Package ‘StratifiedMedicine’

April 22, 2020

Type Package

Title Stratified Medicine

Version 0.2.3

Author Thomas Jemielita [aut, cre]

Maintainer Thomas Jemielita <thomasjemielita@gmail.com>

Description A toolkit for stratified medicine, subgroup identification, and precision medicine. Current tools include (1) filtering models (reduce covariate space), (2) patient-level estimate models (counterfactual patient-level quantities, for example the individual treatment effect), (3) subgroup identification models (find subsets of patients with similar treatment effects), and (4) parameter estimation and inference (for the overall population and discovered subgroups). These tools can directly feed into stratified medicine algorithms including PRISM (patient response identifiers for stratified medicine; Jemielita and Mehrotra (2019) <arXiv:1912.03337>). PRISM is a flexible and general framework which accepts user-created models/functions. This package is in beta and will be continually updated.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.4),

Imports dplyr, partykit, ranger, survival, glmnet, ggplot2, ggparty, mvtnorm

RoxygenNote 6.1.1

URL https://github.com/thomasjemielita/StratifiedMedicine

Suggests knitr, rmarkdown, MASS, BART, randomForestSRC, grf, survRM2, TH.data, coin, rpart, testthat (>= 2.1.0)

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-04-22 12:02:09 UTC
filter_glmnet

Filter: Elastic Net (glmnet)

Description

Filter variables through elastic net (Zou and Hastie 2005). Default is to regress Y~X (search for prognostic variables). Variables with estimated coefficients of zero (depends on lambda choice; default is lambda.min) are filtered. Usable for continuous, binary, and survival outcomes.

Usage

filter_glmnet(Y, A, X, lambda = "lambda.min", family = "gaussian", interaction = FALSE, ...)
filter_glmnet

Arguments

- **Y**: The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- **A**: Treatment variable. (a=1,...,A)
- **X**: Covariate space.
- **lambda**: Lambda for elastic net model (default="lambda.min"). Other options include "lambda.1se" and fixed values
- **family**: Outcome type ("gaussian", "binomial", "survival"), default is "gaussian"
- **interaction**: Regress Y~X+A+A*X (interaction between covariates and treatment)? Default is FALSE. If TRUE, variables with zero coefficients (both X and X*A terms) are filtered.
- ...: Any additional parameters, not currently passed through.

Value

Filter model and variables that remain after filtering.

- mod - Filtering model
- filter.vars - Variables that remain after filtering (could be all)

References

Examples

library(StratifiedMedicine)

```r
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Default: Regress Y~X (search for prognostic factors) #
mod1 = filter_glmnet(Y, A, X)
mod2 = filter_glmnet(Y, A, X, lambda = "lambda.min") # same as default
mod3 = filter_glmnet(Y, A, X, lambda = "lambda.1se")
mod1$filter.vars
mod2$filter.vars
mod3$filter.vars

# Interaction=TRUE; Regress Y~X+A+X*A (search for prognostic and/or predictive) #
mod4 = filter_glmnet(Y, A, X, interaction=TRUE)
mod4$filter.vars
```
filter_ranger

Filter: Random Forest (ranger) Variable Importance

Description
Filtering through Random Forest Variable Importance with p-values. P-values are obtained through subsampling based T-statistics \(T = \frac{\text{VI}_j}{\text{SE}(\text{VE}_j)}\) for feature j through the delete-d jackknife, as described in Ishwaran and Lu 2017. Default is to remove variables if one-sided (VI>0) p-values >= 0.10. Used for continuous, binary, or survival outcomes.

Usage

```r
code
filter_ranger(Y, A, X, b = 0.66, K = 200, DF2 = FALSE, FDR = FALSE, pval.thres = 0.1, family = "gaussian", ...)
```

Arguments

- **Y**: The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- **A**: Treatment variable. (a=1,...A)
- **X**: Covariate space.
- **b**: Subsample size \(n^n_b\)
- **K**: Number of samples (default=200)
- **DF2**: 2-DF test statistic (default=FALSE)
- **FDR**: FDR correction for p-values (default=FALSE)
- **pval.thres**: p-value threshold for filtering (default=0.10)
- **family**: Outcome type ("gaussian", "binomial", "survival"), default is "gaussian"
- **...**: Any additional parameters, not currently passed through.

Value
Filter model and variables that remain after filtering.

- **mod** - Filtering model
- **filter.vars** - Variables that remain after filtering (could be all)

References

Examples

library(StratifiedMedicine)
library(ranger)

Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

mod1 = filter_ranger(Y, A, X, K=200) # Same as default #
mod1$filter.vars
mod1$mod # summary of variable importance outputs

filter_train Filter: Train Filter Model

Description

Wrapper function to train a filter model. Options include elastic net (glmnet) and random forest based variable importance (ranger). Used directly in PRISM.

Usage

filter_train(Y, A, X, family = "gaussian", filter, hyper = NULL, ...)

Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
A Treatment variable. (a=1,...A)
X Covariate space.
family Outcome type ("gaussian", "binomial", "survival"). Default is "gaussian".
hyper Hyper-parameters for the filter model (must be list). Default is NULL.
... Any additional parameters, not currently passed through.

Value

Trained filter model and vector of variable names that pass the filter.

- mod - trained model
- filter.vars - Variables that remain after filtering (could be all)
generate_subgrp_data

Generate Subgroup Data-sets

Description
Simulation/real data-sets; useful for testing new models and PRISM configurations.

Usage
generate_subgrp_data(n = 800, seed = 513413, family, null = FALSE, ...)

Arguments
- n: sample size (default=800)
- seed: seed number (default=513413)
- family: Outcome type ("gaussian", "binomial", "survival")
- null: Simulate null hypothesis of no treatment effect and no subgroups. Default is FALSE.
- ...: Any additional parameters, not currently passed through.

Value
Simulation data set (Y=outcome, A=treatment, X=covariates)

See Also
PRISM

Examples
library(StratifiedMedicine)
Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Fit ple_ranger directly (treatment-specific ranger models)
mod1 = filter_train(Y, A, X, filter="filter_glmnet")
mod1$filter.vars

mod2 = filter_train(Y, A, X, filter="filter_ranger")
mod2$filter.vars
param_combine

Overall Population Estimate: Aggregating Subgroup-Specific Parameter Estimates

Description

Function that combines subgroup-specific estimates to obtain an overall population estimate. Options including sample size weighting and adaptive weighting (default; as described in Marceau-West and Mehrotra 2019 in progress).

Usage

```r
param_combine(param.dat, combine = "adaptive", alpha_ovrl = 0.05, ...)
```

Arguments

- **param.dat**: Parameter data-set with subgroup-specific point estimates, SEs, and sample sizes.
- **combine**: Method to combine subgroup-specific estimates. Default is "adaptive". combine="SS" uses sample size weighting.
- **alpha_ovrl**: Two-sided alpha level for overall population. Default=0.05
- **...**: Any additional parameters, not currently passed through.

