Package ‘SuperpixelImageSegmentation’

May 4, 2021

Type Package

Title Superpixel Image Segmentation

Version 1.0.4

Date 2021-05-04

BugReports https://github.com/mlampros/SuperpixelImageSegmentation/issues

URL https://github.com/mlampros/SuperpixelImageSegmentation

License GPL-3

Encoding UTF-8

Depends R(>= 3.2)

Imports Rcpp (>= 0.12.10), R6, OpenImageR, grDevices, lattice

LinkingTo Rcpp, RcppArmadillo (>= 0.9.1), ClusterR, OpenImageR

Suggests testthat, covr, knitr, rmarkdown

RoxygenNote 7.1.1

NeedsCompilation yes

Author Lampros Mouselimis [aut, cre] (<https://orcid.org/0000-0002-8024-1546>)

Maintainer Lampros Mouselimis <mouselimislampros@gmail.com>

Repository CRAN

Date/Publication 2021-05-04 14:10:02 UTC

R topics documented:

Image_Segmentation .. 2

Index 7
Image_Segmentation

Segmentation of images based on Superpixels, Affinity propagation and Kmeans clustering

Description

Segmentation of images based on Superpixels, Affinity propagation and Kmeans clustering

Usage

```r
# init <- Image_Segmentation$new()
```

Details

\(sim_wL, sim_wA, sim_wB \) are the weights of the three channels. They keep balance so as to be consistent with human perception.

The quantity \(\text{colorradius} \) adjusts the number of clusters, and if its value is low, the number of targets would increase, which leads to more detailed segmentation results.

If the \text{adjust_centroids_and_return_masks} parameter is set to FALSE then the output \text{kmeans_image_data} will be an RGB image, otherwise it will be a black-and-white image.

\text{colour_type} parameter: RGB (Red-Green-Blue), LAB (Lightness, A-colour-dimension, B-colour-dimension) or HSV (Hue, Saturation, Value) colour.

Higher resolution images give better results.

The \text{affinity propagation} algorithm is used here with default parameter values.

By setting the \text{sim_normalize} parameter to TRUE, the affinity propagation algorithm requires less iterations to complete. However, the \text{colorradius} parameter does not have an effect if the similarity matrix is normalized.

\--------kmeans initializers--------

\text{optimal_init} : this initializer adds rows of the data incrementally, while checking that they do not already exist in the centroid-matrix

\text{quantile_init} : initialization of centroids by using the cummulative distance between observations and by removing potential duplicates

\text{random} : random selection of data rows as initial centroids

Methods

```r
Image_Segmentation$new()
```

\text{spixel_segmentation}()
spixel_masks_show()

spixel_clusters_show()

Methods

Public methods:

- `Image_Segmentation$new()`
- `Image_Segmentation$spixel_segmentation()`
- `Image_Segmentation$spixel_masks_show()`
- `Image_Segmentation$spixel_clusters_show()`
- `Image_Segmentation$clone()`

Method `new()`:

Usage:

`Image_Segmentation$new()`

Method `spixel_segmentation()`:

Usage:

`Image_Segmentation$spixel_segmentation(input_image, method = "slic", superpixel = 200, kmeans_method = "", AP_data = FALSE, use_median = TRUE, minib_kmeans_batch = 10, minib_kmeans_init_fraction = 0.5, kmeans_num_init = 3, kmeans_max_iters = 100, kmeans_initializer = "kmeans++", colour_type = "RGB", compactness_factor = 20, adjust_centroids_and_return_masks = FALSE, return_labels_2_dimensional = FALSE, sim_normalize = FALSE, sim_wL = 3, sim_wA = 10, sim_wB = 10, sim_color_radius = 20, ap_maxits = 1000, ap_convis = 100, ap_dampfact = 0.9, ap_nonoise = 0,)`
verbose = FALSE
)

