Package ‘Surrogate’

February 29, 2024

Type Package
Title Evaluation of Surrogate Endpoints in Clinical Trials
Version 3.2.4
Description In a clinical trial, it frequently occurs that the most credible outcome to evaluate the effectiveness of a new therapy (the true endpoint) is difficult to measure. In such a situation, it can be an effective strategy to replace the true endpoint by a (bio)marker that is easier to measure and that allows for a prediction of the treatment effect on the true endpoint (a surrogate endpoint). The package ‘Surrogate’ allows for an evaluation of the appropriateness of a candidate surrogate endpoint based on the meta-analytic, information-theoretic, and causal-inference frameworks. Part of this software has been developed using funding provided from the European Union’s Seventh Framework Programme for research, technological development and demonstration (Grant Agreement no 602552), the Special Research Fund (BOF) of Hasselt University (BOF-number: BOF2OCPO3), GlaxoSmithKline Biologicals, Baekeland Mandaat (HBC.2022.0145), and Johnson & Johnson Innovative Medicine.
Imports MASS, lattice, latticeExtra, survival, nlme, lme4, msm, logistf, rms, ks, extraDistr, pbapply, flexsurv, rvinecopulib, maxLik, purrr, MBESS, tidyr
License GPL (>= 2)
Repository CRAN
NeedsCompilation no
RoxygenNote 7.2.3
Encoding UTF-8
Suggests FNN, mgcv, testthat (>= 3.0.0), vdiffr, parallel, fitdistrplus, kdecopula, cubature, mvtnorm, copula, withr, stringr
Config/testthat/edition 3
URL https://github.com/florianstijven/Surrogate-development
BugReports https://github.com/florianstijven/Surrogate-development/issues
Author Wim Van Der Elst [cre, aut],
 Florian Stijven [aut],
 Fenny Ong [aut],
 Paul Meyvisch [aut],
 Alvaro Poveda [aut],
 Ariel Alonso [aut],
 Hannah Ensor [aut],
 Christoper Weir [aut],
 Geert Molenberghs [aut]
Maintainer Wim Van Der Elst <wim.vanderelst@gmail.com>
Depends R (>= 3.5.0)
Date/Publication 2024-02-29 21:32:46 UTC

R topics documented:

AA.MultS ... 5
ARMD ... 7
ARMD.MultS ... 7
BifixedContCont .. 8
BimixedCbcContCont .. 13
BimixedContCont ... 16
binary_continuous_loglik ... 21
Bootstrap.MEP.BinBin ... 21
CausalDiagramBinBin ... 23
CausalDiagramContCont .. 25
cdf_fun .. 27
clayton_loglik_copula_scale 27
comb27.BinBin .. 28
compute_ICA_BinCont .. 30
compute_ICA_SurvSurv ... 31
delta_method_log_mutinfo 33
Dvine_ICA_confint ... 34
ECT ... 35
estimate_ICA_BinCont ... 36
estimate_mutual_information_SurvSurv 37
Fano.BinBin .. 38
fit_copula_model_BinCont 40
fit_copula_submodel_BinCont 41
fit_model_SurvSurv ... 42
FixedBinBinIT .. 45
FixedBinContIT .. 49
FixedContBinIT ... 54
FixedContContIT ... 58
FixedDiscrDiscrIT .. 63
frank_loglik_copula_scale 67
gaussian_loglik_copula_scale 68
gumbel_loglik_copula_scale 68
R topics documented:

ICA.BinBin ... 69
ICA.BinBin.CounterAssum .. 72
ICA.BinBin.Grid.Full .. 74
ICA.BinBin.Grid.Sample ... 77
ICA.BinBin.Grid.Sample.Uncert 79
ICA.BinCont ... 82
ICA.BinCont.BS .. 86
ICA.ContCont ... 89
ICA.ContCont.MultiS ... 92
ICA.ContCont.MultiS.MPC .. 95
ICA.ContCont.MultiS.PC .. 98
ICA.ContCont.MultiS_alt .. 101
ICA.Sample.ContCont ... 104
ICA_given_model_constructor .. 107
ISTE.ContCont ... 108
loglik_copula_scale .. 112
log_likelihood_copula_model ... 113
LongToWide ... 114
MarginalProbs ... 116
marginal_distribution .. 117
marginal_gof_plots_scr .. 118
marginal_gof_scr_S_plot ... 118
MaxEntContCont .. 120
MaxEntICA.BinBin .. 122
MaxEntSPF.BinBin .. 124
mean_S_before_T_plot_scr .. 126
MICA.ContCont ... 128
MICA.Sample.ContCont ... 131
MinSurrContCont .. 134
MixedContContIT ... 136
model_fit_measures .. 140
MulixedContCont.MultiS .. 141
MumixedContCont.MultiS .. 145
new_vine_copula_ss_fit .. 149
Ovarian .. 150
PANSS .. 151
pdf_fun .. 152
plot Causal-Inference BinBin ... 152
plot Causal-Inference BinCont ... 154
plot Causal-Inference ContCont 155
plot FixedDiscrDiscrIT .. 157
plot ICA.ContCont.MultiS ... 159
plot Information-Theoretic .. 161
plot Information-Theoretic BinCombn 163
plot ISTE.ContCont .. 165
plot MaxEntContCont ... 167
plot MaxEntICA.BinBin .. 168
plot MaxEntSPF.BinBin .. 169
plot Meta-Analytic .. 171
plot MinSurrContCont 174
plot PredTrialTContCont 175
plot SPF BinBin ... 177
plot SPF BinCont ... 179
plot TrialLevelIT .. 180
plot TrialLevelMA .. 181
plot TwoStageSurvSurv 183
plot.comb27.BinBin .. 184
plot.Fano.BinBin ... 185
plot.PPE.BinBin ... 187
plot.SurvSurv .. 189
Pos.Def.Matrices .. 191
PPE.BinBin .. 192
Pred.TrialT.ContCont 194
Prentice ... 196
PROC.BinBin ... 199
RandVec ... 201
Restrictions.BinBin 202
sample_copula_parameters 203
sample_deltas_BinCont 204
sample_dvine .. 206
Schizo .. 207
Schizo_Bin .. 208
Schizo_BinCont ... 209
Schizo_PANSS ... 210
sensitivity_analysis_BinContCopula 211
sensitivity_analysis_SurvSurvCopula 214
sensitivity_intervals_Dvine 219
Sim.Data.Counterfactuals 222
Sim.Data.CounterfactualsBinBin 224
Sim.Data.MTS ... 225
Sim.Data.STS ... 227
Sim.Data.STSBinBin .. 228
Single_Trial.RE.AA .. 229
SPF.BinBin ... 233
SPF.BinCont .. 235
summary_level_bootstrap_ICA 236
SurvSurv .. 238
Test.Mono .. 241
TrialLevelIT ... 242
TrialLevelMA .. 244
TwoStageSurvSurv ... 245
twostep_BinCont .. 248
twostep_SurvSurv .. 249
UnifixedContSurv .. 250
UnimixedContCont .. 255
Index 260
AA.MultS

Description

The function AA.MultS computes the multiple-surrogate adjusted correlation. This is a generalisation of the adjusted association proposed by Buyse & Molenberghs (1998) (see Single.Trial.RE.AA) to the setting where there are multiple endpoints. See Details below.

Usage

AA.MultS(Sigma_gamma, N, Alpha=0.05)

Arguments

- **Sigma_gamma**: The variance covariance matrix of the residuals of regression models in which the true endpoint \(T \) is regressed on the treatment \(Z \), the first surrogate \(S_1 \) is regressed on \(Z \), ..., and the \(k \)-th surrogate \(S_k \) is regressed on \(Z \). See Details below.
- **N**: The sample size (needed to compute a CI around the multiple adjusted association: \(\gamma_M \)).
- **Alpha**: The \(\alpha \)-level that is used to determine the confidence interval around \(\gamma_M \). Default 0.05.

Details

The multiple-surrogate adjusted association \((\gamma_M) \) is obtained by regressing \(T, S_1, S_2, \ldots, S_k \) on the treatment \(Z \):

\[
T_j = \mu_T + \beta Z_j + \varepsilon_{Tj},
\]

\[
S_{1j} = \mu_{S1} + \alpha_1 Z_j + \varepsilon_{S1j},
\]

\[
\ldots,
\]

\[
S_{kj} = \mu_{S_k} + \alpha_k Z_j + \varepsilon_{Skj},
\]

where the error terms have a joint zero-mean normal distribution with variance-covariance matrix:

\[
\Sigma = \begin{pmatrix}
\sigma_{TT} & \Sigma_{ST} \\
\Sigma_{ST}' & \Sigma_{SS}
\end{pmatrix}.
\]

The multiple adjusted association is then computed as

\[
\gamma_M = \sqrt{\frac{\Sigma_{ST}' \Sigma_{SS}^{-1} \Sigma_{ST}}{\sigma_{TT}}}
\]
Value

An object of class `AA.MultS` with components.

- **Gamma.Delta**
 An object of class `data.frame` that contains the multiple-surrogate adjusted association (i.e., γ_M), its standard error, and its confidence interval (based on the Fisher-Z transformation procedure).

- **Corr.Gamma.Delta**
 An object of class `data.frame` that contains the bias-corrected multiple-surrogate adjusted association (i.e., corrected γ_M), its standard error, and its confidence interval (based on the Fisher-Z transformation procedure).