Value

Data-frame with overall population point estimate, SE, and CI

See Also

param_cox, param_lm, param_rmst

param_cox

Parameter Estimation: Cox Regression

Description

For each identified subgroup, fit separate cox regression models. Point-estimates and variability metrics in the overall population are obtained by aggregating subgroup specific results (adaptive weighting or sample size weighting).

Usage

```r
param_cox(Y, A, X, mu_hat, Subgrps, alpha_ovrl, alpha_s,
            combine = "adaptive", ...)
```
Arguments

- **Y**
The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- **A**
The treatment variable. (a=1,...,A)
- **X**
Covariate space.
- **mu_hat**
Patient-level estimates (See PLE_models)
- **Subgrps**
Identified subgroups (can be the overall population)
- **alpha_ovrl**
Two-sided alpha level for overall population
- **alpha_s**
Two-sided alpha level at subgroup
- **combine**
For overall population, method of combining subgroup-specific results. Default is "adaptive", "SS" corresponds to sample size weighting.
- ...
Any additional parameters, not currently passed through.

Value

Data-set with parameter estimates (log hazard ratio) and corresponding variability metrics, for overall and subgroups. Subgrps=0 corresponds to the overall population by default.

- param.dat - Parameter estimates and variability metrics (est=logHR, SE=SE(logHR), LCL/UCL = lower/upper confidence limit on logHR scale, pval = p-value).

References

See Also

- **param_combine**

Examples

```r
library(StratifiedMedicine)
library(survival)
require(TH.data)
require(coin)

surv.dat = GBSG2
Y <- with(surv.dat, Surv(time, cens))
X <- surv.dat[,!(colnames(surv.dat) %in% c("time", "cens"))]
A = rbinom( n = dim(X)[1], size=1, prob=0.5 ) ## simulate null treatment

# MOB-Weibull Subgroup Model ##
res_weibull = submod_train(Y, A, X, Xtest=X, family="survival",
                           submod="submod_weibull")

## Parameter-Estimation ##
```
param_dr

```r
params = param_cox(Y, A, X, Subgrps = res_weibull$Subgrps.train, alpha_ovrl=0.05,
                    alpha_s=0.05)
params
```

Description

For each identified subgroup and in the overall population, use the double robust estimator (Funk et al 2011). For continuous and binary outcomes, this outputs estimates for $E(Y|A=1)$, $E(Y|A=0)$, and $E(Y|A=1)-E(Y|A=0)$.

Usage

```r
param_dr(Y, A, X, mu_hat, Subgrps, alpha_ovrl, alpha_s, ...)
```

Arguments

- `Y`: The outcome variable. Must be numeric (binary, continuous)
- `A`: Treatment variable. (a=1,...,A)
- `X`: Covariate space.
- `mu_hat`: Patient-level estimates (See PLE_models)
- `Subgrps`: Identified subgroups (can be the overall population)
- `alpha_ovrl`: Two-sided alpha level for overall population
- `alpha_s`: Two-sided alpha level at subgroup
- `...`: Any additional parameters, not currently passed through.

Value

Data-set with parameter estimates and corresponding variability metrics, for overall and subgroups. Subgrps=0 corresponds to the overall population by default.

- `param.dat` - Parameter estimates and variability metrics (est, SE, LCL/UCL = lower/upper confidence limits, pval = p-value).

References

Examples

```r
library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

## Estimate PLEs (ranger) ##
res_ranger = ple_train(Y, A, X, Xtest=X, ple="ple_ranger")

## Identify Subgroups: MOB (lmtree) ##
res_lmtree = submod_train(Y, A, X, Xtest=X, submod="submod_lmtree")

## Parameter-estimation ##
params = param_dr(Y, A, X, mu_hat = res_ranger$mu_train, 
                  Subgrps = res_lmtree$Subgrps.train, alpha_ovrl=0.05, 
                  alpha_s=0.05)
params
```

param_lm

Parameter Estimation: Linear Regression

Description

For each identified subgroup, fit separate linear regression models. Point-estimates and variability metrics in the overall population are obtained by aggregating subgroup specific results (adaptive weighting or sample size weighting).

Usage

```r
param_lm(Y, A, X, mu_hat, Subgrps, alpha_ovrl, alpha_s, 
          combine = "adaptive", ...)
```

Arguments

- **Y**
 - The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- **A**
 - Treatment variable. (a=1,...,A)
- **X**
 - Covariate space.
- **mu_hat**
 - Patient-level estimates (See PLE_models)
- **Subgrps**
 - Identified subgroups (can be the overall population)
- **alpha_ovrl**
 - Two-sided alpha level for overall population
- **alpha_s**
 - Two-sided alpha level at subgroup
- **combine**
 - For overall population, method of combining subgroup-specific results. Default is "adaptive", "SS" corresponds to sample size weighting.
- **...**
 - Any additional parameters, not currently passed through.
Value

Data-set with parameter estimates (average treatment effect) and corresponding variability metrics, for overall and subgroups. Subgrps=0 corresponds to the overall population by default.

- param.dat - Parameter estimates and variability metrics (est, SE, LCL/UCL = lower/upper confidence limits, pval = p-value).

See Also

param_combine

Examples

library(StratifiedMedicine)

Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Identify Subgroups: MOB (lmtree)
res_lmtree = submod_train(Y, A, X, Xtest=X, submod="submod_lmtree")

Parameter-estimation
params = param_lm(Y, A, X, Subgrps = res_lmtree$Subgrps.train, alpha_ovrl=0.05,
 alpha_s=0.05)
params

Description

For each identified subgroup and in the overall population, average the patient-level estimates of E(Y|A=1), E(Y|A=0), and E(Y|A=1)-E(Y|A=0). Pseudo-outcomes are used for variance estimates (Jemielita and Mehrotra 2019).

Usage

param_ple(Y, A, X, mu_hat, Subgrps, alpha_ovrl, alpha_s, ...)

Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
A Treatment variable. (a=1,...A)
X Covariate space.
mu_hat Patient-level estimates (See PLE_models)
Subgrps Identified subgroups (can be the overall population)
alpha_ovrl Two-sided alpha level for overall population
alpha_s Two-sided alpha level at subgroup
... Any additional parameters, not currently passed through.

Value

Data-set with parameter estimates and corresponding variability metrics, for overall and subgroups. Subgrps=0 corresponds to the overall population by default.

- param.dat - Parameter estimates and variability metrics (est, SE, LCL/UCL = lower/upper confidence limits, pval = p-value).

