Package ‘SteppedPower’

September 13, 2023

Type Package
Title Power Calculation for Stepped Wedge Designs
Version 0.3.4

Description Tools for power and sample size calculation as well as design diagnostics for longitudinal mixed model settings, with a focus on stepped wedge designs. All calculations are oracle estimates i.e. assume random effect variances to be known (or guessed) in advance.

Imports Matrix, plotly, Rfast, grDevices, stats, utils
Suggests knitr, rmarkdown, swCRTdesign, testthat, pwr

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Philipp Mildenberger [aut, cre] (<https://orcid.org/0000-0002-7367-1708>), Federico Marini [ctb] (<https://orcid.org/0000-0003-3252-7758>)

Maintainer Philipp Mildenberger <pmildenb@uni-mainz.de>

Repository CRAN

Date/Publication 2023-09-13 00:50:02 UTC

R topics documented:

- alpha012_to_RandEff ... 2
- compute_glsPower .. 3
- compute_InfoContent ... 5
- construct_CovBlk ... 5
- construct_CovMat ... 6
alpha012_to_RandEff

Correlation structure: transform alpha to random effects

Description

Correlation structure: transform alpha to random effects

Usage

alpha012_to_RandEff(alpha012, sigResid = NULL, sigMarg = NULL)

Arguments

- **alpha012**: A vector or a list of length 3. Each list element must have the same dimension.
- **sigResid**: Residual standard deviation on individual level. Either residual sd or marginal sd needs to be specified.
- **sigMarg**: Marginal standard deviation on individual level. Either residual sd or marginal sd needs to be specified.

Value

A list containing four named elements (possibly matrices): random cluster intercept 'tau', random time effect 'gamma', random subject intercept and residual standard deviation.
compute_glsPower

Examples
alpha012_to_RandEff(alpha012=c(.1,.1,.1), sigMarg=1)
alpha012_to_RandEff(alpha012=c(.1,.1,.1), sigResid=.9486833)

The function is vectorised:
alpha012_to_RandEff(alpha012=list(matrix(c(0,.1,.1,.2), 2, 2),
 matrix(c(0,0,.1,.2) , 2, 2),
 matrix(c(0,0,.2,.2) , 2, 2)),
sigMarg=1)

compute_glsPower Compute power via weighted least squares

Description
This function is not intended to be used directly, but rather to be called by ‘glsPower’ - the main
function of this package. It expects the design matrix as an input argument ‘DesMat’ and construct
the covariance matrix (if not given as well). These matrices are used to calculate the variance of the
treatment effect estimator which is then used to calculate the power to detect the assumed treatment
effect.

Usage
compute_glsPower(
 DesMat,
 EffSize,
 sigma,
 tau = 0,
 eta = NULL,
 AR = NULL,
 rho = NULL,
 gamma = NULL,
 psi = NULL,
 N = NULL,
 CovMat = NULL,
 dfAdjust = "none",
 sig.level = 0.05,
 INDIV_LVL = FALSE,
 INFO_CONTENT = FALSE,
 verbose = 1
)

