Package ‘SuperPCA’

July 26, 2021

Type Package

Title Supervised Principal Component Analysis

Version 0.4.0

Author Gen Li <ligen@umich.edu>, Haocheng Ding <haochengding@ufl.edu>, Jiayi Ji <jj2876@caa.columbia.edu>

Maintainer Jiayi Ji <jj2876@caa.columbia.edu>

Description Dimension reduction of complex data with supervision from auxiliary information. The package contains a series of methods for different data types (e.g., multi-view or multi-way data) including the supervised singular value decomposition (SupSVD), supervised sparse and functional principal component (SupSFPC), supervised integrated factor analysis (SIFA) and supervised PARAFAC/CANDECOMP factorization (SupCP). When auxiliary data are available and potentially affect the intrinsic structure of the data of interest, the methods will accurately recover the underlying low-rank structure by taking into account the supervision from the auxiliary data. For more details, see the paper by Gen Li, <DOI:10.1111/biom.12698>.

License MIT + file LICENSE

Encoding UTF-8

LazyData false

Imports RSpectra, psych, fBasics, R.matlab, glmnet, MASS, matrixStats, timeSeries, stats, matlabr, spls, pracma, matlab

Depends Matrix

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-26 12:30:07 UTC

R topics documented:

kr ... 2
normc .. 3
Parafac ... 3
Description

The function compute a string of Khatri-Rao products. A*B*C*... denotes the Khatri-Rao product. If the list only contains two matrices, kr() return the Khatri-Rao product of two matrices.

Usage

kr(x)

Arguments

x a list of matrices

Value

result of a string of Khatri-Rao products

Examples

#ex1
m1 <- matrix(1:9,3,3)
m2 <- matrix(1:12,4,3)
m3 <- matrix(13:27,5,3)
l1 <- list(m1,m2,m3)
kr(l1)
#ex2
l2 <- list(m1,m3)
kr(l2)
normc

Normaliz the columns of x to a length of 1.

Description

Normaliz the columns of x to a length of 1.

Usage

`normc(x)`

Arguments

- `x`
 n*p matrix

Value

xn normalized result

Examples

```r
#ex1.
m <- matrix(1:4,2,2,byrow=TRUE)
normc(m)
#ex2.
n <- matrix(rnorm(100,10,1),10,10)
normc(n)
```

Parafac

Performs parafac factorization via ALS

Description

Performs parafac factorization via ALS

Usage

`Parafac(Y, R)`

Arguments

- `Y`
 Array of dimension m1*m2*...*mK
- `R`
 Desired rank of the factorization. Defalust is all columns(range=1:R)
Value

list with components

U: List of basis vectors for parafac factorization, \(U[k] \): \(m_k R \) for \(k=1,...,K \). Columns of \(U[K] \) have norm 1 for \(k>1 \).

SqError: Vector of squared error for the approximation at each iteration (should be non-increasing)

Examples

\[
A \leftarrow \text{array(stats::rnorm(100*10*10), dim=c(100,10,10))}
\]

\[
\text{Parafac}(A,4)
\]

SIFA

Supervised Integrated Factor Analysis

Description

Supervised Integrated Factor Analysis

Usage

\[
\text{SIFA(}
\begin{array}{l}
X,
Y,
r_0,
r,
relation = \text{"linear"},
sparsity = 0,
max_niter = 1000,
convg_thres = 0.01,
type = \text{"Anp"}
\end{array}
\)
\]

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>n*q matrix, centered covariate data</td>
</tr>
<tr>
<td>Y</td>
<td>1K cell array, each cell is a npi centered primary data, should roughly contribute equally to joint struct</td>
</tr>
<tr>
<td>r0</td>
<td>scalar, prespecified rank of common structure</td>
</tr>
<tr>
<td>r</td>
<td>1*K vector, prespecified rank of specific structures</td>
</tr>
<tr>
<td>relation</td>
<td>'linear' (default), use linear function to model the relation between U and covariates 'univ_kernel', use kernel methods for single covariates</td>
</tr>
<tr>
<td>sparsity</td>
<td>1 (default), when est B0 or B, use LASSO with BIC to select the best tuning, suitable for high</td>
</tr>
</tbody>
</table>
max_niter default 1000, max number of iteration
convg_thres default 0.01, overall convergence threshold
type "A" or "Anp" or "B" or "Bnp", condition to use