References

Examples

library(StratifiedMedicine)

Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
train = data.frame(Y, A, X)

Estimate PLEs (ranger)
res_ranger = ple_train(Y, A, X, Xtest=X, ple = "ple_ranger")

Identify Subgroups: MOB (lmtree)
res_lmtree = submod_train(Y, A, X, Xtest=X, submod="submod_lmtree")

Parameter-estimation
params = param_ple(Y, A, X, mu_hat = res_ranger$mu_train,
 Subgrps = res_lmtree$Subgrps.train, alpha_ovrl=0.05,
 alpha_s=0.05)

params
param_rmst

Parameter Estimation: Restricted Mean Survival Time (RMST)

Description

For each identified subgroup, estimate the restricted mean survival time (RMST), based on the method described in the R package "survRM2". Point-estimates and variability metrics in the overall population are obtained by aggregating subgroup specific results (adaptive weighting or sample size weighting).

Usage

```
param_rmst(Y, A, X, mu_hat, Subgrps, alpha_ovrl, alpha_s,
            combine = "adaptive", ...)
```

Arguments

- **Y**
 The outcome variable. Must be numeric or survival (ex; Surv(time,cens))
- **A**
 Treatment variable. (a=1,...,A)
- **X**
 Covariate space.
- **mu_hat**
 Patient-level estimates (See PLE_models)
- **Subgrps**
 Identified subgroups (can be the overall population)
- **alpha_ovrl**
 Two-sided alpha level for overall population
- **alpha_s**
 Two-sided alpha level at subgroup
- **combine**
 For overall population, method of combining subgroup-specific results. Default is "adaptive", "SS" corresponds to sample size weighting.
- **...**
 Any additional parameters, not currently passed through.

Value

Data-set with parameter estimates (RMST) and corresponding variability metrics, for overall and subgroups.

- **param.dat** - Parameter estimates and variability metrics

References

See Also

`param_combine`
Examples

library(StratifiedMedicine)
Survival Data
require(TH.data); require(coin)
data("GBSG2", package = "TH.data")
surv.dat = GBSG2
Design Matrices
Y = with(surv.dat, Surv(time, cens))
X = surv.dat[,!(colnames(surv.dat) %in% c("time", "cens"))]
A = rbinom(n = dim(X)[1], size=1, prob=0.5) ## simulate null treatment

MOB-Weibull Subgroup Model
res_weibull = submod_train(Y, A, X, Xtest=X, family="survival",
 submod = "submod_weibull")

Parameter-Estimation
require(survRM2)
params = param_rmst(Y, A, X, Subgrps = res_weibull$Subgrps.train, alpha_ovrl=0.05,
 alpha_s=0.05)
params

ple_bart

Patient-level Estimates: BART

Description

Uses the BART algorithm (Chipman et al 2010; BART R package) to obtain patient-level estimates. Used for continuous or binary outcomes. Covariate by treatment interactions are automatically included in BART model (as in Hahn et al 2017).

Usage

ple_bart(Y, A, X, Xtest, family = "gaussian", sparse = FALSE, K = 10, ...

Arguments

Y The outcome variable. Must be numeric.
A Treatment variable. (a=1,...A)
X Covariate space.
Xtest Test set
family Outcome type ("gaussian", "binomial"), default is "gaussian" which uses wbart (BART for continuous outcomes). Probit-based BART ("pbart") is used for family="binomial"
ple_causal_forest

sparse
Whether to perform variable selection based on sparse Dirichlet prior instead of uniform. See "gbart" in the BART R package for more details as well as Linero 2016. Default is FALSE.

K
For survival, coarse times per the quantiles 1/K,..,K/K. For AFT (abart), K=10. For more accurate survival predictions, set K=100 (default in abart).

... Any additional parameters, not currently passed through.

Value
Trained BART model(s) and patient-level estimates (E(Y|X,1), E(Y|X,0), E(Y|X,1)-E(Y|X,0)) for train/test sets.

- mod - trained model(s)
- mu_train - Patient-level estimates (training set)
- mu_test - Patient-level estimates (test set)

References

Examples

library(StratifiedMedicine)

Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
train = data.frame(Y, A, X)

BART
require(BART)
mod1 = ple_bart(Y, A, X, Xtest=X)
summary(mod1$mu_train)
Usage

```r
ple_causal_forest(Y, A, X, Xtest, tune = FALSE, num.trees = 500,
                   family = "gaussian", mod.A = "mean", ...)
```

Arguments

- **Y** The outcome variable. Must be numeric or survival (ex: `Surv(time,cens)`).
- **A** Treatment variable. (a=1,...A)
- **X** Covariate space.
- **Xtest** Test set
- **tune** If TRUE, use grf automatic hyper-parameter tuning. If FALSE (default), no tuning.
- **num.trees** Number of trees (default=500)
- **family** Outcome type ("gaussian", "binomial"), default is "gaussian"
- **mod.A** Model for estimating P(A|X). Default is "mean" calculates the sample mean. If mod.A="RF", estimate P(A|X) using regression_forest (applicable for non-RCTs).
- **...** Any additional parameters, not currently passed through.

Value

Trained causal_forest and regression_forest models.

- **mod** trained model(s)
- **pred.fun** Prediction function for trained model(s)

References

ple_glmnet

Patient-level Estimates: Elastic Net (glmnet)

Description

Uses the elastic net (glmnet R package) to obtain patient-level estimates. Usable for continuous, binary, or survival outcomes.

Usage

```r
ple_glmnet(Y, A, X, Xtest, lambda = "lambda.min", family, ...)
```
Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time, cens))
A Treatment variable. (a=1,...,A)
X Covariate space.
Xtest Test set
lambda Lambda for elastic-net (default = "lambda.min"). Other options include "lambda.1se"
or fixed values
family Outcome type ("gaussian", "binomial", "survival"), default is "gaussian"
... Any additional parameters, not currently passed through.

Value

Trained glmnet model(s).

- mod - trained model(s)
- lambda - Lambda used for elastic-net (passes to prediction function)
- X - Covariate Space (in model matrix form)

References

Examples

library(StratifiedMedicine)

Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

mod1 = ple_glmnet(Y, A, X, Xtest=X, family="gaussian")

ple_ranger

Patient-level Estimates: Ranger

Description

Uses treatment-specific (or with explicit X*A interactions) random forest models (ranger) to obtain patient-level estimates. Used for continuous, binary, or survival outcomes.
ple_ranger(Y, A, X, Xtest, family = "gaussian", byTrt = ifelse(family == "survival", FALSE, TRUE), min.node.pct = 0.1, ...)

Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
A Treatment variable. (a=1,...A)
X Covariate space.
Xtest Test set
family Outcome type ("gaussian", "binomial"), default is "gaussian"
byTrt If TRUE, fit treatment-specific ranger models. If FALSE, fit a single ranger model with covariate space (X, A, X*A). For "gaussian" or "binomial", default is TRUE. For "survival", default is FALSE.
min.node.pct Minimum sample size in forest nodes (n*min.node.pct)
... Any additional parameters, not currently passed through.