Arguments
DesMat object of class ‘DesMat’.
compute_glsPower

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EffSize</td>
<td>raw effect, i.e. difference between mean under control and mean under intervention</td>
</tr>
<tr>
<td>sigma</td>
<td>numeric, residual error of cluster means if no N given.</td>
</tr>
<tr>
<td>tau</td>
<td>numeric, standard deviation of random intercepts</td>
</tr>
<tr>
<td>eta</td>
<td>numeric (scalar or matrix), standard deviation of random slopes. If ‘eta’ is given as scalar, ‘trtMat’ is needed as well.</td>
</tr>
<tr>
<td>AR</td>
<td>numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. Currently not compatible with ‘rho’!=0!</td>
</tr>
<tr>
<td>rho</td>
<td>numeric (scalar), correlation of ‘tau’ and ‘eta’. The default is no correlation.</td>
</tr>
<tr>
<td>gamma</td>
<td>numeric (scalar), random time effect</td>
</tr>
<tr>
<td>psi</td>
<td>numeric (scalar), random subject specific intercept. Leads to a closed cohort setting</td>
</tr>
<tr>
<td>N</td>
<td>numeric, number of individuals per cluster. Either a scalar, vector of length #Clusters or a matrix of dimension #Clusters x timepoints. Defaults to 1 if not passed.</td>
</tr>
<tr>
<td>CovMat</td>
<td>numeric, a positive-semidefinite matrix with (#Clusters · timepoints) rows and columns. If ‘CovMat’ is given, ‘sigma’, ‘tau’, ‘eta’, ‘rho’, ‘gamma’ and ‘psi’ as well as ‘alpha_0_1_2’ must be NULL.</td>
</tr>
<tr>
<td>dfAdjust</td>
<td>character, one of the following: "none","between-within", "containment", "residual".</td>
</tr>
<tr>
<td>sig.level</td>
<td>numeric (scalar), significance level, defaults to 0.05</td>
</tr>
<tr>
<td>INDIV_LVL</td>
<td>logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.</td>
</tr>
<tr>
<td>INFO_CONTENT</td>
<td>logical, should the information content of cluster cells be computed? The default is ‘TRUE’ for designs with less or equal than 2500 cluster cells, otherwise ‘FALSE’. Ignored if ‘verbose=0’.</td>
</tr>
<tr>
<td>verbose</td>
<td>integer, how much information should the function return? See also under ‘Value’.</td>
</tr>
</tbody>
</table>

Value

The return depends on the ‘verbose’ parameter. If ‘verbose’=0, only the power is returned. If ‘verbose’=1 (the default), a list containing power and the parameters of the specific setting is returned. If requested (by ‘verbose’=2) this list also contains relevant matrices.
Title Formula-based calculation of information content

Usage

compute_InfoContent(CovMat = NULL, W = NULL, dsn, sumCl, tp)

Arguments

CovMat # @param CovMat numeric, a positive-semidefinite matrix with (#Clusters · timepoints) rows and columns.
W numeric, the inverse of a covariance matrix. If CovMat is specified, input for W is ignored
dsn a matrix with (#Clusters · #timepoints) rows and p columns, where p are the degrees of freedom of fixed effects in a gls model. This usually contains the intervention effect and some specification of the time effect.
sumCl number of clusters
tp number of time points

Value

A matrix containing the information content for every cluster-period cell

Description

Constructs the covariance matrix for multiple measurements of the same cluster. This function is usually called by `construct_CovMat` and is not designed to be used directly.

Usage

construct_CovBlk(sigma, tau = NULL, eta = NULL, AR = NULL, rho = NULL)
construct_CovMat

Arguments

- **sigma**: numeric (vector of length ‘timepoints’), residual error
- **tau**: numeric (vector of length ‘timepoints’), standard deviation of random intercepts
- **eta**: numeric (vector of length ‘timepoints’), standard deviation of random slope
- **AR**: numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with ‘rho’!=0 !*
- **rho**: numeric (scalar), correlation of ‘tau’ and ‘eta’. The default is no correlation.

Value

a block of a covariance matrix, corresponding to intra-cluster covariance over time for one cluster

Examples

construct_CovBlk(sigma=rep(2,5), tau=rep(1,5))

construct_CovBlk(sigma=rep(2,5),
 tau=rep(.5,5), eta=c(0,0,1,1,1),
 AR=c(.5, 1))

construct_CovMat

Construct a Covariance Matrix

Description

constructs a (block diagonal) covariance matrix. This function calls ‘construct_CovBlk’ (or ‘construct_CovSubMat’ in case of repeated observations of the same individuals) for each block.

Usage

construct_CovMat(
 sumCl = NULL,
 timepoints = NULL,
 sigma,
 tau,
 eta = NULL,
 AR = NULL,
 rho = NULL,
 gamma = NULL,
 trtMat = NULL,
 N = NULL,
 CovBlk = NULL,
construct_CovMat