- **Sigma.gamma**
 The variance covariance matrix of the residuals of regression models in which T is regressed on Z, S_1 is regressed on Z, ..., and S_k is regressed on Z.

- **N**
 The sample size (used to compute a CI around the multiple adjusted association; γ_M)

- **Alpha**
 The α-level that is used to determine the confidence interval around γ_M.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

- `Single.Trial.RE.AA`

Examples

```r
data(ARMD.MultS)

# Regress T on Z, S1 on Z, ..., Sk on Z
# (to compute the covariance matrix of the residuals)
Res_T <- residuals(lm(Diff52~Treat, data=ARMD.MultS))
Res_S1 <- residuals(lm(Diff4~Treat, data=ARMD.MultS))
Res_S2 <- residuals(lm(Diff12~Treat, data=ARMD.MultS))
Res_S3 <- residuals(lm(Diff24~Treat, data=ARMD.MultS))
Residuals <- cbind(Res_T, Res_S1, Res_S2, Res_S3)

# Make covariance matrix of residuals, Sigma.gamma
Sigma.gamma <- cov(Residuals)

# Conduct analysis
Result <- AA.MultS(Sigma.gamma = Sigma.gamma, N = 188, Alpha = .05)
```
Explore results
summary(Result)

ARMD

Data of the Age-Related Macular Degeneration Study

Description

These are the data of a clinical trial involving patients suffering from age-related macular degeneration (ARMD), a condition that involves a progressive loss of vision. A total of 181 patients from 36 centers participated in the trial. Patients’ visual acuity was assessed using standardized vision charts. There were two treatment conditions (placebo and interferon-α). The potential surrogate endpoint is the change in the visual acuity at 24 weeks (6 months) after starting treatment. The true endpoint is the change in the visual acuity at 52 weeks.

Usage

data(ARMD)

Format

A data.frame with 181 observations on 5 variables.

- **Id**: The Patient ID.
- **Center**: The center in which the patient was treated.
- **Treat**: The treatment indicator, coded as −1 = placebo and 1 = interferon-α.
- **Diff24**: The change in the visual acuity at 24 weeks after starting treatment. This endpoint is a potential surrogate for Diff52.
- **Diff52**: The change in the visual acuity at 52 weeks after starting treatment. This outcome serves as the true endpoint.

ARMD.MultS

Data of the Age-Related Macular Degeneration Study with multiple candidate surrogates

Description

These are the data of a clinical trial involving patients suffering from age-related macular degeneration (ARMD), a condition that involves a progressive loss of vision. A total of 181 patients participated in the trial. Patients’ visual acuity was assessed using standardized vision charts. There were two treatment conditions (placebo and interferon-α). The potential surrogate endpoints are the changes in the visual acuity at 4, 12, and 24 weeks after starting treatment. The true endpoint is the change in the visual acuity at 52 weeks.
Usage

data(ARMD.MultS)

Format

A data.frame with 181 observations on 6 variables.

- **Id**: The Patient ID.
- **Diff4**: The change in the visual acuity at 4 weeks after starting treatment. This endpoint is a potential surrogate for Diff52.
- **Diff12**: The change in the visual acuity at 12 weeks after starting treatment. This endpoint is a potential surrogate for Diff52.
- **Diff24**: The change in the visual acuity at 24 weeks after starting treatment. This endpoint is a potential surrogate for Diff52.
- **Diff52**: The change in the visual acuity at 52 weeks after starting treatment. This outcome serves as the true endpoint.
- **Treat**: The treatment indicator, coded as \(-1\) = placebo and \(1\) = interferon-\(\alpha\).

BifixedContCont

Fits a bivariate fixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case)

Description

The function **BifixedContCont** uses the bivariate fixed-effects approach to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the **Details** section below. Further, the Individual Causal Association (ICA) is computed.

Usage

```r
BifixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, T0T1=seq(-1, 1, by=.2), T0S1=seq(-1, 1, by=.2), T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2))
```

Arguments

- **Dataset**: A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.
- **Surr**: The name of the variable in Dataset that contains the surrogate endpoint values.
- **True**: The name of the variable in Dataset that contains the true endpoint values.
- **Treat**: The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as \(1\) for the experimental group and \(-1\) for the control group, or as \(1\) for the experimental group and \(0\) for the control group.
Trial.ID The name of the variable in Dataset that contains the trial ID to which the patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"), or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2 of the two-stage approach. If FALSE, then an unweighted regression analysis is conducted at stage 2 of the two-stage approach. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain in order to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The \(\alpha \)-level that is used to determine the confidence intervals around \(R^2_{\text{trial}} \), \(R_{\text{trial}} \), \(R^2_{\text{indiv}} \) and \(R_{\text{indiv}} \). Default 0.05.

T0T1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of \(\rho_\Delta \) (ICA). For details, see function ICA.ContCont. Default seq(-1, 1, by=.2).

T0S1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of \(\rho_\Delta \). Default seq(-1, 1, by=.2).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of \(\rho_\Delta \). Default seq(-1, 1, by=.2).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of \(\rho_\Delta \). Default seq(-1, 1, by=.2).

Details

When the full bivariate mixed-effects model is fitted to assess surrogacy in the meta-analytic framework (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation, the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al., 2005; Tibaldi et al., 2003).

The function BifixedContCont implements one such strategy, i.e., it uses a two-stage bivariate fixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, a bivariate linear regression model is fitted. When a full or semi-reduced model is requested (by using the argument Model=c("Full") or Model=c("SemiReduced") in the function call), the following bivariate model is fitted:

\[
S_{ij} = \mu_S + \alpha_i Z_{ij} + \epsilon_{Sij},
\]

\[
T_{ij} = \mu_T + \beta_i Z_{ij} + \epsilon_{Tij},
\]

where \(S_{ij} \) and \(T_{ij} \) are the surrogate and true endpoint values of subject \(j \) in trial \(i \), \(Z_{ij} \) is the treatment indicator for subject \(j \) in trial \(i \), \(\mu_S \) and \(\mu_T \) are the fixed trial-specific intercepts for
S and T, and α_i and β_i are the trial-specific treatment effects on S and T, respectively. When a reduced model is requested (by using the argument Model="Reduced" in the function call), the following bivariate model is fitted:

$$S_{ij} = \mu_S + \alpha_i Z_{ij} + \varepsilon_{Sij},$$

$$T_{ij} = \mu_T + \beta_i Z_{ij} + \varepsilon_{Tij},$$

where μ_S and μ_T are the common intercepts for S and T (i.e., it is assumed that the intercepts for the surrogate and the true endpoints are identical in all trials). The other parameters are the same as defined above.

In the above models, the error terms ε_{Sij} and ε_{Tij} are assumed to be mean-zero normally distributed with variance-covariance matrix Σ:

$$\Sigma = \begin{pmatrix} \sigma_{SS} & \sigma_{ST} \\ \sigma_{ST} & \sigma_{TT} \end{pmatrix}.$$

Based on Σ, individual-level surrogacy is quantified as:

$$R^2_{\text{indiv}} = \frac{\sigma_{ST}^2}{\sigma_{SS}\sigma_{TT}}.$$

Next, the second stage of the analysis is conducted. When a full model is requested by the user (by using the argument Model="Full" in the function call), the following model is fitted:

$$\widehat{\beta}_i = \lambda_0 + \lambda_1 \widehat{\mu}_S + \lambda_2 \widehat{\alpha}_i + \varepsilon_i,$$

where the parameter estimates for β_i, μ_S, and α_i are based on the full model that was fitted in stage 1.

When a reduced or semi-reduced model is requested by the user (by using the arguments Model="Reduced" or Model="SemiReduced" in the function call), the following model is fitted:

$$\widehat{\beta}_i = \lambda_0 + \lambda_1 \widehat{\alpha}_i + \varepsilon_i,$$

where the parameter estimates for β_i and α_i are based on the semi-reduced or reduced model that was fitted in stage 1.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.

The classical coefficient of determination of the fitted stage 2 model provides an estimate of R^2_{trial}.
An object of class BifixedContCont with components,

Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded. Data.Analyze is the dataset on which the surrogacy analysis was conducted.

A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in Data.Analyze).

The results of stage 1 of the two-stage model fitting approach: a data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

A data.frame that contains the residuals for the surrogate and true endpoints that are obtained in stage 1 of the analysis (ε_{SIj} and ε_{TIj}).

An object of class lm (linear model) that contains the parameter estimates of the regression model that is fitted in stage 2 of the analysis.

A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.

A data.frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval.

A data.frame that contains the trial-level correlation coefficient (R_{trial}), its standard error and confidence interval.

A data.frame that contains the individual-level correlation coefficient (R_{indiv}), its standard error and confidence interval.

A data.frame that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., ρ_{T0S0}) and in the experimental treatment group (i.e., ρ_{T1S1}), their standard errors and their confidence intervals.

The variance-covariance matrix of the trial-specific intercept and treatment effects for the surrogate and true endpoints (when a full or semi-reduced model is fitted, i.e., when Model=c("Full") or Model=c("SemiReduced") is used in the function call), or the variance-covariance matrix of the trial-specific treatment effects for the surrogate and true endpoints (when a reduced model is fitted, i.e., when Model=c("Reduced") is used in the function call). The variance-covariance matrix D.Equiv is equivalent to the D matrix that would be obtained
when a (full or reduced) bivariate mixed-effect approach is used; see function `BimixedContCont`.