Value

list with components

B0: q*r0 matrix, coefficient for joint structure (may be sparse)
B: 1*K cell array, each is a q*ri coefficient matrix (may be sparse)
V_joint: sum(p)*r0 matrix, stacked joint loadings, with orthonormal columns.
V_ind: 1*K array, each is a pi*ri loading matrix, with orthonormal columns
se2: 1*K vector, noise variance for each phenotypic data set
Sf0: r0*r0 matrix, diagonal covariance matrix
Sf: 1*K array, each is a ri*ri diagonal covariance matrix
EU: n*(r0+sum(ri)) matrix, conditional expectation of joint and individual scores

Examples

```r
## Not run:
r0 <- 2
r <- c(3,3)
V <- matrix(stats::rnorm(10*2),10,2)
Fmatrix <- matrix(MASS::mvrnorm(n=1*500,rep(0,2),matrix(c(9,0,0,4),2,2)),500,2)
E <- matrix(stats::rnorm(500*10,0,3),500,10)
X <- tcrossprod(Fmatrix,V)+E
X <-scale(X,center=TRUE,scale=FALSE)
Y1 <- matrix(stats::rnorm(500*200,0,1),500,200)
Y2 <- matrix(stats::rnorm(500*200,0,1),500,200)
Y <- list(Y1,Y2)
SIFA(X,Y,r0,r,max_niter=200)
## End(Not run)
```

SupParafacEM Using EM algorithm to fit the SupCP model

Description

Using EM algorithm to fit the SupCP model
Usage

SupParafacEM(
 Y,
 X,
 R,
 AnnealIters = 100,
 ParafacStart = 0,
 max_niter = 1000,
 convg_thres = 10^-3,
 Sf_diag = 1
)

Arguments

Y n*q full column rank reponse matrix(necessarily n>=q)
X n*p1*...*pk design array
R fixed rankd of approximation, R<=min(n,p)
AnnealIters Annealing iterations (default = 100)
ParafacStart binary argument for wether to initialize with Parafac factorization (default = 0)
max_niter maximum number of iterations (default = 1000)
convg_thres convergence threshold for difference in log likelihood (default = 10^-3)
Sf_diag whether Sf is diagnal (default=1,diagnoal)

Value

list with components

B: q*r coefficient matrix for U~Y
V: list of length K-1. V[k] is a p*r coefficient matrix with columns of norm 1
U: Conditional expectation of U: n*r
se2: scalar, var(E)
Sf: r*r diagonal matrix, cov(F)
rec: log likelihood for each iteration

Examples

sigmaF <- diag(c(100,64,36,16,4))
F matrix n*r
Fmatrix1 <- matrix(MASS::mvrnorm(n=100,rep(0,5),sigmaF),100,5)
U<-Fmatrix1
V1 <- matrix(stats::rnorm(10*5),10,5)
V2 <- matrix(stats::rnorm(10*5),10,5)
L <- list(U,V1,V2)
X <- TensProd(L)
Y <- matrix(stats::rnorm(100*10),100,10)
R <-3
SupParafacEM(Y,X,R)
SupPCA

Fit a supervised singular value decomposition (SupSVD) model

Description

This function fits the SupSVD model: \(X = UV' + E, \ U = YB + F\) where \(X\) is an observed primary data matrix (to be decomposed), \(U\) is a latent score matrix, \(V\) is a loading matrix, \(E\) is measurement noise, \(Y\) is an observed auxiliary supervision matrix, \(B\) is a coefficient matrix, and \(F\) is a random effect matrix.

It is a generalization of principal component analysis (PCA) or singular value decomposition (SVD). It decomposes the primary data matrix \(X\) into low-rank components, while taking into account potential supervision from any auxiliary data \(Y\) measured on the same samples.