psi = NULL,
INDIV_LVL = FALSE

Arguments

sumCl total number of clusters
timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.
sigma numeric, residual error of cluster means if no N given.
tau numeric, standard deviation of random intercepts
eta numeric (scalar or matrix), standard deviation of random slopes. If ‘eta’ is given as scalar, ‘trtMat’ is needed as well.
AR numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with ‘rho’!=0 !*
rho numeric (scalar), correlation of ‘tau’ and ‘eta’. The default is no correlation.
gamma numeric (scalar), random time effect
trtMat a matrix of dimension *#Cluster* x *timepoints* as produced by the function ‘construct_trtMat’, indicating the cluster-periods that receive interventional treatment. Defaults to NULL. If trtMat is given, the arguments ‘sumCl’ and ‘timepoints’ are ignored (!).
N numeric, number of individuals per cluster. Either a scalar, vector of length #Clusters or a matrix of dimension #Clusters x timepoints. Defaults to 1 if not passed.
CovBlk a matrix of dimension *timepoints* x *timepoints*.
psi numeric (scalar), random subject specific intercept. Leads to a closed cohort setting
INDIV_LVL logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.

Value

a covariance matrix

Examples

Two clusters, three timepoints,
residual standard error sd=3, random slope sd=1.
construct_CovMat(sumCl=2, timepoints=3, sigma=3, tau=1)
##
##
construct_CovSubMat

Construct a Block of the Covariance Matrix

Description

Constructs the covariance matrix for multiple measurements of the same cluster if the same individuals are observed at all time periods. This function is not designed to be used directly.

Usage

construct_CovSubMat(
 N,
 timepoints,
 sigma,
 tau,
 eta = NULL,
 AR = NULL,
 rho = NULL,
 gamma = NULL,
 psi = NULL,
 INDIV_LVL = FALSE
)

Arguments

N Number of individuals per cluster

timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.

sigma numeric (vector of length 'timepoints'), residual error

tau numeric (vector of length 'timepoints'), standard deviation of random intercepts

eta numeric (vector of length 'timepoints'), standard deviation of random slope

AR numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with ‘rho’!=0 !*
construct_DesMat

Constructs the design matrix with one column for every (fixed) parameter to be estimated and one row for every cluster for every timepoint. This function calls 'construct_trtMat' to construct a matrix that indicates treatment status for each cluster at each timepoint. This is then transformed into the first column of the design matrix. 'construct_CovMat' further calls 'construct_timeAdjust' to get the fixed effect(s) of the timepoints.

Note: Unlike the usual notation, the treatment effect is in the first column (for easier access by higher level functions).

Value

A block of a covariance matrix with two levels of clustering, corresponding to intra-cluster covariance over time for one cluster.

Usage

```r
classify_DesMat(  
  CI = NULL,  
  trtDelay = NULL,  
  dsntype = "SWD",  
  timepoints = NULL,  
  timeAdjust = "factor",  
  period = NULL,  
  trtmatrix = NULL,  
  timeBlk = NULL,  
  N = NULL,  
  incomplete = NULL,  
  INDIV_LVL = FALSE  
)
```
Function: `construct_DesMat`

Arguments

- **Cl**: integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs).
- **trtDelay**: numeric (possibly vector), 'NA'(s) and/or value(s) between '0' and '1'. 'NA' means that first (second, ...) period after intervention start is not observed. A value between '0' and '1' specifies the assumed proportion of intervention effect in the first (second ...) intervention period.
- **dsntype**: character, defines the type of design. Options are "SWD", "parallel" and "parallel_baseline", defaults to "SWD".
- **timepoints**: numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.
- **timeAdjust**: character, specifies adjustment for time periods. One of the following: "factor", "linear", "none", "periodic". Defaults to "factor".
- **period**: numeric (scalar)
- **trtmatrix**: an optional user defined matrix to define treatment allocation
- **timeBlk**: an optional user defined matrix that defines the time adjustment in one cluster. Is repeated for every cluster.
- **N**: numeric, number of individuals per cluster. Either a scalar, vector of length #Clusters or a matrix of dimension #Clusters x timepoints. Defaults to 1 if not passed.
- **incomplete**: integer, either a scalar (only for SWD) or a matrix. A vector defines the number of periods before and after the switch from control to intervention that are observed. A matrix consists of '1's for observed clusterperiods and '0's or 'NA' for unobserved clusterperiods.
- **INDIV_LVL**: logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.