- **Sigma**: The 2 by 2 variance-covariance matrix of the residuals (ε_{Sij} and ε_{Tij}).
- **ICA**: A fitted object of class `ICA.ContCont`.
- **T0T0**: The variance of the true endpoint in the control treatment condition.
- **T1T1**: The variance of the true endpoint in the experimental treatment condition.
- **S0S0**: The variance of the surrogate endpoint in the control treatment condition.
- **S1S1**: The variance of the surrogate endpoint in the experimental treatment condition.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`UnifixedContCont`, `UnimixedContCont`, `BimixedContCont`, `plot Meta-Analytic`

Examples

```r
## Not run: # time consuming code part
# Example 1, based on the ARMD data
data(ARMD)

# Fit a full bivariate fixed-effects model with weighting according to the
# number of patients in stage 2 of the two stage approach to assess surrogacy:
Sur <- BifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center, Pat.ID=Id, Model="Full", Weighted=TRUE)

# Obtain a summary of the results
summary(Sur)

# Obtain a graphical representation of the trial- and individual-level surrogacy
plot(Sur)

# Example 2
# Conduct a surrogacy analysis based on a simulated dataset with 2000 patients,
# 100 trials, and Rindiv=Rtrial=.8
```
Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8, Seed=123, Model="Reduced")

Fit a reduced bivariate fixed-effects model with no weighting according to the number of patients in stage 2 of the two stage approach to assess surrogacy:
\dontrun{ #time-consuming code parts
Sur2 <- BifixedContCont(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat, Trial.ID=Trial.ID, Pat.ID=Pat.ID, , Model="Reduced", Weighted=FALSE)
}

Show summary and plots of results:
summary(Sur2)
plot(Sur2, Weighted=FALSE)

End(Not run)

BimixedCbCContCont

Fits a bivariate mixed-effects model using the cluster-by-cluster (CbC) estimator to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case)

Description

The function `BimixedCbCContCont` uses the cluster-by-cluster (CbC) estimator of the bivariate mixed-effects to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available. See the **Details** section below.

Usage

`BimixedCbCContCont(Dataset, Surr, True, Treat, Trial.ID, Min.Treat.Size=2, Alpha=0.05)`

Arguments

Dataset
A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, and a trial ID.

Surr
The name of the variable in `Dataset` that contains the surrogate endpoint values.

True
The name of the variable in `Dataset` that contains the true endpoint values.

Treat
The name of the variable in `Dataset` that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and −1 for the control group, or as 1 for the experimental group and 0 for the control group.

Trial.ID
The name of the variable in `Dataset` that contains the trial ID to which the patient belongs.

Min.Treat.Size
The minimum number of patients in each group (control or experimental) that a trial should contain to be included in the analysis. If the number of patients in a group of a trial is smaller than the value specified by `Min.Treat.Size`, the data of the trial are excluded from the analysis. Default 2.

Alpha
Significance level for the tests to determine the significance of the effect. Default 0.05.
Alpha

The α-level that is used to determine the confidence intervals around R^2_{trial} and R^2_{indiv}. Default 0.05.

Details

The function `BimixedContCont` fits a bivariate mixed-effects model using the CbC estimator (for details, see Florez et al., 2019) to assess surrogacy (for details, see Buyse et al., 2000). In particular, the following mixed-effects model is fitted:

$$S_{ij} = \mu_S + m_Si + (\alpha + a_i)Z_{ij} + \varepsilon_{Sij},$$

$$T_{ij} = \mu_T + m_Ti + (\beta + b_i)Z_{ij} + \varepsilon_{Tij},$$

where i and j are the trial and subject indicators, S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, Z_{ij} is the treatment indicator for subject j in trial i, μ_S and μ_T are the fixed intercepts for S and T, m_Si and m_Ti are the corresponding random intercepts, α and β are the fixed treatment effects for S and T, and a_i and b_i are the corresponding random treatment effects, respectively.

The vector of the random effects (i.e., m_Si, m_Ti, a_i and b_i) is assumed to be mean-zero normally distributed with variance-covariance matrix D:

$$D = \begin{pmatrix} d_{SS} & d_{ST} & d_{TT} \\ d_{ST} & d_{Sa} & d_{Ta} \\ d_{TT} & d_{Tb} & d_{ab} \\ d_{Sa} & d_{Ta} & d_{ab} \\ d_{ab} & d_{bb} & d_{bb} & d_{bb} \end{pmatrix}.$$

The trial-level coefficient of determination (i.e., R^2_{trial}) is quantified as:

$$R^2_{trial} = \frac{(d_{Sb})'(d_{SS} d_{Sa} d_{Sa} d_{aa})^{-1}(d_{Sb})}{d_{bb}}.$$

The error terms ε_{Sij} and ε_{Tij} are assumed to be mean-zero normally distributed with variance-covariance matrix Σ:

$$\Sigma = \begin{pmatrix} \sigma_{SS} & \sigma_{ST} \\ \sigma_{ST} & \sigma_{TT} \end{pmatrix}.$$

Based on Σ, individual-level surrogacy is quantified as:

$$R^2_{indiv} = \frac{\sigma_{ST}^2}{\sigma_{SS}\sigma_{TT}}.$$

Note The CbC estimator for the full bivariate mixed-effects model is closed-form (for details, see Florez et al., 2019). Therefore, it is fast. Furthermore, it is recommended when computational issues occur with the full maximum likelihood estimator (implemented in function `BimixedContCont`).

The CbC estimator is performed in two stages: (1) a linear model is fitted in each trial. Evidently, it is require that the design matrix (X_i) is full column rank within each trial, allowing estimation of the fixed effects. When X_i is not full rank, trial i is excluded from the analysis. (2) a global
estimator of the fixed effects (β) is obtained by weighted averaging the sets of estimates of each trial, and D is estimated using a method-of-moments estimator. Optimal weights (for details, see Molenberghs et al., 2018) are used as a weighting scheme.

The estimator of D might lead to a non-positive-definite solution. Therefore, the eigenvalue method (for details, see Rousseeuw and Molenberghs, 1993) is used for non-positive-definiteness adjustment.

Value

An object of class BimixedContCont with components,

- **Obs.Per.Trial**: A data frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (after excluding clusters). Clusters are excluded for two reasons: (i) the number of patients is smaller than the value specified by Min.Trial.Size, and (ii) the design matrix (X_i) is not full rank.

- **Trial.removed**: Number of trials excluded from the analysis.

- **Fixed.Effects**: A data frame that contains the fixed intercept and treatment effects for the true and the surrogate endpoints (i.e., μ_S, μ_T, α, and β) and their corresponding standard error.

- **Trial.R2**: A data frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.

- **Indiv.R2**: A data frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval.

- **D**: The variance-covariance matrix of the random effects (the D matrix), i.e., a 4 by 4 variance-covariance matrix of the random intercept and treatment effects.

- **DH.pd**: DH.pd=TRUE if an adjustment for non-positive definiteness was not needed to estimate D. DH.pd=FALSE if this adjustment was required.

- **Sigma**: The 2 by 2 variance-covariance matrix of the residuals (ε_{Sij} and ε_{Tij}).

Author(s)

Alvaro J. Florez, Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

BimixedContCont

See Also

BimixedContCont, UnifixedContCont, BifixedContCont, UnimixedContCont

Examples

Open the Schizo dataset (clinical trial in schizophrenic patients)
data(Schizo)

Fit a full bivariate random-effects model by the cluster-by-cluster (CbC) estimator
a minimum of 2 subjects per group are allowed in each trial
fit <- BimixedCbCContCont(Dataset=Schizo, Surr=BPRS, True=PANSS, Treat=Treat, Trial.ID=InvestId, Alpha=0.05, Min.Treat.Size = 10)
Note that an adjustment for non-positive definiteness was required and 113 trials were removed.

Obtain a summary of the results
summary(fit)

BimixedContCont

Fits a bivariate mixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case)

Description

The function BimixedContCont uses the bivariate mixed-effects approach to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available. The user can specify whether a full or reduced model should be fitted. See the Details section below. Further, the Individual Causal Association (ICA) is computed.

Usage

BimixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"), Min.Trial.Size=2, Alpha=.05, T0T1=seq(-1, 1, by=.2), T0S1=seq(-1, 1, by=.2), T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2), ...)

Arguments

- **Dataset** A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.
- **Surr** The name of the variable in Dataset that contains the surrogate endpoint values.
- **True** The name of the variable in Dataset that contains the true endpoint values.
- **Treat** The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and -1 for the control group, or as 1 for the experimental group and 0 for the control group.
Trial.ID
The name of the variable in Dataset that contains the trial ID to which the patient belongs.

Pat.ID
The name of the variable in Dataset that contains the patient’s ID.

Model
The type of model that should be fitted, i.e., Model=c("Full") or Model=c("Reduced"). See the Details section below. Default Model=c("Full").

Min.Trial.Size
The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha
The α-level that is used to determine the confidence intervals around R_{trial}^2, R_{trial}, R_{indiv}^2 and R_{indiv}. Default 0.05.

T0T1
A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of ρ_{Δ} (ICA). For details, see function ICA.ContCont. Default seq(-1, 1, by=.2).

T0S1
A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of ρ_{Δ}. Default seq(-1, 1, by=.2).

T1S0
A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of ρ_{Δ}. Default seq(-1, 1, by=.2).

S0S1
A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of ρ_{Δ}. Default seq(-1, 1, by=.2).