Value

Trained random forest (ranger) model(s).

- mod - trained model(s)
- pred.fun - Prediction function for trained model(s)

References

See Also

PRISM, ranger

Examples

library(StratifiedMedicine)
Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Counter-factual Random Forest (treatment-specific ranger models)
mod1 = ple_ranger(Y, A, X, Xtest=X)
Description

Uses treatment-specific (or with explicit X*A interactions) random forest models (randomForestSRC package) to obtain patient-level estimates. Used for continuous, binary, or survival outcomes.

Usage

```r
ple_rfsrc(Y, A, X, Xtest, ntree = 1000, byTrt = TRUE, upweight = 100, 
min.node.pct = 0.1, family = "gaussian", ...)
```

Arguments

- **Y**: The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- **A**: Treatment variable. (a=1,...,A)
- **X**: Covariate space.
- **Xtest**: Test set
- **ntree**: Number of trees (default=1000)
- **byTrt**: If TRUE, fit treatment-specific rfsrc models. If FALSE, fit a single rfsrc model with covariate space (X, A, X*A).
- **upweight**: Whether to upweight the probability that the treatment variable is included as a splitting variable (through rfsrc’s xvar.wt argument). Default=100 (other variables receive weight of 1). Only applicable for single rfsrc model (byTrt=FALSE).
- **min.node.pct**: Minimum sample size in forest nodes (n*min.node.pct)
- **family**: Outcome type ("gaussian", "binomial", "survival"), default is "gaussian".
- **...**: Any additional parameters, not currently passed through.

Value

Trained random forest (rfsrc) model(s).

- **mod**: trained model(s)
- **A**: treatment variable (training set)
- **X**: covariate space (training set)

References

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Counter-Factual Random Forest (treatment-specific ranger models) #
mod1 = ple_rfsr(Y, A, X, Xtest=X)
```

ple_train

Patient-level Estimates: Train Model

Description

Wrapper function to train a patient-level estimate (ple) model. Used directly in PRISM and can be used to directly fit a ple model by name.

Usage

```r
ple_train(Y, A, X, Xtest, family = "gaussian", ple, hyper = NULL, ...)
```

Arguments

- **Y**: The outcome variable. Must be numeric or survival (ex: Surv(time,cens))
- **A**: Treatment variable. (a=1,...A)
- **X**: Covariate space.
- **Xtest**: Test set
- **family**: Outcome type ("gaussian", "binomial", "survival"). Default is "gaussian".
- **ple**: PLE (Patient-Level Estimate) function. Maps the observed data to PLEs. (Y,A,X) => PLE(X).
- **hyper**: Hyper-parameters for the ple model (must be list). Default is NULL.
- **...**: Any additional parameters, not currently passed through.

Value

Trained ple models and patient-level estimates for train/test sets. For family="gaussian" or "binomial", output estimates of (E(Y|X,A=1), E(Y|X,A=0), E(Y|X,A=1)-E(Y|X,A=0)). For survival, output estimates of (HR(X,A=1), HR(X,A=0), HR(X, A=1)-HR(X, A=0)) or (RMST(X,A=1), RMST(X,A=0), RMST(X, A=1)-RMST(X, A=0)).
plot.PRISM

- mod - trained model(s)
- mu_train - Patient-level estimates (training set)
- mu_test - Patient-level estimates (test set)

See Also

PRISM

Examples

library(StratifiedMedicine)
Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Fit ple_ranger directly (treatment-specific ranger models)
mod1 = ple_ranger(Y, A, X, Xtest=X)
summary(mod1$mu_train)

Fit through ple_train wrapper
mod2 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ple_ranger")
summary(mod2$mu_train)

Description

Plots PRISM results. Options include "tree", "forest", "resample", and "PLE:waterfall".

Usage

S3 method for class 'PRISM'
plot(x, type = "tree", estimand = NULL,
 grid.data = NULL, grid.thres = ">0", tree.thres = NULL,
 est.resamp = TRUE, tree.plots = "outcome", nudge_out = 0.1,
 width_out = 0.5, nudge_dens = ifelse(tree.plots == "both", 0.3, 0.1),
 width_dens = 0.5, ...)
Arguments

x PRISM object

type Type of plot (default="tree", tree plot + parameter estimates/outcome and or probability density plots). Other options include "forest" (forest plot for overall and subgroups), "PLE:waterfall" (waterfall plot of PLEs), "PLE:density" (density plot of PLEs), "resample" (resampling distribution of parameter estimates for overall and subgroups), and "heatmap" (heatmap of ple estimates/probabilities). For "tree" and "forest", CIs are based on the observed data unless resampling is used. For bootstrap resampling, if calibrate=TRUE, then calibrated CIs along are shown, othererwise CIs based on the percentile method are shown.

estimand For "resample" plot only, must be specify which estimand to visualize. Default=NULL.

grid.data Input grid of values for 2-3 covariates (if 3, last variable cannot be continuous). This is required for type="heatmap". Default=NULL.

grid.thres Threshold for PLE, ex: I(PLE>thres). Used to estimate P(PLE>thres) for type="heatmap". Default is ">0". Direction can be reversed and can include equality sign (ex: "<=").

tree.thres Probability threshold, ex: P(Mean(A=1 vs A=0)>c. Default=NULL, which defaults to using ">0", unless param="param_cox", which "P(HR(A=1 vs A=0))<1". If a density plot is included, setting tree.thres=">c" will use green colors for values above c, and red colors for values below c. If tree.thres="<c", the reverse color scheme is used.

est.resamp Should plot present resampling based estimates? Default=TRUE if bootstrap or CV based resampling is used. Only applicable for type="submod". If bootstrap calibration is used, calibrated CIs are presented. If no calibration, then percentile Cis are presented with the smoothed bootstrap point-estimates.

tree.plots Type of plots to include in the "tree" plot. Default="outcome" (boxplots of treatment-specific outcomes, or counterfactual estimates if PLE!=NULL). For "density", the estimated probability density of the treatment effects is shown (normal approximation, unless resampling is used). "both" combines both plots.

nudge_out Nudge tree outcome plot (see ggparty for details)

width_out Width of tree outcome plot (see ggparty for details)

nudge_dens Nudge tree density plot

width_dens Width of density tree outcome plot

... Additional arguments (currently ignored).

Value

Plot (ggplot2) object

See Also

PRISM
plot_dependence

Description

Partial dependence plots: Single Variable (marginal effect) or heat map (2 to 3 variables).

Usage