Value

- an object of class DesMat

Examples

```r
construct_DesMat(Cl=c(2,0,1))
construct_DesMat(Cl=c(2,0,1), N=c(1,3,2))

## manually defined time adjustment (same as above)
timeBlock <- matrix(c(1,0,0,0,
                      1,1,0,0,
                      1,0,1,0,
                      1,0,0,1), 4, byrow=TRUE)
construct_DesMat(Cl=c(2,0,1), timeBlk=timeBlock)
```
construct_incompMat
Constructs a matrix of ‘NA’ and ‘1’ for unobserved and observed cluster periods, respectively.

Description
Mostly useful to build incomplete stepped wedge designs

Usage
`construct_incompMat(incomplete, dsntype, timepoints, Cl, trtmatrix = NULL)`

Arguments
- **incomplete**: integer, either a scalar (only for SWD) or a matrix. A vector defines the number of periods before and after the switch from control to intervention that are observed. A matrix consists of ‘1’s for observed cluster periods and ‘0’s or ‘NA’ for unobserved cluster periods.
- **dsntype**: character, defines the type of design. Options are "SWD", "parallel" and "parallel_baseline", defaults to "SWD".
- **timepoints**: numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.
- **Cl**: integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)
- **trtmatrix**: an optional user defined matrix to define treatment allocation

Value
a matrix

construct_timeAdjust
Construct the time period adjustment in the design matrix

Description
Offers several options to adjust for secular trends.

Usage
`construct_timeAdjust(C1, timepoints, timeAdjust = "factor", period = NULL, timeBlk = NULL)`
construct_trtMat

Arguments

Cl integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)

timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.
timeAdjust character, specifies adjustment for time periods. One of the following: "factor", "linear", "none", "periodic". Defaults to "factor".
period numeric (scalar)
timeBlk an optional user defined matrix that defines the time adjustment in one cluster. Is repeated for every cluster.

Value

a matrix with one row for every cluster at every timepoint and number of columns depending of adjustment type.

Construct Treatment Matrix

Description

Constructs a matrix of ‘#cluster’ rows and ‘#timepoint’ columns, indicating treatment status in each cluster at each timepoint.

Usage

construct_trtMat(Cl, trtDelay, dsntype, timepoints = NULL)

Arguments

Cl integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs)
trtDelay numeric (possibly vector), ‘NA’(s) and/or value(s) between ‘0’ and ‘1’. ‘NA’ means that first (second, ...) period after intervention start is not observed. A value between ‘0’ and ‘1’ specifies the assumed proportion of intervention effect in the first (second ...) intervention period.
dsntype character, defines the type of design. Options are "SWD", "parallel" and "parallel_baseline", defaults to "SWD".
timepoints numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.

Value

a matrix trtMat, where rows and columns correspond to cluster and timepoints, respectively.
Examples

```r
construct_trtMat(Cl=c(1,2,1), trtDelay=c(.2,.8), dsntype="SWD")
```

glsPower

Compute power via weighted least squares

Description

This is the main function of the SteppedPower package. It calls the constructor functions for the design matrix and covariance matrix, and then calculates the variance of the intervention effect estimator. The latter is then used to compute the power of a Wald test of a (given) intervention effect.

Usage

```r
glsPower(
  Cl = NULL,
  timepoints = NULL,
  DesMat = NULL,
  trtDelay = NULL,
  incomplete = NULL,
  timeAdjust = "factor",
  period = NULL,
  dsntype = "SWD",
  mu0,
  mu1,
  marginal_mu = FALSE,
  sigma = NULL,
  tau = NULL,
  eta = NULL,
  AR = NULL,
  rho = NULL,
  gamma = NULL,
  psi = NULL,
  alpha_0_1_2 = NULL,
  CovMat = NULL,
  N = NULL,
  power = NULL,
  family = "gaussian",
  N_range = c(1, 1000),
  sig.level = 0.05,
  dfAdjust = "none",
  INDIV_LVL = FALSE,
  INFO_CONTENT = NULL,
  verbose = 1
)
```
Arguments