...
Other arguments to be passed to the function lmer (of the R package lme4) that is used to fit the geralized linear mixed-effect models in the function BimixedContCont.

Details

The function BimixedContCont fits a bivariate mixed-effects model to assess surrogacy (for details, see Buyse et al., 2000). In particular, the following mixed-effects model is fitted:

$$
S_{ij} = \mu_S + m_{Si} + (\alpha + a_i)Z_{ij} + \varepsilon_{Sij},
$$

$$
T_{ij} = \mu_T + m_{Ti} + (\beta + b_i)Z_{ij} + \varepsilon_{Tij},
$$

where i and j are the trial and subject indicators, S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, Z_{ij} is the treatment indicator for subject j in trial i, μ_S and μ_T are the fixed intercepts for S and T, m_{Si} and m_{Ti} are the corresponding random intercepts, α and β are the fixed treatment effects for S and T, and a_i and b_i are the corresponding random treatment effects, respectively.

The vector of the random effects (i.e., m_{Si}, m_{Ti}, a_i and b_i) is assumed to be mean-zero normally distributed with variance-covariance matrix D:

$$
D = \begin{pmatrix}
 d_{SS} & d_{ST} & d_{Ta} & d_{Sa} \\
 d_{ST} & d_{TT} & d_{Tb} & d_{Sb} \\
 d_{Ta} & d_{Tb} & d_{aa} & d_{ab} \\
 d_{Sa} & d_{Sb} & d_{ab} & d_{bb}
\end{pmatrix}.
$$
The trial-level coefficient of determination (i.e., \(R^2_{\text{trial}} \)) is quantified as:

\[
R^2_{\text{trial}} = \frac{(d_{Sb} d_{ab})' \begin{pmatrix} d_{SS} & d_{Sa} \\ d_{Sa} & d_{aa} \end{pmatrix}^{-1} (d_{Sb} d_{ab})}{d_{bb}}.
\]

The error terms \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are assumed to be mean-zero normally distributed with variance-covariance matrix \(\Sigma \):

\[
\Sigma = \begin{pmatrix} \sigma_{SS} & \sigma_{ST} \\ \sigma_{ST} & \sigma_{TT} \end{pmatrix}.
\]

Based on \(\Sigma \), individual-level surrogacy is quantified as:

\[
R^2_{\text{indiv}} = \frac{\sigma_{ST}^2}{\sigma_{SS} \sigma_{TT}}.
\]

Note

When the full bivariate mixed-effects approach is used to assess surrogacy in the meta-analytic framework (for details, see Buyse & Molenberghs, 2000), computational issues often occur. Such problems mainly occur when the number of trials is low, the number of patients in the different trials is low, and/or when the trial-level heterogeneity is small (Burzykowski et al., 2000).

In that situation, the use of a simplified model-fitting strategy may be warranted (for details, see Burzykowski et al., 2000; Tibaldi et al., 2003).

For example, a reduced bivariate-mixed effect model can be fitted instead of a full model (by using the `Model=c("Reduced")` argument in the function call). In the reduced model, the random-effects structure is simplified (i) by assuming that there is no heterogeneity in the random intercepts, or (ii) by assuming that the covariance between the random intercepts and random treatment effects is zero. Note that under this assumption, the computation of the trial-level coefficient of determination (i.e., \(R^2_{\text{trial}} \)) simplifies to:

\[
R^2_{\text{trial}} = \frac{d_{ab}^2}{d_{aa} d_{bb}}.
\]

Alternatively, the bivariate mixed-effects model may be abandoned and the user may fit a univariate fixed-effects model, a bivariate fixed-effects model, or a univariate mixed-effects model (for details, see Tibaldi et al., 2003). These models are implemented in the functions `UnifixedContCont`, `BifixedContCont`, and `UnimixedContCont`.

Value

An object of class `BimixedContCont` with components,

- **Data.Analyze**

Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are
excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by \texttt{Min.Trial.Size}, the data of the trial are excluded. \texttt{Data.Analyze} is the dataset on which the surrogacy analysis was conducted.

\textbf{Obs.Per.Trial} A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in \texttt{Data.Analyze}).

\textbf{Trial.Spec.Results} A data.frame that contains the trial-specific intercepts and treatment effects on the surrogate and the true endpoints when a full model is requested (i.e., $\mu_S + m_{S_1}, \mu_T + m_{T_1}, \alpha+a_i$, and $\beta+b_i$), or the trial-specific treatment effects on the surrogate and the true endpoints when a reduced model is requested (i.e., $\alpha+a_i$, and $\beta+b_i$). Note that the results that are contained in \texttt{Trial.Spec.Results} are equivalent to the results in \texttt{Results.Stage.1} that are obtained when the functions \texttt{UnifixedContCont}, \texttt{UnimixedContCont}, or \texttt{BifixedContCont} are used.

\textbf{Residuals} A data.frame that contains the residuals for the surrogate and true endpoints (ε_{Sij} and ε_{Tij}).

\textbf{Fixed.Effect.Pars} A data.frame that contains the fixed intercept and treatment effects for the surrogate and the true endpoints (i.e., μ_S, μ_T, α, and β).

\textbf{Random.Effect.Pars} A data.frame that contains the random intercept and treatment effects for the surrogate and the true endpoints (i.e., m_{S_1}, m_{T_1}, a_i, and b_i) when a full model is fitted (i.e., when \texttt{Model=\texttt{"Full"}} is used in the function call), or that contains the random treatment effects for the surrogate and the true endpoints (i.e., a_i and b_i) when a reduced model is fitted (i.e., when \texttt{Model=\texttt{"Reduced"}} is used in the function call).

\textbf{Trial.R2} A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.

\textbf{Indiv.R2} A data.frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval.

\textbf{Trial.R} A data.frame that contains the trial-level correlation coefficient (R_{trial}), its standard error and confidence interval.

\textbf{Indiv.R} A data.frame that contains the individual-level correlation coefficient (R_{indiv}), its standard error and confidence interval.

\textbf{Cor.Endpoints} A data.frame that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., ρ_{T0S0}) and in the experimental treatment group (i.e., ρ_{T1S1}), their standard errors and their confidence intervals.

\textbf{D} The variance-covariance matrix of the random effects (the D matrix), i.e., a 4 by 4 variance-covariance matrix of the random intercept and treatment effects when a full model is fitted (i.e., when \texttt{Model=\texttt{"Full"}} is used in the function call), or a 2 by 2 variance-covariance matrix of the random treatment effects when a reduced model is fitted (i.e., when \texttt{Model=\texttt{"Reduced"}} is used in the function call).
Sigma The 2 by 2 variance-covariance matrix of the residuals (ε_{Sij} and ε_{Tij}).
ICA A fitted object of class ICA.ContCont.
T0T0 The variance of the true endpoint in the control treatment condition.
T1T1 The variance of the true endpoint in the experimental treatment condition.
S0S0 The variance of the surrogate endpoint in the control treatment condition.
S1S1 The variance of the surrogate endpoint in the experimental treatment condition.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
UnifixedContCont, BifixedContCont, UnimixedContCont, plot Meta-Analytic

Examples
Open the Schizo dataset (clinical trial in schizophrenic patients)
data(Schizo)

Not run: # Time consuming (>5 sec) code part
When a reduced bivariate mixed-effect model is used to assess surrogacy,
the conditioning number for the D matrix is very high:
Sur <- BimixedContCont(Dataset=Schizo, Surr=BPRS, True=PANSS, Treat=Treat, Model="Reduced", Trial.ID=InvestId, Pat.ID=Id)

Such problems often occur when the total number of patients, the total number
of trials and/or the trial-level heterogeneity
of the treatment effects is relatively small

As an alternative approach to assess surrogacy, consider using the functions
BifixedContCont, UnifixedContCont or UnimixedContCont in the meta-analytic framework,
or use the information-theoretic approach

End(Not run)
binary_continuous_loglik

Loglikelihood function for binary-continuous copula model

Description

Loglikelihood function for binary-continuous copula model

Usage

binary_continuous_loglik(para, X, Y, copula_family, marginal_surrogate)

Arguments

para Parameter vector. The parameters are ordered as follows:
- para[1]: mean parameter for latent true endpoint distribution
- para[2:p]: Parameters for surrogate distribution, more details in ?Surrogate::cdf_fun for the specific implementations.
- para[p + 1]: copula parameter

X First variable (continuous)

Y Second variable (binary, 0 or 1)

copula_family Copula family, one of the following:
- "clayton"
- "frank"
- "gumbel"
- "gaussian"

marginal_surrogate Marginal distribution for the surrogate. For all available options, see ?Surrogate::cdf_fun.

Value

(numeric) loglikelihood value evaluated in para.

Bootstrap.MEP.BinBin Bootstrap 95% CI around the maximum-entropy ICA and SPF (surrogate predictive function)

Description

Computes a 95% bootstrap-based CI around the maximum-entropy ICA and SPF (surrogate predictive function) in the binary-binary setting
Usage

Bootstrap.MEP.BinBin(Data, Surr, True, Treat, M=100, Seed=123)

Arguments

Data The dataset to be used.
Surr The name of the surrogate variable.
True The name of the true endpoint.
Treat The name of the treatment indicator.
M The number of bootstrap samples taken. Default M=1000.
Seed The seed to be used. Default Seed=123.

