixed.mtc, 12, 32
  model.matrix, 4, 25
  nn2, 48, 49
  NND.hotdeck, 12, 35, 37, 50, 54
  pBayes, 20, 41
  postStratify, 25, 26
  pw.assoc, 44
  RANDwNND.hotdeck, 12, 40, 47
  rank, 23, 31
  rankNND.hotdeck, 12, 52
  samp.A, 55
  samp.B, 57
  samp.C, 58
  selMtc.by.unc, 59
  solve_LSAP, 33, 38, 53
  StatMatch (StatMatch-package), 2
  StatMatch-package, 2
  svydesign, 3, 6, 24, 26

  table, 8, 15, 18, 42, 60
  xtabs, 8, 15, 18, 42, 60

  63