- **Cl**: integer (vector), number of clusters per sequence group (in SWD), or number in control and intervention (in parallel designs).
- **timepoints**: numeric (scalar or vector), number of timepoints (periods). If design is swd, timepoints defaults to length(Cl)+1. Defaults to 1 for parallel designs.
- **DesMat**: Either an object of class ‘DesMat’ or a matrix indicating the treatment status for each cluster at each timepoint. If supplied, ‘timepoints’, ‘Cl’, ‘trtDelay’ are ignored.
- **trtDelay**: numeric (possibly vector), ‘NA’(s) and/or value(s) between ‘0’ and ‘1’. ‘NA’ means that first (second, ...) period after intervention start is not observed. A value between ‘0’ and ‘1’ specifies the assumed proportion of intervention effect in the first (second ...) intervention period.
- **incomplete**: integer, either a scalar (only for SWD) or a matrix. A vector defines the number of periods before and after the switch from control to intervention that are observed. A matrix consists of ‘1’s for observed clusterperiods and ‘0’s or ‘NA’ for unobserved clusterperiods.
- **timeAdjust**: character, specifies adjustment for time periods. One of the following: "factor", "linear", "none", "periodic". Defaults to "factor".
- **period**: numeric (scalar)
- **dsntype**: character, defines the type of design. Options are "SWD", "parallel" and "parallel_baseline", defaults to "SWD".
- **mu0**: numeric (scalar), mean under control
- **mu1**: numeric (scalar), mean under treatment
- **marginal_mu**: logical. Only relevant for non-gaussian outcome. Indicates whether mu0 and mu1 are to be interpreted as marginal prevalence under control and under treatment, respectively, or whether they denote the prevalence conditional on random effects being 0 (It defaults to the latter). *(experimental!)*
- **sigma**: numeric, residual error of cluster means if no N given.
- **tau**: numeric, standard deviation of random intercepts
- **eta**: numeric (scalar or matrix), standard deviation of random slopes. If ‘eta’ is given as scalar, ‘trtMat’ is needed as well.
- **AR**: numeric, vector containing up to three values, each between 0 and 1. Defaults to NULL. It defines the AR(1)-correlation of random effects. The first element corresponds to the cluster intercept, the second to the treatment effect and the third to subject specific intercept. If only one element is provided, autocorrelation of all random effects is assumed to be the same. *Currently not compatible with ‘rho’!=0!*
- **rho**: numeric (scalar), correlation of ‘tau’ and ‘eta’. The default is no correlation.
- **gamma**: numeric (scalar), random time effect
- **psi**: numeric (scalar), random subject specific intercept. Leads to a closed cohort setting
alpha_0_1_2 numeric vector or list of length 2 or 3, that consists of alpha_0, alpha_1 and alpha_2. Can be used instead of random effects to define the correlation structure, following Li et al. (2018). When omitting alpha_2, this describes a cross-sectional design, where alpha_0 and alpha_1 define the intracluster correlation and cluster autocorrelation, respectively - as defined by Hooper et al. (2016).

CovMat numeric, a positive-semidefinite matrix with (#Clusters \times timepoints) rows and columns. If ‘CovMat’ is given, ‘sigma’, ‘tau’, ‘eta’, ‘rho’, ‘gamma’ and ‘psi’ as well as ‘alpha_0_1_2’ must be NULL.

N numeric, number of individuals per cluster. Either a scalar, vector of length #Clusters or a matrix of dimension #Clusters x timepoints. Defaults to 1 if not passed.

power numeric, a specified target power. If supplied, the minimal ‘N’ is returned.

family character, distribution family. One of “gaussian”, “binomial”. Defaults to “gaussian”

N_range numeric, vector specifying the lower and upper bound for ‘N’, ignored if ‘power’ is NULL.

sig.level numeric (scalar), significance level, defaults to 0.05

dfAdjust character, one of the following: "none","between-within", "containment", "residual".

INDIV_LVL logical, should the computation be conducted on an individual level? This leads to longer run time and is mainly for diagnostic purposes.

INFO_CONTENT logical, should the information content of cluster cells be computed? The default is ‘TRUE’ for designs with less or equal than 2500 cluster cells, otherwise ‘FALSE’. Ignored if ‘verbose=0’.

verbose integer, how much information should the function return? See also under ‘Value’.

Details

Let $\theta := \mu_1 - \mu_0$ the treatment effect under investigation. The variance of the treatment effect estimator $\hat{\theta}$ can then be estimated via weighted least squares (see also vignette ‘Getting Started’).