Value

R2H The vector the bootstrapped MEP ICA values.
r_1_1 The vector of the bootstrapped bootstrapped MEP r(1, 1) values.
r_min1_1 The vector of the bootstrapped bootstrapped MEP r(−1, 1).
r_0_1 The vector of the bootstrapped bootstrapped MEP r(0, 1).
r_1_0 The vector of the bootstrapped bootstrapped MEP r(1, 0).
r_min1_0 The vector of the bootstrapped bootstrapped MEP r(−1, 0).
r_0_0 The vector of the bootstrapped bootstrapped MEP r(0, 0).
r_1_min1 The vector of the bootstrapped bootstrapped MEP r(1, −1).
r_min1_min1 The vector of the bootstrapped bootstrapped MEP r(−1, −1).
r_0_min1 The vector of the bootstrapped bootstrapped MEP r(0, −1).
vector_p The matrix that contains all bootstrapped maximum entropy distributions of the vector of the potential outcomes.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot MaxEntSPF BinBin
Examples

```r
## Not run: # time consuming code part
MEP_CI <- Bootstrap.MEP.BinBin(Data = Schizo_Bin, Surr = "BPRS_Bin", True = "PANSS_Bin", 
                                Treat = "Treat", M = 500, Seed=123)
summary(MEP_CI)
## End(Not run)
```

CausalDiagramBinBin

Draws a causal diagram depicting the median informational coefficients of correlation (or odds ratios) between the counterfactuals for a specified range of values of the ICA in the binary-binary setting.

Description

This function provides a diagram that depicts the medians of the informational coefficients of correlation (or odds ratios) between the counterfactuals for a specified range of values of the individual causal association in the binary-binary setting (R^2_H).

Usage

```r
CausalDiagramBinBin(x, Values="Corrs", Theta_T0S0, Theta_T1S1, 
Min=0, Max=1, Cex.Letters=3, Cex.Corris=2, Lines.Rel.Width=TRUE, 
Col.Pos.Neg=TRUE, Monotonicity, Histograms.Correlations=FALSE, 
Densities.Correlations=FALSE)
```

Arguments

- `x` An object of class `ICA.BinBin`. See `ICA.BinBin`.
- `Values` Specifies whether the median informational coefficients of correlation or median odds ratios between the counterfactuals should be depicted, i.e., `Values="Corrs"` or `Values="ORs"`.
- `Theta_T0S0` The odds ratio between T and S in the control group. This quantity is estimable based on the observed data. Only has to be provided when `Values="ORs"`.
- `Theta_T1S1` The odds ratio between T and S in the experimental treatment group. This quantity is estimable based on the observed data. Only has to be provided when `Values="ORs"`.
- `Min` The minimum value of R^2_H that should be considered. Default=-1.
- `Max` The maximum value of R^2_H that should be considered. Default=1.
- `Cex.Letters` The size of the symbols for the counterfactuals (S_0, S_1, T_0, T_1). Default=3.
- `Cex.Corris` The size of the text depicting the median odds ratios between the counterfactuals. Default=2.
Lines.Rel.Width
Logical. When Lines.Rel.Width=TRUE, the widths of the lines that represent the odds ratios between the counterfactuals are relative to the size of the odds ratios (i.e., a smaller/thicker line is used for smaller/higher odds ratios. When Lines.Rel.Width=FALSE, the width of all lines representing the odds ratios between the counterfactuals is identical. Default=TRUE. Only considered when Values="ORs".

Col.Pos.Neg
Logical. When Col.Pos.Neg=TRUE, the color of the lines that represent the odds ratios between the counterfactuals is red for odds ratios below 1 and black for the ones above 1. When Col.Pos.Neg=FALSE, all lines are in black. Default=TRUE. Only considered when Values="ORs".

Monotonicity
Specifies the monotonicity scenario that should be considered (i.e., Monotonicity=c("No"), Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"), or Monotonicity=c("Surr.True.

Histograms.Correlations
Should histograms of the informational coefficients of association R^2_H be provided? Default Histograms.Correlations=FALSE.

Densities.Correlations
Should densities of the informational coefficients of association R^2_H be provided? Default Densities.Correlations=FALSE.

Value
The following components are stored in the fitted object if histograms of the informational correlations are requested in the function call (i.e., if Histograms.Correlations=TRUE and Values="Corrs" in the function call):

- R2_H_T0T1: The informational coefficients of association R^2_H between T_0 and T_1.
- R2_H_S1T0: The informational coefficients of association R^2_H between S_1 and T_0.
- R2_H_S0T1: The informational coefficients of association R^2_H between S_0 and T_1.
- R2_H_S0S1: The informational coefficients of association R^2_H between S_0 and S_1.
- R2_H_S0T0: The informational coefficients of association R^2_H between S_0 and T_0.
- R2_H_S1T1: The informational coefficients of association R^2_H between S_1 and T_1.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
ICA.BinBin
Examples

Compute R^2_H given the marginals specified as the pi's
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.2619048, pi1_0_=0.2857143,
 pi_1_1=0.6372549, pi_1_0=0.07843137, pi0_1_=0.1349206, pi_0_1=0.127451,
 Seed=1, Monotonicity=c("General"), M=1000)

Obtain a causal diagram that provides the medians of the
correlations between the counterfactuals for the range
of R^2_H values between 0.1 and 1
Assume no monotonicity
CausalDiagramBinBin(x=ICA, Min=0.1, Max=1, Monotonicity="No")

Assume monotonicity for S
CausalDiagramBinBin(x=ICA, Min=0.1, Max=1, Monotonicity="Surr.Endp")

Now only consider the results that were obtained when
monotonicity was assumed for the true endpoint
CausalDiagramBinBin(x=ICA, Values="ORs", Theta_T0S0=2.156, Theta_T1S1=10,
 Min=0, Max=1, Monotonicity="True.Endp")

CausalDiagramContCont Draws a causal diagram depicting the median correlations between
the counterfactuals for a specified range of values of ICA or MICA in
the continuous-continuous setting

Description

This function provides a diagram that depicts the medians of the correlations between the counterfactuals for a specified range of values of the individual causal association (ICA; \(\rho_\Delta \)) or the meta-analytic individual causal association (MICA; \(\rho_M \)).

Usage

CausalDiagramContCont(x, Min=-1, Max=1, Cex.Letters=3, Cex.Corrs=2,

Arguments

x An object of class ICA.ContCont or MICA.ContCont. See ICA.ContCont or
 MICA.ContCont.

Min The minimum values of (M)ICA that should be considered. Default=-1.

Max The maximum values of (M)ICA that should be considered. Default=1.

Cex.Letters The size of the symbols for the counterfactuals \((S_0, S_1, T_0, T_1)\). Default=3.

Cex.Corrs The size of the text depicting the median correlations between the counterfactuals. Default=2.
CausalDiagramContCont

Lines.Rel.Width
Logical. When `Lines.Rel.Width=TRUE`, the widths of the lines that represent the correlations between the counterfactuals are relative to the size of the correlations (i.e., a smaller line is used for correlations closer to zero whereas a thicker line is used for (absolute) correlations closer to 1). When `Lines.Rel.Width=FALSE`, the width of all lines representing the correlations between the counterfactuals is identical. Default=TRUE.

Col.Pos.Neg
Logical. When `Col.Pos.Neg=TRUE`, the color of the lines that represent the correlations between the counterfactuals is red for negative correlations and black for positive ones. When `Col.Pos.Neg=FALSE`, all lines are in black. Default=TRUE.

Histograms.Counterfactuals
Should plots that shows the densities for the identifiable correlations be shown? Default =FALSE.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
ICA.ContCont, MICA.ContCont

Examples

```r
## Not run: #Time consuming (>5 sec) code parts
# Generate the vector of ICA values when rho_T0S0=.91, rho_T1S1=.91, and when the
# grid of values {0, .1, ..., 1} is considered for the correlations
# between the counterfactuals:
SurICA <- ICA.ContCont(T0S0=.95, T1S1=.91, T0T1=seq(0, 1, by=.1), T0S1=seq(0, 1, by=.1),
                       T1S0=seq(0, 1, by=.1), S0S1=seq(0, 1, by=.1))

#obtain a plot of ICA

# Obtain a causal diagram that provides the medians of the
# correlations between the counterfactuals for the range
# of ICA values between .9 and 1 (i.e., which assumed
# correlations between the counterfactuals lead to a
# high ICA?)
CausalDiagramContCont(SurICA, Min=.9, Max=1)

# Same, for low values of ICA
```
cdf_fun

Function factory for distribution functions

Description

Function factory for distribution functions

Usage

cdf_fun(para, family)

Arguments

para Parameter vector.
family Distributional family, one of the following:

• "normal": normal distribution where para[1] is the mean and para[2] is the standard deviation.
• "logistic": logistic distribution as parameterized in stats::plogis() where para[1] and para[2] correspond to location and scale, respectively.
• "t": t distribution as parameterized in stats::pt() where para[1] and para[2] correspond to ncp and df, respectively.