```r
plot_dependence(object, vars, grid.data = NULL, grid.thres = ">0", estimand = NULL, ...)
```

Arguments

- `object` : Fitted PRISM object
- `vars` : Variables to visualize (ex: c("var1", "var2", "var3")). If no grid.data provided, defaults to using `seq(min(var), max(var))` for each continuous variables. For categorical, uses all categories.
- `grid.data` : Input grid of values for 2-3 covariates (if 3, last variable cannot be continuous). This is required for type="heatmap". Default=NULL.
- `grid.thres` : Threshold for PLE, ex: I(PLE>thres). Used to estimate P(PLE>thres) for type="heatmap". Default is ">0". Direction can be reversed and can include equality sign (ex: "<=").
- `estimand` : Estimand for which to generate dependence or heat map plots.
- `...` : Additional arguments (currently ignored).

Value

Plot (ggplot2) object

References

plot_importance Importance Plot: Visualize relative importance of variables

Description

Importance is currently based on the PRISM filter model. For elastic net (filter_glmnet), variables with non-zero coefficients are shown. For random forest variable importance (filter_ranger), variables are sorted by their p-values, and "top_n" will show only the "top_n" most importance variables (based on p-values).

Usage

plot_importance(object, top_n = NULL, ...)

Arguments

object PRISM object
top_n Show top_n variables only, default=NULL (show all)
... Additional arguments (currently ignored).

Value

Plot (ggplot2) object

predict.ple_train Patient-level Estimates Model: Prediction

Description

Prediction function for the trained patient-level estimate (ple) model.

Usage

S3 method for class 'ple_train'
predict(object, newdata = NULL, ...)

Arguments

object Trained ple model.
newdata Data-set to make predictions at (Default=NULL, predictions correspond to training data).
... Any additional parameters, not currently passed through.
predict.PRISM

Value

Data-frame with predictions (depends on trained ple model).

See Also

PRISM

Examples

```r
library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Fit through ple_train wrapper #
mod2 = ple_train(Y=Y, A=A, X=X, Xtest=X, ple="ple_ranger")
summary(mod2$mu_train)

res2 = predict(mod2, newdata=X)
summary(res2)
```

predict.PRISM

PRISM: Patient Response Identifier for Stratified Medicine (Predictions)

Description

Predictions for PRISM algorithm. Given the training set (Y,A,X) or new test set (Xtest), output ple predictions and identified subgroups with correspond parameter estimates.

Usage

```r
## S3 method for class 'PRISM'
predict(object, newdata = NULL, type = "all", ...)
```

Arguments

- **object**: Trained PRISM model.
- **newdata**: Data-set to make predictions at (Default=NULL, predictions correspond to training data).
predict.submod_train

Value

Data-frame with predictions (ple, submod, or both).

Examples

```r
## Load library ##
library(StratifiedMedicine)

##### Examples: Continuous Outcome ###########

dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Run Default: filter_glmnet, ple_ranger, submod_lmtree, param_ple #
res0 = PRISM(Y=Y, A=A, X=X)
summary( predict(res0, X) ) # all #
summary( predict(res0, X, type="ple") )
summary( predict(res0, X, type="submod") )
```

Description

Prediction function for the trained subgroup identification model (submod).

Usage

```r
## S3 method for class 'submod_train'
predict(object, newdata = NULL, ...)
```

Arguments

- **object**
 - Trained submod model.
- **newdata**
 - Data-set to make predictions at (Default=NULL, predictions correspond to training data).
- **...**
 - Any additional parameters, not currently passed through.
Value

Identified subgroups with subgroup-specific predictions (depends on subgroup model)

- Subgrps - Identified subgroups
- pred - Predictions, depends on subgroup model

Examples

```r
library(StratifiedMedicine)
## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

# Fit submod_lmtree directly #
mod1 = submod_lmtree(Y, A, X, Xtest=X)
plot(mod1$mod)

# Fit through submod_train wrapper#
mod2 = submod_train(Y=Y, A=A, X=X, Xtest=X, submod="submod_lmtree")
out2 = predict(mod2)
plot(mod2$fit$mod)
```

PRISM: Patient Response Identifier for Stratified Medicine

Description

PRISM algorithm. Given a data-set of (Y, A, X) (Outcome, treatment, covariates), the PRISM identifies potential subgroups along with point-estimate and variability metrics; with and without resampling (bootstrap or cross-validation based). This four step procedure (filter, ple, submod, param) is flexible and accepts user-inputs at each step.

Usage