Value

The return depends on the ‘verbose’ parameter. If ‘verbose’=0, only the power is returned If ‘verbose’=1 (the default), a list containing power, projection matrix and the parameters of the specific setting is returned. If explicitly requested (by ‘verbose’=2) this list also contains the ‘DesMat’-object and the covariance matrix.

If INFO_CONTENT= TRUE, the returned list contains a named list with four elements: ‘Cells’ is explicit computation of the information content in each cell; ‘Cluster’ is the information content of entire clusters; ‘time’ is thie information content of entire time periods and ‘Closed’ is a formula-based computation the information content in each cell,
Examples

```
## See also vignette for more examples
##
## stepped wedge design with 5 Clusters in 5 sequences,
## residual standard deviation 2,
## cluster effect sd = 0.33, and 10 individuals per cluster.
## Further, let the mean under the null and alternative hypothesis 0 and 1,
## respectively.
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=10)
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, AR=0.7, N=10)
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=c(12, 8, 10, 9, 14))
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, eta=0.2, rho=0.25, N=10)
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, incomplete=3)
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, N=10, incomplete=matrix(c(1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,1,1,1),5,6))
```
```r
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, psi=0.25, N=10, incomplete=3, verbose=2)
```
N=10, incomplete=3, verbose=2, INDIV_LVL=TRUE)

mod_aggr
mod_indiv

Compare covariance matrices of first cluster

stepped wedge design with 5 Clusters in 5 sequences, residual sd = 2,
cluster effect sd = 0.33. How many Individuals are needed to achieve a
power of 80% ?
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, power=.8)

... How many are needed if we have a closed cohort design with a random
individuum effect of .7?
glsPower(mu0=0, mu1=1, Cl=rep(1,5), sigma=2, tau=0.33, psi=.7, power=.8)

longitudinal parallel design, with 5 time periods, 3 clusters in treatment
and control arm each.
glsPower(mu0=0, mu1=1, Cl=c(3,3), sigma=2, tau=0.33, N=10,
 dsntype="parallel", timepoints=5)

... with one baseline period and four parallel periods

glsPower(mu0=0, mu1=1, Cl=c(3,3), sigma=2, tau=0.33, N=10,
 dsntype="parallel_baseline", timepoints=c(1,4))

cross-over design with two timepoints before and two after the switch

glsPower(mu0=0, mu1=1, Cl=c(3,3), sigma=2, tau=0.33, N=10,
 dsntype="crossover", timepoints=c(2,2))

stepped wedge design with 32 Individuals in 8 sequences, binomial outcome,
50% incidence under control, 25% incidence under interventional treatment.
cluster effect sd = 0.5 (ICC of 1/3 under control),
every individual is its own cluster.
... with incidences defined conditional on cluster effect=0

glsPower(mu0=0.5, mu1=0.25, Cl=rep(4,8), tau=0.5, N=1,
 family="binomial")

... with marginally defined proportions

glsPower(mu0=0.5, mu1=0.25, Cl=rep(4,8), tau=0.5, N=1,
 family="binomial", marginal_mu=TRUE)

##
Description

plot.DesMat

Usage

```r
## S3 method for class 'DesMat'
plot(x, show_colorbar = FALSE, ...)
```

Arguments

- **x**: An object of class `DesMat`
- **show_colorbar**: logical, should the colorbar be shown?
- **...**: Arguments to be passed to methods

Value

A plotly html widget, displaying the treatment status

Examples

```r
x <- construct_DesMat(C=c(2,2,2,0,2,2,2),.5)
```

Description

Up to four plots (selectable by `which`) that visualise: the contribution of each cluster-period cell to the treatment effect estimator, the information content of each cluster-period cell, the treatment status for each cluster for each time point and the covariance matrix. By default, only the first two plots are returned.