See more details in 2016 JMVA paper "Supervised singular value decomposition and its asymptotic properties" by Gen Li, Dan Yang, Andrew B Nobel and Haipeng Shen.

Usage

\[
\text{SupPCA}(Y, X, r)
\]

Arguments

- \(Y\) \(n\times q\) (column centered) auxiliary data matrix, rows are samples and columns are stats::variables (must have linearly independent columns to avoid overfitting).
- \(X\) \(n\times p\) (column centered) primary data matrix, which we want to decompose. rows are samples (matched with \(Y\)) and columns are variables.
- \(r\) positive scalar, prespecified rank \((r < \min(n,p))\).

Value

list with components

- \(B\): \(q\times r\) coefficient matrix of \(Y\) on the scores of \(X\), maybe sparse if gamma=1.
- \(V\): \(p\times r\) loading matrix of \(X\), with orthonormal columns.
- \(U\): \(n\times r\) score matrix of \(X\), conditional expectation of random scores.
- \(se2\): scalar, variance of measurement error in the primary data \(X\).
- \(Sf\): \(r\times r\) diagonal covariance matrix, for random effects (see paper).

Note: Essentially, \(U\) and \(V\) are the most important output for dimension reduction purpose as in PCA or SVD.
Examples

\[r=2 \]
\[Y \leftarrow \text{matrix}(\text{rnorm}(400,0,1),nrow=100) \]
\[B \leftarrow \text{c}(-1,1,-\text{sqrt}(3/2),-1) \]
\[B \leftarrow \text{cbind}(B,\text{c}(1,1,-1,\text{sqrt}(3/2))) \]
\[V \leftarrow \text{matrix}(\text{rnorm}(68*2),68,2) \]
\[\text{Fmatrix} \leftarrow \text{matrix}(\text{MASS::mvrnorm}(n=1*100, \text{rep}(0,2),\text{matrix}(\text{c}(9,0,0,4),2,2)),100,2) \]
\[E \leftarrow \text{matrix}(\text{rnorm}(100*68,0,3),100,68) \]
\[Yc \leftarrow \text{scale}(Y,\text{center}=\text{TRUE},\text{scale}=\text{FALSE}) \]

Case 1 (supsvd) \[X = YBV^T + FV^T + E \]
\[X1 \leftarrow Y%*%\text{tcrossprod}(B,V) + \text{tcrossprod}(\text{Fmatrix},V) + E \]
\[X1c \leftarrow \text{scale}(X1,\text{center}=\text{TRUE},\text{scale}=\text{FALSE}) \]
\[\text{SupPCA}(Yc,X1c,r) \]

Case 2 (PCA) \[X = FV^T + E \]
\[X2 \leftarrow \text{tcrossprod}(\text{Fmatrix},V) + E \]
\[X2c \leftarrow \text{scale}(X2,\text{center}=\text{TRUE},\text{scale}=\text{FALSE}) \]
\[\text{SupPCA}(Yc,X2c,r) \]

Case 3 (RRR) \[X = YBV^T + E \]
\[X3 \leftarrow Y%*%\text{tcrossprod}(B,V) + E \]
\[X3c \leftarrow \text{scale}(X3,\text{center}=\text{TRUE},\text{scale}=\text{FALSE}) \]
\[\text{SupPCA}(Yc,X3c,r) \]

SupSFPCA

Supervised Sparse and Functional Principal Component Analysis

Description

This function conducts supervised sparse and functional principal component analysis by fitting the SupSVD model \[X=UW' + E \]
\[U=YB + F \]
where \(X \) is an observed primary data matrix (to be decomposed), \(U \) is a latent score matrix, \(V \) is a loading matrix, \(E \) is measurement noise, \(Y \) is an observed auxiliary supervision matrix, \(B \) is a coefficient matrix, and \(F \) is a random effect matrix.