Value

A distribution function that has a single argument. This is the vector of values in which the distribution function is evaluated.

clayton_loglik_copula_scale

Loglikelihood on the Copula Scale for the Clayton Copula

Description

clayton_loglik_copula_scale() computes the loglikelihood on the copula scale for the Clayton copula which is parameterized by theta as follows:

\[C(u,v) = (u^{-\theta} + v^{-\theta} - 1)^{-\frac{1}{\theta}} \]

Usage

clayton_loglik_copula_scale(theta, u, v, d1, d2)
Arguments

theta Copula parameter
u A numeric vector. Corresponds to first variable on the copula scale.
v A numeric vector. Corresponds to second variable on the copula scale.
d1 An integer vector. Indicates whether first variable is observed or right-censored,
 • d1[i] = 1 if u[i] corresponds to non-censored value
 • d1[i] = 0 if u[i] corresponds to right-censored value
 • d1[i] = -1 if u[i] corresponds to left-censored value

d2 An integer vector. Indicates whether first variable is observed or right-censored,
 • d2[i] = 1 if v[i] corresponds to non-censored value
 • d2[i] = 0 if v[i] corresponds to right-censored value
 • d2[i] = -1 if v[i] corresponds to left-censored value

Value

Value of the copula loglikelihood evaluated in theta.

comb27.BinBin
Assesses the surrogate predictive value of each of the 27 prediction functions in the setting where both S and T are binary endpoints

Description

The function comb27.BinBin assesses a surrogate predictive value of each of the 27 possible prediction functions in the single-trial causal-inference framework when both the surrogate and the true endpoints are binary outcomes. The distribution of frequencies at which each of the 27 possible prediction functions are selected provides additional insights regarding the association between S (ΔS) and T (ΔT). See Details below.

Usage

comb27.BinBin(pi1_1_, pi1_0_, pi_1_1, pi_1_0,
pi0_1_, pi_0_1, Monotonicity=c("No"), M=1000, Seed=1)

Arguments

pi1_1_ A scalar that contains values for \(P(T = 1, S = 1|Z = 0) \), i.e., the probability that \(S = T = 1 \) when under treatment \(Z = 0 \).
pi1_0_ A scalar that contains values for \(P(T = 1, S = 0|Z = 0) \).
pi_1_1 A scalar that contains values for \(P(T = 1, S = 1|Z = 1) \).
pi_1_0 A scalar that contains values for \(P(T = 1, S = 0|Z = 1) \).
pi0_1_ A scalar that contains values for \(P(T = 0, S = 1|Z = 0) \).
pi_0_1 A scalar that contains values for \(P(T = 0, S = 1|Z = 1) \).
Monotonicity Specifies which assumptions regarding monotonicity should be made, only one assumption can be made at the time: Monotonicity=c("No"), Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"), or Monotonicity=c("Surr.True.Endp"). Default Monotonicity=c("No").

M The number of random samples that have to be drawn for the freely varying parameters. Default M=100000.

Seed The seed to be used to generate πr. Default Seed=1.

Details

In the continuous normal setting, surrogacy can be assessed by studying the association between the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed the individual causal association (ICA; \(R^2_H \)), which captures the association between the individual causal effects of the treatment on S (\(\Delta_S \)) and T (\(\Delta_T \)) using information-theoretic principles.

The function `comb27.BinBin` computes \(R^2_H \) using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed to vary freely are considered. It computes the probability of a prediction error for each of the 27 possible prediction functions. The frequency at which each prediction function is selected provides additional insight about the minimal probability of a prediction error PPE which can be obtained with PPE.BinBin.

Value

An object of class `comb27.BinBin` with components,

- `index` count variable
- `Monotonicity` The vector of Monotonicity assumptions
- `Pe` The vector of the prediction error values.
- `combo` The vector containing the codes for the each of the 27 prediction functions.
- `R2_H` The vector of the \(R^2_H \) values.
- `H_Delta_T` The vector of the entropies of \(\Delta_T \).
- `H_Delta_S` The vector of the entropies of \(\Delta_S \).
- `I_Delta_T_Delta_S` The vector of the mutual information of \(\Delta_S \) and \(\Delta_T \).

Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

See Also

PPE.BinBin

Examples

Conduct the analysis assuming no monotonicity

Not run: # time consuming code part
comb27.BinBin(pi1_1_ = 0.3412, pi1_0_ = 0.2539, pi0_1_ = 0.119,
 pi_1_1 = 0.6863, pi_1_0 = 0.0882, pi_0_1 = 0.0784,
 Seed=1,Monotonicity=c("No"), M=500000)

End(Not run)

compute_ICA_BinCont

Compute Individual Causal Association for a given D-vine copula model in the Binary-Continuous Setting

Description

The compute_ICA_BinCont() function computes the individual causal association for a fully identified D-vine copula model in the setting with a continuous surrogate endpoint and a binary true endpoint.

Usage

compute_ICA_BinCont(
 copula_par,
 rotation_par,
 copula_family1,
 copula_family2 = copula_family1,
 n_prec,
 q_S0,
 q_S1,
 marginal_sp_rho = TRUE,
 seed = 1
)

Arguments

copula_par Parameter vector for the sequence of bivariate copulas that define the D-vine copula. The elements of copula_par correspond to \((c_{12}, c_{23}, c_{34}, c_{13};2, c_{24};3, c_{14};23)\).

rotation_par Vector of rotation parameters for the sequence of bivariate copulas that define the D-vine copula. The elements of rotation_par correspond to \((c_{12}, c_{23}, c_{34}, c_{13};2, c_{24};3, c_{14};23)\).

copula_family1 Copula family of \(c_{12}\) and \(c_{34}\). For the possible options, see loglik_copula_scale().

The elements of copula_family correspond to \((c_{12}, c_{34})\).
compute_ICA_SurvSurv

Copula family of the other bivariate copulas. For the possible options, see `loglik_copula_scale()`. The elements of `copula_family2` correspond to \((c_{23}, c_{13:2}, c_{24:3}, c_{14:23})\).

- `n_prec`: Number of Monte Carlo samples for the computation of the mutual information.
- `q_S0`: Quantile function for the distribution of \(S_0\).
- `q_S1`: Quantile function for the distribution of \(S_1\).
- `marginal_sp_rho`: (boolean) Compute the sample Spearman correlation matrix? Defaults to `TRUE`.
- `seed`: Seed for Monte Carlo sampling. This seed does not affect the global environment.

Value

(numeric) A Named vector with the following elements:

- ICA
- Spearman’s rho, \(\rho_s(\Delta S, \Delta T)\) (if asked)
- Kendall’s tau, \(\tau(\Delta S, \Delta T)\) (if asked)
- Marginal association parameters in terms of Spearman’s rho:

\[
(\rho_s(S_0, S_1), \rho_s(S_0, T_0), \rho_s(S_0, T_1), \rho_s(S_1, T_0), \rho_s(S_0, S_1), \rho_s(T_0, T_1))
\]

Description

The `compute_ICA_SurvSurv()` function computes the individual causal association (and associated quantities) for a fully identified D-vine copula model in the survival-survival setting.

Usage

```r
compute_ICA_SurvSurv(
  copula_par,
  rotation_par,
  copula_family1,
  copula_family2,
  n_prec,
  q_S0,
  q_T0,
  q_S1,
  q_T1,
  composite,
  marginal_sp_rho = TRUE,
)```
```r
se = 1,
mutinfo_estimator = NULL,
plot_deltas = FALSE,
restr_time = +Inf
)

Arguments

copula_par Parameter vector for the sequence of bivariate copulas that define the D-vine
 copula. The elements of `copula_par` correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).

rotation_par Vector of rotation parameters for the sequence of bivariate copulas that define the
 D-vine copula. The elements of `rotation_par` correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).

copula_family1 Copula family of \(c_{12}\) and \(c_{34}\). For the possible options, see `loglik_copula_scale()`.
 The elements of `copula_family` correspond to \((c_{12}, c_{34})\).

copula_family2 Copula family of the other bivariate copulas. For the possible options, see
 `loglik_copula_scale()`. The elements of `copula_family2` correspond to
 \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).

n_prec Number of Monte Carlo samples for the computation of the mutual information.

q_S0 Quantile function for the distribution of \(S_0\).

q_T0 Quantile function for the distribution of \(T_0\).

q_S1 Quantile function for the distribution of \(S_1\).

q_T1 Quantile function for the distribution of \(T_1\).

composite (boolean) If `composite` is `TRUE`, then the surrogate endpoint is a composite of
 both a ”pure” surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.

marginal_sp_rho (boolean) Compute the sample Spearman correlation matrix? Defaults to `TRUE`.

seed Seed for Monte Carlo sampling. This seed does not affect the global environment.

mutinfo_estimator Function that estimates the mutual information between the first two arguments
 which are numeric vectors. Defaults to `FNN::mutinfo()` with default arguments. @param `plot_deltas` (logical) Plot the sampled individual treatment effects?

plot_deltas Plot the sampled individual causal effects? Defaults to `FALSE`.

restr_time Restriction time for the potential outcomes. Defaults to `+Inf` which means no
 restriction. Otherwise, the sampled potential outcomes are replace by \(p\min(S_0, restr_time)\) (and similarly for the other potential outcomes).

Value

(numeric) A Named vector with the following elements:

- ICA
- Spearman’s rho, \(\rho_s(\Delta S, \Delta T)\) (if asked)
• Marginal association parameters in terms of Spearman’s rho (if asked):

\[\rho_s(T_0, S_0), \rho_s(T_0, S_1), \rho_s(T_0, T_1), \rho_s(S_0, S_1), \rho_s(S_0, T_1), \rho_s(S_1, T_1) \]

• Survival classification proportions (if asked):

\[\pi_{\text{harmed}}, \pi_{\text{protected}}, \pi_{\text{always}}, \pi_{\text{never}} \]

delta_method_log_mutinfo

Description

delta_method_log_mutinfo() computes the variance of the estimated log mutual information, given the unidentifiable parameters.