Usage

```r
## S3 method for class 'glsPower'
plot(
  x,
  which = NULL,
  show_colorbar = NULL,
  annotations = NULL,
  annotation_size = NULL,
  marginal_plots = TRUE,
  ...
)
```
plot_CellWeights

Arguments

x object of class glsPower
which Specify a subset of the numbers ‘1:4’ to select plots. The default is ‘1:2’ or ‘1’, depending on whether ‘x’ contains the information content.
show_colorbar logical, should the colorbars be shown?
annotations logical, should the cell contributions be annotated in the Plot?
annotation_size font size of annotation in influence plots
marginal_plots should the influence of whole periods, clusters also be plotted?
...
Arguments to be passed to methods

Value

a list of plotly html widgets

plot_CellWeights plot cell contributions (weights) of a gls object

Description

plot cell contributions (weights) of a gls object

Usage

plot_CellWeights(
 x,
 annotations = NULL,
 annotation_size = NULL,
 show_colorbar = TRUE,
 marginal_plots = TRUE
)

Arguments

x object of class glsPower
annotations logical, should the cell contributions be annotated in the Plot?
annotation_size font size of annotation in influence plots
show_colorbar logical, should the colorbars be shown?
marginal_plots should the influence of whole periods, clusters also be plotted?

Value

a plotly html widget
plot_CovMat

Visualise a Covariance Matrix

Description
Currently not exported.

Usage
plot_CovMat(CovMat, show_colorbar = FALSE)

Arguments
CovMat
A covariance matrix (possibly in sparse matrix notation)
show_colorbar
logical, should the colorbar be shown?

Value
a plotly object

plot_InfoContent

plot the information content of a gls object

Description
plot the information content of a gls object

Usage
plot_InfoContent(
 IC,
 annotations = NULL,
 annotation_size = NULL,
 show_colorbar = TRUE,
 marginal_plots = TRUE
)

Arguments
IC
a matrix with information content for each cluster at each time period
annotations
logical, should the cell contributions be annotated in the Plot?
annotation_size
font size of annotation in influence plots
show_colorbar
logical, should the colorbars be shown?
marginal_plots
should the influence of whole periods, clusters also be plotted?
print.DesMat

Value

a plotly object

print.glsPower

Print an object of class 'glsPower'

Description

Print an object of class 'glsPower'

Usage

```r
## S3 method for class 'glsPower'
print(x, ...)
```

Arguments

- `x` object of class glsPower
- `...` Arguments to be passed to methods

Value

Messages, containing information about (at least) power and significance level
RandEff_to_alpha012

Correlation structure: transform random effects to alpha

Description

Correlation structure: transform random effects to alpha

Usage

```r
RandEff_to_alpha012(sigResid, tau, gamma, psi)
```

Arguments

- `sigResid`: Residual standard deviation on individual level
- `tau`: Standard deviation of random cluster intercept
- `gamma`: Standard deviation of random time effect
- `psi`: Standard deviation of random subject specific intercept

Value

A list containing four named elements (possibly matrices): ‘alpha0’, ‘alpha1’, ‘alpha2’ specify a correlation structure and `SigMarg` denotes the marginal standard deviation

Examples

```r
RandEff_to_alpha012(sigResid=sqrt(11), tau=4, gamma=3, psi=2)

# The function is vectorised:
RandEff_to_alpha012(sigResid = matrix(c(0,1,2,3,4,5), 2, 3),
                    tau = matrix(c(1,1,0,0,0), 2, 3),
                    gamma = matrix(c(0,0,1,0,0,1), 2, 3),
                    psi = matrix(c(0,1,0,0,1), 2, 3))
```

SteppedPower

Description

SteppedPower offers tools for power and sample size calculation as well as design diagnostics for longitudinal mixed model settings, with a focus on stepped wedge designs. All calculations are oracle estimates i.e. assume random effect variances to be known (or guessed) in advance.

Author(s)

Philipp Mildenberger <pmildenb@uni-mainz.de>
tTestPwr

Compute Power of a Wald Test

Description

Computes the power of a scaled Wald test given a standard error, an effect size, the degrees of freedom of the t-distribution and a significance level. Computes the exact power, see second example.