```r
PRISM(Y, A = NULL, X, Xtest = NULL, family = "gaussian",
      filter = "filter_glmnet", ple = NULL, submod = NULL,
      param = NULL, alpha_ovrl = 0.05, alpha_s = 0.05,
      filter.hyper = NULL, ple.hyper = NULL, submod.hyper = NULL,
      param.hyper = NULL, bayes = NULL, prefilter_resamp = FALSE,
      resample = NULL, stratify = TRUE, R = NULL, calibrate = FALSE,
      alpha.mat = NULL, filter.resamp = NULL, ple.resamp = NULL,
      submod.resamp = NULL, verbose = TRUE, verbose.resamp = FALSE,
      seed = 777)
```
Arguments

Y

The outcome variable. Must be numeric or survival (ex: Surv(time,cens))

A

Treatment variable. (Defaults support binary treatment, either numeric or factor). If A=NULL, searches for prognostic variables (Y~X).

X

Covariate space. Variables types (ex: numeric, factor, ordinal) should be set to align with subgroup model (submod argument). For example, for lmtree, binary variables coded as numeric (ex: 0, 1) are treated differently than the corresponding factor version (ex: "A", "B"). Filter and PLE models provided in the StratifiedMedicine package can accommodate all variable types.

Xtest

Test set. Default is NULL which uses X (training set). Variable types should match X.

family

Outcome type. Options include "gaussian" (default), "binomial", and "survival".

filter

Maps (Y,A,X) => (Y,A,X.star) where X.star has potentially less covariates than X. Default is "filter_glmnet", "None" uses no filter.

ple

PLE (Patient-Level Estimate) function. Maps the observed data to PLEs. (Y,A,X) => PLE(X). Default for is "ple_ranger". For continuous/binomial outcome data, this fits treatment specific random forest models. For survival outcome data, this fits a single forest, with expanded covariate space (A, X, X*A). (treatment-specific random forest models). "None" uses no ple.

submod

Subgroup identification model function. Maps the observed data and/or PLEs to subgroups. Default of "gaussian"/"binomial" is "submod_lmtree" (MOB with OLS loss). Default for "survival" is "submod_weibull" (MOB with weibull loss). "None" uses no submod.

param

Parameter estimation and inference function. Based on the discovered subgroups, perform inference through the input function (by name). Default for "gaussian"/"binomial" is "param_PLE", default for "survival" is "param_cox".

alpha_ovrl

Two-sided alpha level for overall population. Default=0.05

alpha_s

Two-sided alpha level at subgroup level. Default=0.05

filter.hyper

Hyper-parameters for the Filter function (must be list). Default is NULL.

ple.hyper

Hyper-parameters for the PLE function (must be list). Default is NULL.

submod.hyper

Hyper-parameters for the SubMod function (must be list). Default is NULL.

param.hyper

Hyper-parameters for the Param function (must be list). Default is NULL.

bayes

Based on input point estimates/SEs, this uses a bayesian based approach to obtain ests, SEs, CIs, and posterior probabilities. Currently includes "norm_norm" (normal prior at overall estimate with large uninformative variance; normal posterior). Default=NULL.

prefilter_resamp

Option to filter the covariate space (based on filter model) prior to resampling. Default=FALSE.

resample

Resampling method for resample-based estimates and variability metrics. Options include "Bootstrap", "Permutation", and "CV" (cross-validation). Default=NULL (No resampling).

stratify

Stratified resampling (Default=TRUE)
R Number of resamples (default=NULL; R=100 for Permutation/Bootstrap and R=5 for CV)
calibrate Bootstrap calibration for nominal alpha (Loh et al 2016). Default=FALSE. For TRUE, outputs the calibrated alpha level and calibrated CIs for the overall population and subgroups. Not applicable for permutation/CV resampling.
alpha.mat Grid of alpha values for calibration. Default=NULL, which uses seq(alpha/1000,alpha,by=0.005) for alpha_ovrl/alpha_s.
filter.resamp Filter function during resampling, default=NULL (use filter)
ple.resamp PLE function during resampling, default=NULL (use ple)
submod.resamp submod function for resampling, default=NULL (use submod)
verbose Detail progress of PRISM? Default=TRUE
verbose.resamp Output iterations during resampling? Default=FALSE
seed Seed for PRISM run (Default=777)

Details
PRISM is a general framework with five key steps:
0. Estimand: Determine the question of interest (ex: mean treatment difference)
1. Filter: Reduce covariate space by removing noise covariates. Options include elastic net (filter_glmnet) and random forest variable importance (filter_ranger).
2. Patient-Level Estimates (ple): Estimate counterfactual patient-level quantities, for example, the individual treatment effect, E(Y|A=1)-E(Y|A=0). Options include: treatment-specific or virtual twins (Y~A+X+A*X) through random forest (ple_ranger, ple_rfsrc), elastic net (ple_glmnet), BART (ple_bart) and causal forest (ple_causal_forest).
3. Subgroup Model (submod): Partition the data into subsets or subgroups of patients. Options include: conditional inference trees (observed outcome or individual treatment effect/PLE; submod_ctree), MOB GLM (submod_glmmtree), MOB OLS (submod_lmtree), optimal treatment regimes (submod_otr), rpart (submod_rpart), and MOB Weibull (submod_weibull).
4. Parameter Estimation (param): For the overall population and the discovered subgroups (if any), obtain point-estimates and variability metrics. Options include: cox regression (param_cox), double robust estimator (param_dr), linear regression (param_lm), average of patient-level estimates (param_ple), and restricted mean survival time (param_rmst).
Steps 1-4 also support user-specific models. If treatment is provided (A!=NULL), the default settings are as follows:
- Y is continuous (family="gaussian"): Elastic Net Filter ==> Treatment-Specific random forest models ==> MOB (OLS) ==> Average of patient-level estimates (param_ple)
- Y is binary (family="binomial"): Elastic Net Filter ==> Treatment-Specific random forest models ==> MOB (GLM) ==> Average of patient-level estimates (param_ple)
- Y is right-censored (family="survival"): Elastic Net Filter ==> Virtual twin survival random forest models ==> MOB (Weibull) ==> Cox regression (param_cox)
 If treatment is not provided (A=NULL), the default settings are as follows:
- Y is continuous (family="gaussian"): Elastic Net Filter ==> Random Forest ==> ctree ==> linear regression
Y is binary (family="binomial"): Elastic Net Filter ==> Random Forest ==> ctree ==> linear regression
Y is right-censored (family="survival"): Elastic Net Filter ==> Survival Random Forest ==> ctree ==> RMST

Value

Trained PRISM object. Includes filter, ple, submod, and param outputs.

- filter.mod - Filter model
- filter.vars - Variables remaining after filtering
- ple.fit - Fitted ple model (model fit, other fit outputs)
- mu_train - Patient-level estimates (train)
- mu_test - Patient-level estimates (test)
- submod.fit - Fitted submod model (model fit, other fit outputs)
- out.train - Training data-set with identified subgroups
- out.test - Test data-set with identified subgroups
- Rules - Subgroup rules / definitions
- param.dat - Parameter estimates and variability metrics (depends on param)
- resamp.dist - Resampling distributions (NULL if no resampling is done)
- bayes.fun - Function to simulate posterior distribution (NULL if no bayes)

References

Examples

```r
## Load library ##
library(StratifiedMedicine)

## Examples: Continuous Outcome ##

dat_ctns = generate_subgrp_data(family="gaussian")
```
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Run Default: filter_glmnet, ple_ranger, submod_lmtree, param_ple
res0 = PRISM(Y=Y, A=A, X=X)
summary(res0)
plot(res0)

Without filtering
res1 = PRISM(Y=Y, A=A, X=X, filter="None")
summary(res1)
plot(res1)

Search for Prognostic Only (omit A from function)
res3 = PRISM(Y=Y, X=X)
summary(res3)
plot(res3)

With bootstrap (No filtering)
library(ggplot2)
res_boot = PRISM(Y=Y, A=A, X=X, resample = "Bootstrap", R=50, verbose.resamp = TRUE)

Plot of distributions and P(est>0)
plot(res_boot, type="resample", estimand = "E(Y|A=1)-E(Y|A=0)")+geom_vline(xintercept = 0)
aggregate(I(est>0)~Subgrps, data=res_boot$resamp.dist, FUN="mean")

Examples: Binary Outcome

dat_ctns = generate_subgrp_data(family="binomial")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Run Default: filter_glmnet, ple_ranger, submod_glmmtree, param_ple
res0 = PRISM(Y=Y, A=A, X=X)
plot(res0)

Survival Data
library(survival)
library(ggplot2)
require(TH.data); require(coin)
data("GBSG2", package = "TH.data")
surv.dat = GBSG2
Design Matrices

\[
Y = \text{with(surv.dat, Surv(time, cens))}
\]
\[
X = \text{surv.dat[,!(colnames(surv.dat) %in% c("time", "cens"))]}
\]

set.seed(513)

A = \text{rbinom(n = dim(X)[1], size=1, prob=0.5)}

PRISM: glmnet ==> Random Forest to estimate Treatment-Specific RMST
==> MOB (Weibull) ==> Cox for HRs#

res_weib = PRISM(Y=Y, A=A, X=X)

plot(res_weib)

PRISM: glmnet ==> Random Forest to estimate Treatment-Specific RMST
==> OTR (CTREE, uses RMST estimates as input) ==> Cox for HRs

res_otr = PRISM(Y=Y, A=A, X=X)

plot(res_otr)

PRISM: ENET ==> CTREE ==> Cox; with bootstrap

res_ctree1 = PRISM(Y=Y, A=A, X=X, ple="None", submod = "submod_ctree",

resample="Bootstrap", R=50, verbose.resamp = TRUE)

plot(res_ctree1)

aggregate(I(est<1)~Subgrps, data=res_ctree1$resamp.dist, FUN="mean")

submod_ctree

Subgroup Identification: Conditional Inference Trees (ctree)

Description

Uses the ctree (conditional inference trees through partykit R package) algorithm to identify subgroups (Hothorn, Hornik, Zeileis 2006). Usable for continuous, binary, or survival outcomes. Option to use the observed outcome or PLEs (i.e. individual treatment effect) for subgroup identification.

Usage