Arguments:
input_image a 3-dimensional input image (the range of the pixel values should be preferably in the range 0 to 255)
method a character string specifying the superpixel method. It can be either "slic" or "slico"
superpixel a numeric value specifying the number of superpixels
kmeans_method a character string specifying the kmeans method. If not empty (""") then it can be either "kmeans" or "mini_batch_kmeans"
AP_data a boolean. If TRUE then the affinity propagation image data will be computed and returned
use_median a boolean. If TRUE then the median will be used rather than the mean value for the inner computations
minib_kmeans_batch the size of the mini batches
minib_kmeans_init_fraction percentage of data to use for the initialization centroids (applies if initializer is kmeans++ or optimal_init). Should be a float number between 0.0 and 1.0.
kmeans_num_init number of times the algorithm will be run with different centroid seeds
kmeans_max_iters the maximum number of clustering iterations
kmeans_initializer the method of initialization. One of, optimal_init, quantile_init, kmeans++ and random. See details for more information
colour_type a character string specifying the colour type. It can be one of "RGB", "LAB" or "HSV"
compactness_factor a numeric value specifying the compactness parameter in case that method is "slic"
adjust_centroids_and_return_masks a boolean. If TRUE and the kmeans_method parameter is NOT empty (""") then the centroids will be adjusted and image-masks will be returned. This will allow me to plot the masks using the spixel_masks_show method.
return_labels_2_dimensionsional a boolean. If TRUE then a matrix of labels based on the output superpixels in combination with the Affinity Propagation clusters will be returned
sim_normalize a boolean. If TRUE then the constructed similarity matrix will be normalised to have unit p-norm (see the armadillo documentation for more details)
sim_wL a numeric value specifying the weight for the "L" channel of the image (see the details section for more information)
sim_wA a numeric value specifying the weight for the "A" channel of the image (see the details section for more information)
sim_wB a numeric value specifying the weight for the "B" channel of the image (see the details section for more information)
sim_color_radius a numeric value specifying the colorradius (see the details section for more information)
ap_maxits a numeric value specifying the maximum number of iterations for the Affinity Propagation Clustering (defaults to 1000)
ap_convits a numeric value. If the estimated exemplars stay fixed for convits iterations, the affinity propagation algorithm terminates early (defaults to 100)
ap_dampfact a float number specifying the update equation damping level in [0.5, 1). Higher
values correspond to heavy damping, which may be needed if oscillations occur in the
Affinity Propagation Clustering (defaults to 0.9)
ap_nonoise a float number. The affinity propagation algorithm adds a small amount of noise
to data to prevent degenerate cases; this disables that.
verbose a boolean. If TRUE then information will be printed in the console (spixel_masks_show
method)

Method spixel_masks_show():
Usage:
Image_Segmentation$spixel_masks_show(
 delay_display_seconds = 3,
 display_all = FALSE,
 margin_btw_plots = 0.15,
 verbose = FALSE
)
Arguments:
delay_display_seconds a numeric value specifying the seconds to delay the display of the
 next image (It displays the images consecutively). This parameter applies only if the
display_all a boolean. If TRUE then all images will be displayed in a grid (spixel_masks_show
 parameter is set to FALSE (spixel_masks_show method)
margin_btw_plots a float number specifying the margins between the plots if the display_all
 parameter is set to TRUE (spixel_masks_show method)
verbose a boolean. If TRUE then information will be printed in the console (spixel_masks_show
 method)

Method spixel_clusters_show():
Usage:
Image_Segmentation$spixel_clusters_show(
 spix_labels,
 color_palette = grDevices::rainbow,
 parameter_list_png = NULL
)
Arguments:
spix_labels a matrix. I can retrieve the "spix_labels" parameter by setting the "return_labels_2_dimensionsional"
pixel_segmentation" method (spixel_clusters_show method)
color_palette one of the color palettes. Use ?grDevices::topo.colors to see the available color
data palettes
parameter_list_png either NULL or a list of parameters passed to the ?grDevices::png func-
tion, such as list(filename = 'img.png', width = 100, height = 100, units = "px", pointsize =

Method clone(): The objects of this class are cloneable with this method.
Usage:
Image_Segmentation$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
References

Examples

```r
library(SuperpixelImageSegmentation)

path = system.file("images", "BSR_bsd500_image.jpg", package = "SuperpixelImageSegmentation")

im = OpenImageR::readImage(path)

init = Image_Segmentation$new()

num_spix = 10  # for illustration purposes
# num_spix = 600  # recommended number of superpixels

spx = init$spixel_segmentation(input_image = im,
                               superpixel = num_spix,
                               AP_data = TRUE,
                               use_median = TRUE,
                               return_labels_2_dimensionsional = TRUE,
                               sim_color_radius = 10)

#...........................
# plot the superpixel labels
#...........................

plt = init$spixel_clusters_show(spix_labels = spx$spix_labels,
                                color_palette = grDevices::rainbow,
                                parameter_list_png = NULL)

# plt

#...............................  
# create a binary image for a specified cluster label 
#...............................

pix_values = spx$spix_labels

target_cluster = 3  # determine clusters visually ("plt" variable)

pix_values[pix_values != target_cluster] = 0  # set all other values to 0 (background)

pix_values[pix_values == target_cluster] = 1  # set the target_cluster to 1 (binary image)

# OpenImageR::imageShow(pix_values)
```
Index

Image_Segmentation, 2