Usage

delta_method_log_mutinfo(
 fitted_model, # Returned value from fit_model_SurvSurv(). This object contains the estimated identifiable part of the joint distribution for the potential outcomes.
 copula_par_unid, # Parameter vector for the sequence of unidentifiable bivariate copulas that define the D-vine copula. The elements of copula_par correspond to \((c_{23}, c_{13}; c_{24}; c_{14}; c_{23})\).
 copula_family2, # Copula family of the other bivariate copulas. For the possible options, see loglik_copula_scale(). The elements of copula_family2 correspond to \((c_{23}, c_{13}; c_{24}; c_{14}; c_{23})\).
 rotation_par_unid, # Vector of rotation parameters for the sequence of unidentifiable bivariate copulas that define the D-vine copula. The elements of rotation_par correspond to \((c_{23}, c_{13}; c_{24}; c_{14}; c_{23})\).
 n_prec, # Number of Monte Carlo samples for the computation of the mutual information.
 mutinfo_estimator = NULL, # This argument is not used.
 composite, # This argument is not used.
 seed, # This argument is not used.
 eps = 0.001
)

Arguments

fitted_model

copula_par_unid

copula_family2

rotation_par_unid

n_prec
mutinfo_estimator
Function that estimates the mutual information between the first two arguments which are numeric vectors. Defaults to FNN::mutinfo() with default arguments. @param plot_deltas (logical) Plot the sampled individual treatment effects?

composite
(boolean) If composite is TRUE, then the surrogate endpoint is a composite of both a "pure" surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.

seed
Seed for Monte Carlo sampling. This seed does not affect the global environment.

eps
(numeric) Step size for finite difference in numeric differentiation

Details
This function should not be used. The ICA is computed through numerical methods with a considerable error. This error is negligible in individual estimates of the ICA; however, this error easily breaks the numeric differentiation because finite differences are inflated by this error.

Value
(numeric) Variance for the estimated ICA based on the delta method, holding the unidentifiable parameters fixed at the user supplied values.

Dvine_ICA_confint
Confidence interval for the ICA given the unidentifiable parameters

Description
Dvine_ICA_confint() computes the confidence interval for the ICA in the D-vine copula model. The unidentifiable parameters are fixed at the user supplied values.

Usage
Dvine_ICA_confint(
 fitted_model, alpha, copula_par_unid, copula_family2, rotation_par_unid, n_prec, mutinfo_estimator = NULL, composite, B, seed
)
Arguments

fitted_model Returned value from `fit_model_SurvSurv()`. This object contains the estimated identifiable part of the joint distribution for the potential outcomes.

alpha (numeric) $1 - \alpha$ is the level of the confidence interval

copula_par_unid Parameter vector for the sequence of unidentifiable bivariate copulas that define the D-vine copula. The elements of `copula_par` correspond to $(c_{23}, c_{13;2}, c_{24;3}, c_{14;23})$.

copula_family2 Copula family of the other bivariate copulas. For the possible options, see `loglik_copula_scale()`. The elements of `copula_family2` correspond to $(c_{23}, c_{13;2}, c_{24;3}, c_{14;23})$.

rotation_par_unid Vector of rotation parameters for the sequence of unidentifiable bivariate copulas that define the D-vine copula. The elements of `rotation_par` correspond to $(c_{23}, c_{13;2}, c_{24;3}, c_{14;23})$.

n_prec Number of Monte Carlo samples for the computation of the mutual information.

mutinfo_estimator Function that estimates the mutual information between the first two arguments which are numeric vectors. Defaults to `FNN::mutinfo()` with default arguments. @param plot_deltas (logical) Plot the sampled individual treatment effects?

composite (boolean) If `composite` is TRUE, then the surrogate endpoint is a composite of both a "pure" surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.

B Number of bootstrap replications

seed Seed for Monte Carlo sampling. This seed does not affect the global environment.

Value

(numeric) Vector with the limits of the two-sided $1 - \alpha$ confidence interval.

ECT

Apply the Entropy Concentration Theorem

Description

The Entropy Concentration Theorem (ECT; Edwin, 1982) states that if N is large enough, then $100(1 - F)\%$ of all p^* and ΔH is determined by the upper tail are $1 - F$ of a χ^2 distribution, with $DF = q - m - 1$ (which equals 8 in a surrogate evaluation context).

Usage

ECT(Perc=.95, H_Max, N)
Arguments

Perc The desired interval. E.g., Perc=.05 will generate the lower and upper bounds for $H(p)$ that contain 95% of the cases (as determined by the ECT).

H_Max The maximum entropy value. In the binary-binary setting, this can be computed using the function MaxEntICABinBin.

N The sample size.

Value

An object of class ECT with components,

Lower_H The lower bound of the requested interval.

Upper_H The upper bound of the requested interval, which equals H_{Max}.

Author(s)

Wim Van der Elst, Paul Meyvisch, & Ariel Alonso

References

See Also

MaxEntICABinBin, ICA.BinBin

Examples

ECT_fit <- ECT(Perc = .05, H_Max = 1.981811, N=454)
summary(ECT_fit)

estimate_ICA_BinCont Estimate ICA in Binary-Continuous Setting

Description

estimate_ICA_BinCont() estimates the individual causal association (ICA) for a sample of individual causal treatment effects with a continuous surrogate and a binary true endpoint. The ICA in this setting is defined as follows,

$$R_H^2 = \frac{I(\Delta S; \Delta T)}{H(\Delta T)}$$

where $I(\Delta S; \Delta T)$ is the mutual information and $H(\Delta T)$ the entropy.

Usage

estimate_ICA_BinCont(delta_S, delta_T)
estimate_mutual_information_SurvSurv

Estimate the Mutual Information in the Survival-Survival Setting

Description

estimate_mutual_information_SurvSurv() estimates the mutual information for a sample of individual causal treatment effects with a time-to-event surrogate and a time-to-event true endpoint. The mutual information is estimated by first estimating the bivariate density and then computing the mutual information for the estimated density.

Usage

estimate_mutual_information_SurvSurv(delta_S, delta_T, minfo_prec)

Arguments

- **delta_S**: (numeric) Vector of individual causal treatment effects on the surrogate.
- **delta_T**: (integer) Vector of individual causal treatment effects on the true endpoint. Should take on one of the following values: -1L, 0L, or 1L.
- **minfo_prec**: Number of quasi Monte-Carlo samples for the numerical integration to obtain the mutual information. If this value is 0 (default), the mutual information is not computed and NA is returned for the mutual information and derived quantities.

Value

- (numeric) Estimated ICA

- (numeric) estimated mutual information.
Fano.BinBin

Evaluate the possibility of finding a good surrogate in the setting where both S and T are binary endpoints

Description

The function Fano.BinBin evaluates the existence of a good surrogate in the single-trial causal-inference framework when both the surrogate and the true endpoints are binary outcomes. See Details below.

Usage

Fano.BinBin(pi1_, pi_1, rangepi10=c(0,min(pi1_,1-pi_1)),
fano_delta=c(0.1), M=100, Seed=1)

Arguments

pi1_ A scalar or a vector of plausible values that represents the proportion of responders under treatment.
pi_1 A scalar or a vector of plausible values that represents the proportion of responders under control.
rangepi10 Represents the range from which π_{10} is sampled. By default, Monte Carlo simulation will be constrained to the interval $[0, \min(\pi_1, \pi_0)]$ but this allows the user to specify a more narrow range. rangepi10=c(0,0) is equivalent to the assumption of monotonicity for the true endpoint.
fano_delta A scalar or a vector that specifies the values for the upper bound of the prediction error δ. Default fano_delta=c(0.2).
M The number of random samples that have to be drawn for the freely varying parameter π_{10}. Default M=1000. The number of random samples should be sufficiently large in relation to the length of the interval rangepi10. Typically M=1000 yields a sufficiently fine grid. In case rangepi10 is a single value: M=1
Seed The seed to be used to sample the freely varying parameter π_{10}. Default Seed=1.

Details

Values for π_{10} have to be uniformly sampled from the interval $[0, \min(\pi_1, \pi_0)]$. Any sampled value for π_{10} will fully determine the bivariate distribution of potential outcomes for the true endpoint. The treatment effect should be positive. The vector π_{km} fully determines R^2_{HL}.

Value

An object of class Fano.BinBin with components,

R^2_{HL} The sampled values for R^2_{HL}.
H_{Delta_T} The sampled values for $H\Delta T$.
PPE_T The sampled values for PPE_T.
minpi10 The minimum value for π_{10}.
maxpi10 The maximum value for π_{10}.
samplepi10 The sampled value for π_{10}.
delta The specified vector of upper bounds for the prediction errors.
uncertainty Indexes the sampling of π_{1}_.
pi_{00} The sampled values for π_{00}.
pi_{11} The sampled values for π_{11}.
pi_{01} The sampled values for π_{01}.
pi_{10} The sampled values for π_{10}.