Usage

```r
rTestPwr(d, se, df, sig.level = 0.05)
```

Arguments

- `d` numeric, raw effect
- `se` numeric, standard error
- `df` numeric, degrees of freedom of the t-distribution
- `sig.level` numeric, significance level, defaults to 0.05

Value

a scalar

Examples

```r
tTestPwr(4, 1, 10) ; tTestPwr(4, 1, 30) ; tTestPwr(4, 1, Inf)
```

VarClosed_Kasza

Closed formula for treatment variance in open cohort settings

Description

From Kasza et al "Sample size and power calculations for open cohort longitudinal cluster randomized trials" 2020

Usage

```r
VarClosed_Kasza(trtMat, tau, gamma = 0, psi = 0, sigma, N, chi)
```
Arguments

trtMat a matrix trtMat to define treatment allocation, where rows and columns correspond to cluster and timepoints, respectively

tau numeric, standard deviation of random intercepts

\begin{itemize}
\item gamma numeric, random time effect
\item psi numeric, random subject specific intercept.
\item sigma numeric, residual error on subject level.
\item N numeric, number of individuals per cluster.
\item chi Attrition factor
\end{itemize}

Value

numeric, variance of the estimator for treatment effect

Examples

```
## test setting, from HusseyHughes 2007 ####
trtMat <- construct_DesMat(c(6,6,6,6))$trtMat
tau <- .025 ; sigma <- sqrt(.041*.959) ; N <- 100 ;
gamma <- 0.01 ; psi <- .1 ; chi <- .7

tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=0, psi=0, N=N, chi=0)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
    sigma=sigma, gamma=0, tau=tau, psi=0)

tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=gamma, psi=psi, N=N, chi=0)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
    sigma=sigma, gamma=gamma, tau=tau, psi=psi)

tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=gamma, psi=psi, N=N, chi=1)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
    sigma=sigma, gamma=sqrt(gamma^2+psi^2/N), tau=tau, psi=0)

tmp <- VarClosed_Kasza(trtMat, tau=tau, sigma=sigma, gamma=gamma, psi=psi, N=N, chi=chi)
tTestPwr((.05-.032), sqrt(tmp), df = Inf)
glsPower(Cl = rep(6,4), N=N, mu0=.05, mu1=.032, verbose=0,
    sigma=sigma, gamma=sqrt(gamma^2+chi*psi^2/N), tau=tau, psi=sqrt(1-chi)*psi)
```

\begin{itemize}
\item VarClosed_Li Closed formula for treatment variance, with proportional decay
\end{itemize}

Description

From Li et al "Design and analysis considerations for cohort stepped wedge cluster randomized trials with a decay correlation structure"
Usage

VarClosed_Li(trtMat, tau, psi, N, AR)

Arguments

- **trtMat**: a matrix trtMat to define treatment allocation, where rows and columns correspond to cluster and timepoints, respectively.
- **tau**: numeric, standard deviation of random intercepts.
- **psi**: numeric, random subject specific intercept.
- **N**: numeric, number of individuals per cluster.
- **AR**: numeric (scalar), It defines the AR(1)-correlation of random effects.

Value

numeric, variance of the estimator for treatment effect

Examples

```r
## test setting, from Hussey&Hughes 2007 ####
trtMat <- construct_DesMat(c(6,6,6,6))$trtMat
tau <- .025 ; N <- 100 ; psi <- .1 ; AR <- .6
tmp <- VarClosed_Li(trtMat, tau=tau, psi=psi, N=N, AR=AR)
tTestPwr((.05-.032), se=sqrt(tmp), Inf)
glsPower(Cl=rep(6,4), mu0=.05, mu1=.032, AR=AR,
         tau=tau, N=N, sigma=0, psi=psi, verbose=0)
```
alpha012_to_RandEff, 2
compute_glsPower, 3
calculate_InfoContent, 5
construct_CovBlk, 5
construct_CovMat, 6
construct_CovSubMat, 8
construct_DesMat, 9
construct_incompMat, 11
construct_timeAdjust, 11
construct_trtMat, 12
glsPower, 13
plot.DesMat, 18
plot.glsPower, 18
plot_CellWeights, 19
plot_CovMat, 20
plot_InfoContent, 20
print.DesMat, 21
print.glsPower, 21
RandEff_to_alpha012, 22
SteppedPower-package
 (SteppedPower-pkg), 22
SteppedPower-pkg, 22
tTestPwr, 23
VarClosed_Kasza, 23
VarClosed_Li, 24