```r
submod_ctree(Y, A, X, Xtest, mu_train, alpha = 0.05, 
minbucket = floor(dim(X)[1] * 0.1), maxdepth = 4, 
outcome_PLE = FALSE, family = "gaussian", ...)```

### Arguments

- **Y**: The outcome variable. Must be numeric or survival (ex; Surv(time,cens) )
- **A**: Treatment variable. (a=1,...A)
- **X**: Covariate space.
- **Xtest**: Test set
submod_glmtree

mu_train  Patient-level estimates (See PLE_models)
alpha      Significance level for variable selection (default=0.05)
minbucket  Minimum number of observations in a tree node. Default = floor( dim(train)[1]*0.05
maxdepth   Maximum depth of any node in the tree (default=4)
outcome_PLE If TRUE, use PLE as outcome (mu_train must contain PLEs).
family     Outcome type ("gaussian", "binomial", "survival), default is "gaussian"
...

Value

Trained ctree model.

- mod - ctree model object

References


Examples

library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

res_ctree1 = submod_ctree(Y, A, X, Xtest=X, family="gaussian")
res_ctree2 = submod_ctree(Y, A, X, Xtest=X, family="gaussian", maxdepth=2, minsize=100)
plot(res_ctree1$mod)
plot(res_ctree2$mod)

submod_glmtree  Subgroup Identification: Model-based partitioning (glmtree)

Description

Uses the glmtree (model-based partitioning, glm; through partykit R package) algorithm to identify subgroups (Zeileis, Hothorn, Hornik 2008). Usable for continuous and binary outcomes.
Usage

submod_glmtree(Y, A, X, Xtest, mu_train, glm.fam = binomial,
    link = "identity", alpha = 0.05, minsize = floor(dim(X)[1] * 0.1),
    maxdepth = 4, parm = NULL, ...)

Arguments

Y           The outcome variable. Must be numeric
A           Treatment variable. (a=1,...,A)
X           Covariate space.
Xtest        Test set
mu_train     Patient-level estimates (See PLE_models)
glm.fam      Family for GLM; default=binomial
link         Link function for GLM; default="identity"
alpha        Significance level for variable selection (default=0.05)
minsize      Minimum number of observations in a tree node. Default = floor(dim(train)[1]*0.05)
maxdepth     Maximum depth of any node in the tree (default=4)
parm         Model parameters included in parameter instability tests (default=NULL, all parameters)
...          Any additional parameters, not currently passed through.

Value

Trained lmtree model.

- mod - lmtree model object

References


Examples

library(StratifiedMedicine)

## Binomial ##
dat_bin = generate_subgrp_data(family="binomial")
Y = dat_bin$Y
X = dat_bin$X
A = dat_bin$A

res_glmtree1 = submod_glmtree(Y, A, X, Xtest=X)
submod_lmtree

res_glmtree2 = submod_glmtree(Y, A, X, Xtest=X, link="logit")
plot(res_glmtree1$mod)
plot(res_glmtree2$mod)

submod_lmtree

Subgroup Identification: Model-based partitioning (lmtree)

Description

Uses the lmtree (model-based partitioning, OLS; through partykit R package) algorithm to identify subgroups (Zeileis, Hothorn, Hornik 2008). Usable for continuous and binary outcomes.

Usage

submod_lmtree(Y, A, X, Xtest, mu_train, alpha = 0.05,
               minsize = floor(dim(X)[1] * 0.1), maxdepth = 4, parm = NULL, ...)

Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time,cens) )
A Treatment variable. (a=1,...A)
X Covariate space.
Xtest Test set
mu_train Patient-level estimates (See PLE_models)
alpha Significance level for variable selection (default=0.05)
minsize Minimum number of observations in a tree node. Default = floor( dim(train)[1]*0.05 )
maxdepth Maximum depth of any node in the tree (default=4)
parm Model parameters included in parameter instability tests (default=NULL, all parameters)
... Any additional parameters, not currently passed through.

Value

Trained lmtree model.

- mod - lmtree model object

References

Examples

library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A
train = data.frame(Y, A, X)
# Outcome/treatment must be labeled as Y/A #

res_lmtree1 = submod_lmtree(Y, A, X, Xtest=X)
res_lmtree2 = submod_lmtree(Y, A, X, Xtest=X, maxdepth=2, minsize=100)
plot(res_lmtree1$mod)
plot(res_lmtree2$mod)

---

**submod_otr**  
*Subgroup Identification: Optimal Treatment Regime (through ctree)*

**Description**

For continuous, binary, or survival outcomes, regress I(PLE>thres)~X with weights=abs(PLE) in
ctree. For example, PLE could refer to individual treatment effect, E(Y|A=1,X)-E(Y|A=0, X)

**Usage**

```
submod_otr(Y, A, X, Xtest, mu_train, alpha = 0.05,
 minbucket = floor(dim(X)[1] * 0.1), maxdepth = 4, thres = ">0",
 ...
```

**Arguments**

- **Y**
  - The outcome variable. Must be numeric or survival (ex: Surv(time,cens) )
- **A**
  - Treatment variable. (a=1,...A)
- **X**
  - Covariate space.
- **Xtest**
  - Test set
- **mu_train**
  - Patient-level estimates (See PLE_models)
- **alpha**
  - Significance level for variable selection (default=0.05)
- **minbucket**
  - Minimum number of observations in a tree node. Default = floor( dim(train)[1]*0.05 )
- **maxdepth**
  - Maximum depth of any node in the tree (default=4)
- **thres**
  - Threshold for PLE, ex: I(PLE>thres). Default is ">0". Direction can be reversed
  and can include equality sign (ex: "\leq")
- **...**
  - Any additional parameters, not currently passed through.
Value

Trained ctree (optimal treatment regime) model.