It decomposes the primary data matrix \(X \) into low-rank components, while taking into account many different features: 1) potential supervision from any auxiliary data \(Y \) measured on the same samples; 2) potential smoothness for loading vectors \(V \) (for functional data); 3) sparsity in supervision coefficients \(B \) and loadings \(V \) (for variable selection).

It is a very general dimension reduction method that subsumes PCA, sparse PCA, functional PCA, supervised PCA, etc as special cases. See more details in 2016 JCGS paper “Supervised sparse and functional principal component analysis” by Gen Li, Haipeng Shen, and Jianhua Z. Huang.

Usage

\[
\text{SupSFPCA}(\\
Y, \\
X, \\
r, \\
)
\]
ind_lam = 1,
ind_alp = 1,
ind_gam = 1,
ind_Omg = 1,
Omega = 0,
max_niter = 10^3,
convg_thres = 10^-6,
vmax_niter = 10^2,
vconvg_thres = 10^-4
)

Arguments

Y
n*q (column centered) auxiliary data matrix, rows are samples and columns are variables

X
n*p (column centered) primary data matrix, which we want to decompose. rows are samples (matched with Y) and columns are variables

r
positive scalar, prespecified rank (r should be smaller than n and p)

ind_lam
0 or 1 (default=1, sparse loading), sparsity index for loadings

ind_alp
0 or 1 (default=1, smooth loading), smoothness index for loadings

ind_gam
0 or 1 (default=1, sparse coefficient), sparsity index for supervision coefficients. Note: if gamma is set to be 0, Y must have q<n to avoid overfitting; if gamma is set to be 1, then it can handle high dimensional supervision Y

ind_Omg
p*p symmetric positive semi-definite matrix for smoothness penalty (default is for evenly spaced data) Note: only change this if you have unevenly spaced functional data X

Omega
??

max_niter
scalar (default=1E3), max number of overall iterations

convg_thres
positive scalar (default=1E-6), overall convergence threshold

vmax_niter
scalar (default=1E2), max number of iterations for estimating each loading vector

vconvg_thres
positive scalar (default=1E-4), convergence threshold for the proximal gradient descent algorithm for estimating each loading vector

Value

list with components

B:
q*r coefficient matrix of Y on the scores of X, maybe sparse if gamma=1

V:
p*r loading matrix of X, each column has norm 1, but no strict orthogonality because of sparsity and smoothness. If lambda=1, V is sparse; if alpha=1, each column of V is smooth

U:
n*r score matrix of X, conditional expectation of random scores, no strict orthogonality

se2:
scalar, variance of measurement error in the primary data X
Sf: \(r \times r \) diagonal covariance matrix, for random effects (see paper)

Note: Essentially, U and V are the most important output for dimension reduction purpose as in PCA or SVD.

Examples

```r
## Not run:
library(spls)
data(yeast)
r <- 4
ydata <- as.data.frame(yeast[,1])
xdata <- as.data.frame(yeast[,2])
yc <- scale(ydata, center = TRUE, scale = FALSE)
xc <- scale(xdata, center = TRUE, scale = FALSE)
SupSFPCA(yc, xc, r)
## End(Not run)
```

TensProd

Compute tensor product over multiple dimensions using Khatri-Rao product

Description

Compute tensor product over multiple dimensions using Khatri-Rao product

Usage

```r
TensProd(L, range = NA)
```

Arguments

- `L` List of length K, with matrix entries \(L_k: m_k \times R \);
- `range` Column indices over which to apply tensor product. Default is all columns (range = \([1:R]\))

Value

Ans Array of size \(m_1 \times m_2 \ldots \times m_K \), where the \([i_1, \ldots, i_K]\); entry is the sum of product \(L_1(i_{1, r}) \times \cdots \times L_K(i_{K, r}) \) over all \(r \) in range.

Examples

```r
L <- list(matrix(rnorm(10*10), 10, 10), matrix(rnorm(10*10), 10, 10), matrix(rnorm(1000*10), 1000, 10))
TensProd(L)
```
Index

kr, 2

normc, 3

Parafac, 3

SIFA, 4
SupParafacEM, 5
SupPCA, 7
SupSFP, 8

TensProd, 10