- mod - tree (OTR) model object

References


Examples

library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

## Estimate PLEs (through Ranger) ##
res.ple = ple_train(Y, A, X, Xtest=X, family="gaussian", ple="ple_ranger")

## Fit OTR Subgroup Model ##
res_otr = submod_otr(Y, A, X, Xtest=X, mu_train = res.ple$mu_train)
plot(res_otr$mod)

Description

Uses the CART algorithm (rpart) to identify subgroups. Usable for continuous and binary outcomes. Option to use the observed outcome or PLEs for subgroup identification.

Usage

submod_rpart(Y, A, X, Xtest, mu_train, minbucket = floor(dim(X)[1] * 0.1), maxdepth = 4, outcome_PLE = FALSE, family = "gaussian", ...)

Arguments

Y The outcome variable. Must be numeric or survival (ex: Surv(time,cens) )
A Treatment variable. (a=1,...A)
X Covariate space.
submod_rpart

Xtest       Test set
mu_train   Patient-level estimates (See PLE_models)
minbucket  Minimum number of observations in a tree node. Default = floor(dim(train)[1]*0.05)
maxdepth   Maximum depth of any node in the tree (default=4)
outcome_PLE If TRUE, use PLE as outcome (mu_train must contain PLEs). Else use observed outcome Y
family     Outcome type ("gaussian", "binomial"), default is "gaussian"
...        Any additional parameters, not currently passed through.

Value

Trained rpart (CART).

- mod - rpart model as partykit object

References


Examples

library(StratifiedMedicine)

## Continuous ##
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

require(rpart)
res_rpart1 = submod_rpart(Y, A, X, Xtest=X)
res_rpart2 = submod_rpart(Y, A, X, Xtest=X, maxdepth=2, minbucket=100)
plot(res_rpart1$mod)
plot(res_rpart2$mod)
submod_train

Subgroup Identification: Train Model

Description

Wrapper function to train a subgroup model (submod). Used directly in PRISM and can be used to directly fit a submod model by name.

Usage

```
submod_train(Y, A, X, Xtest, mu_train = NULL, family = "gaussian",
 submod, hyper = NULL, ...)
```

Arguments

- **Y**: The outcome variable. Must be numeric or survival (ex: Surv(time,cens) )
- **A**: Treatment variable. (a=1,...,A)
- **X**: Covariate space.
- **Xtest**: Test set
- **mu_train**: Patient-level estimates (See PLE_models). Default=NULL
- **family**: Outcome type ("gaussian", "binomial", "survival"). Default="gaussian".
- **submod**: Subgroup identification (submod) function. Maps the observed data and/or PLEs to subgroups.
- **hyper**: Hyper-parameters for submod (must be list). Default is NULL.
- **...**: Any additional parameters, not currently passed through.

Value

Trained subgroup model and subgroup predictions/estimates for train/test sets.

- **mod**: trained subgroup model
- **Subgrps.train**: Identified subgroups (training set)
- **Subgrps.test**: Identified subgroups (test set)
- **pred.train**: Predictions (training set)
- **pred.test**: Predictions (test set)
- **Rules**: Definitions for subgroups, if provided in fitted submod output.

See Also

PRISM
Examples

```r
library(StratifiedMedicine)
Continuous
dat_ctns = generate_subgrp_data(family="gaussian")
Y = dat_ctns$Y
X = dat_ctns$X
A = dat_ctns$A

Fit submod_lmtree directly
mod1 = submod_lmtree(Y, A, X, Xtest=X)
plot(mod1$mod)

Fit through submod_train wrapper
mod2 = submod_train(Y=Y, A=A, X=X, Xtest=X, submod="submod_lmtree")
plot(mod2fitmod)
```

---

**submod_weibull**  
*Subgroup Identification: Model-based partitioning (Weibull)*

**Description**

Uses the MOB (with weibull loss function) algorithm to identify subgroups (Zeileis, Hothorn, Hornik 2008; Seibold, Zeileis, Hothorn 2016). Usable for survival outcomes.

**Usage**

```r
submod_weibull(Y, A, X, Xtest, mu_train, alpha = 0.05,
 minsize = floor(dim(X)[1] * 0.1), maxdepth = 4, parm = NULL, ...)
```

**Arguments**

- **Y**: The outcome variable. Must be numeric or survival (ex: Surv(time,cens) )
- **A**: Treatment variable. (a=1,...A)
- **X**: Covariate space.
- **Xtest**: Test set
- **mu_train**: Patient-level estimates (See PLE_models)
- **alpha**: Significance level for variable selection (default=0.05)
- **minsize**: Minimum number of observations in a tree node. Default = floor( dim(train)[1]*0.05)
- **maxdepth**: Maximum depth of any node in the tree (default=4)
- **parm**: Model parameters included in parameter instability tests (default=NULL, all parameters)
- **...**: Any additional parameters, not currently passed through.
Value

Trained MOB (Weibull) model.

- mod - MOB (Weibull) model object

References


Examples

```r
library(StratifiedMedicine)
library(survival)

Load TH.data (no treatment; generate treatment randomly to simulate null effect)
data("GBSG2", package = "TH.data", envir = e <- new.env())
surv.dat = e$GBSG2

Design Matrices
Y = with(surv.dat, Surv(time, cens))
X = surv.dat[,!(colnames(surv.dat) %in% c("time", "cens"))]
A = rbinom(n = dim(X)[1], size=1, prob=0.5)
res_weibull = submod_weibull(Y, A, X, Xtest=X, family="survival")
plot(res_weibull$mod)
```

---

**summary.PRISM**

**PRISM: Patient Response Identifier for Stratified Medicine (Summary)**

Description

Predictions for PRISM algorithm. Given the training set (Y,A,X) or new test set (Xtest), output prediction results and identified subgroups with corresponding parameter estimates.

Usage

```
S3 method for class 'PRISM'
summary(object, ...)
```

Arguments

- object: Trained PRISM model.
- ...: Any additional parameters, not currently passed through.
Value

List of key PRISM outputs: (1) Configuration, (2) Variables that pass filter (if filter is used), (3) Number of Identified Subgroups, and (4) Parameter Estimates, SEs, and CIs for each sub-group/estimand
Index

filter_glmnet, 2
filter_ranger, 4
filter_train, 5

generate_subgrp_data, 6

param_combine, 7, 8, 11, 13
param_cox, 7, 7
param_dr, 9
param_lm, 7, 10
param_ple, 11
param_rmst, 7, 13
ple_bart, 14
ple_causal_forest, 15
ple_glmnet, 16
ple_ranger, 17
ple_rfsrcc, 19
ple_train, 20
plot.PRISM, 21
plot_dependence, 23
plot_importance, 24
predict.ple_train, 24
predict.PRISM, 25
predict.submod_train, 26
PRISM, 6, 18, 21, 22, 25, 27, 39

ranger, 18

submod_ctree, 32
submod_glmmtree, 33
submod_lmtree, 35
submod_otr, 36
submod_rpart, 37
submod_train, 39
submod_weibull, 40
summary.PRISM, 41