Author(s)
Paul Meyvisch, Wim Van der Elst, Ariel Alonso

References

See Also
plot.Fano.BinBin

Examples
Conduct the analysis assuming no monotonicity
for the true endpoint, using a range of
upper bounds for prediction errors
Fano.BinBin(pi1_ = 0.5951, pi_1 = 0.7745,
fano_delta=c(0.05, 0.1, 0.2), M=1000)

Conduct the same analysis now sampling from
a range of values to allow for uncertainty
Fano.BinBin(pi1_ = runif(n=20, min=0.504, max=0.681),
pi_1 = runif(n=20, min=0.679, max=0.849),
fano_delta=c(0.05, 0.1, 0.2), M=10, Seed=2)
fit_copula_model_BinCont

Fit copula model for binary true endpoint and continuous surrogate endpoint

Description

The function `fit_copula_model_BinCont()` fits the copula model for a continuous surrogate endpoint and binary true endpoint. Because the bivariate distributions of the surrogate-true endpoint pairs are functionally independent across treatment groups, a bivariate distribution is fitted in each treatment group separately.

Usage

```r
git_copula_model_BinCont(
data, 
copula_family, 
marginal_surrogate, 
marginal_surrogate_estimator = NULL, 
twostep = FALSE, 
fitted_model = NULL, 
maxit = 500, 
method = "BFGS"
)
```

Arguments

- **data**
 A data frame in the correct format (See details).
- **copula_family**
 One of the following parametric copula families: "clayton", "frank", "gaussian", or "gumbel". The first element in `copula_family` corresponds to the control group, the second to the experimental group.
- **marginal_surrogate**
 Marginal distribution for the surrogate. For all available options, see `?Surrogate::cdf_fun`.
- **marginal_surrogate_estimator**
 Not yet implemented
- **twostep**
 (boolean) if TRUE, the two step estimator implemented in `twostep_BinCont()` is used for estimation.
- **fitted_model**
 Fitted model from which initial values are extracted. If NULL (default), standard initial values are used. This option intended for when a model is repeatedly fitted, e.g., in a bootstrap.
- **maxit**
 Maximum number of iterations for the numeric optimization, defaults to 500.
- **method**
 Optimization algorithm for maximizing the objective function. For all options, see `?maxLik::maxLik`. Defaults to "BFGS".
Value

WIP

Examples

```r
# Load Schizophrenia data set.
data("Schizo_BinCont")
# Perform listwise deletion.
na = is.na(Schizo_BinCont$CGI_Bin) | is.na(Schizo_BinCont$PANSS)
X = Schizo_BinCont$PANSS[!na]
Y = Schizo_BinCont$CGI_Bin[!na]
Treat = Schizo_BinCont$Treat[!na]
# Ensure that the treatment variable is binary.
Treat = ifelse(Treat == 1, 1, 0)
data = data.frame(X, Y, Treat)
# Fit copula model.
fitted_model = fit_copula_model_BinCont(data, "clayton", "normal", twostep = FALSE)
# Perform sensitivity analysis with a very low number of replications.
sens_results = sensitivity_analysis_BinCont_copula(
  fitted_model,
  10,
  lower = c(-1,-1,-1,-1),
  upper = c(1, 1, 1, 1),
  n_prec = 1e3
)
```

fit_copula_submodel_BinCont

Fit binary-continuous copula submodel

Description

The `fit_copula_submodel_BinCont()` function fits the copula (sub)model for a continuous surrogate and binary true endpoint with maximum likelihood.

Usage

```r
fit_copula_submodel_BinCont(
  X, 
  Y, 
  copula_family, 
  marginal_surrogate, 
  method = "BFGS" 
)```
**Arguments**

- **X** (numeric) Continuous surrogate variable
- **Y** (integer) Binary true endpoint variable ($T_k \in \{0, 1\}$)
- **copula_family** Copula family, one of the following:
  - "clayton"
  - "frank"
  - "gumbel"
  - "gaussian"
- **marginal_surrogate** Marginal distribution for the surrogate. For all available options, see `?Surrogate::cdf_fun`.
- **method** Optimization algorithm for maximizing the objective function. For all options, see `?maxLik::maxLik`. Defaults to "BFGS".

**Value**

A list with three elements:

- **ml_fit**: object of class `maxLik::maxLik` that contains the estimated copula model.
- **marginal_S_dist**: object of class `fitdistrplus::fitdist` that represents the marginal surrogate distribution.
- **copula_family**: string that indicates the copula family

---

**Description**

The function `fit_model_SurvSurv()` fits the copula model for time-to-event surrogate and true endpoints (Stijven et al., 2022). Because the bivariate distributions of the surrogate-true endpoint pairs are functionally independent across treatment groups, a bivariate distribution is fitted in each treatment group separately. The marginal distributions are based on the Royston-Parmar survival model (Royston and Parmar, 2002).

**Usage**

```r
define the function or example code here.```

```r
fit_model_SurvSurv(
data,
copula_family,
n_knots = 2,
fitted_model = NULL,
method = "BFGS",
maxit = 500
)
```
Arguments

- **data**
 A data frame in the correct format (See details).

- **copula_family**
 One of the following parametric copula families: "clayton", "frank", "gaussian", or "gumbel". The first element in copula_family corresponds to the control group, the second to the experimental group.

- **n_knots**
 Number of internal knots for the Royston-Parmar survival models for \tilde{S}_0, T_0, \tilde{S}_1, and T_1. If length(n_knots) == 1, the same number of knots are assumed for the four marginal distributions.

- **fitted_model**
 Fitted model from which initial values are extracted. If NULL (default), standard initial values are used. This option intended for when a model is repeatedly fitted, e.g., in a bootstrap.

- **method**
 Optimization algorithm for maximizing the objective function. For all options, see ?maxLik::maxLik. Defaults to "BFGRS".

- **maxit**
 Maximum number of iterations for the numeric optimization, defaults to 500.

Value

Returns an S3 object that can be used to perform the sensitivity analysis with `sensitivity_analysis_SurvSurv_copula()`.

Model

In the causal-inference approach to evaluating surrogate endpoints, the first step is to estimate the joint distribution of the relevant potential outcomes. Let $(T_0, S_0, S_1, T_1)'$ denote the vector of potential outcomes where $(S_k, T_k)'$ is the pair of potential outcomes under treatment $Z = k$. T refers to the true endpoint, e.g., overall survival. S refers to the composite surrogate endpoint, e.g., progression-free-survival. Because S is usually a composite endpoint with death as possible event, modeling difficulties arise because $Pr(S_k = T_k) > 0$.

Due to difficulties in modeling the composite surrogate and the true endpoint jointly, the time-to-surrogate event (\tilde{S}) is modeled instead of the time-to-composite surrogate event (S). Using this new variable, \tilde{S}, a D-vine copula model is proposed for $(T_0, \tilde{S}_0, \tilde{S}_1, T_1)'$ in Stijven et al. (2022). However, only the following bivariate distributions are identifiable $(T_k, \tilde{S}_k)'$ for $k = 0, 1$. The margins in these bivariate distributions are based on the Royston-Parmar survival model (Royston and Parmar, 2002). The association is modeled through two copulas of the same parametric form, but with unique copula parameters.

Two modelling choices are made before estimating the two bivariate distributions described in the previous paragraph:

- The number of internal knots for the Royston-Parmar survival models. This is specified through the n_knots argument. The number of knots is assumed to be equal across the four margins.

- The parametric family of the bivariate copulas. The parametric family is assumed to be equal across treatment groups. This choice is specified through the copula_family argument.

Data Format

The data frame should have the semi-competing risks format. The columns must be ordered as follows:
• time to surrogate event, true event, or independent censoring; whichever comes first
• time to true event, or independent censoring; whichever comes first
• treatment indicator: 0 or 1
• surrogate event indicator: 1 if surrogate event is observed, 0 otherwise
• true event indicator: 1 if true event is observed, 0 otherwise

Note that according to the methodology in Stijven et al. (2022), the surrogate event must not be the composite event. For example, when the surrogacy of progression-free survival for overall survival is evaluated. The surrogate event is progression, but not the composite event of progression or death.

Author(s)

Florian Stijven

References

See Also

sensitivity_analysis_SurvSurv_copula()

Examples

if(require(Surrogate)) {
 data("Ovarian")
 #For simplicity, data is not recoded to semi-competing risks format, but is
 #left in the composite event format.
 data = data.frame(Ovarian$Pfs,
 Ovarian$Surv,
 Ovarian$Treat,
 Ovarian$PfsInd,
 Ovarian$SurvInd)
 Surrogate::fit_model_SurvSurv(data = data,
 copula_family = "clayton",
 n_knots = 1)
}
Description

The function `FixedBinBinIT` uses the information-theoretic approach (Alonso & Molenberghs, 2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when both S and T are binary variables. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the Details section below.

Usage

```r
FixedBinBinIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, 
Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, 
Number.Bootstraps=50, Seed=sample(1:1000, size=1))
```

Arguments

- **Dataset**
 A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

- **Surr**
 The name of the variable in Dataset that contains the surrogate endpoint values.

- **True**
 The name of the variable in Dataset that contains the true endpoint values.

- **Treat**
 The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and -1 for the control group, or as 1 for the experimental group and 0 for the control group.

- **Trial.ID**
 The name of the variable in Dataset that contains the trial ID to which the patient belongs.

- **Pat.ID**
 The name of the variable in Dataset that contains the patient’s ID.

- **Model**
 The type of model that should be fitted, i.e., `Model=c("Full"), Model=c("Reduced"),` or `Model=c("SemiReduced")`. See the Details section below. Default `Model=c("Full")`.

- **Weighted**
 Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If `Weighted=TRUE`, weighted regression models are fitted. If `Weighted=FALSE`, unweighted regression analyses are conducted. See the Details section below. Default `TRUE`.

- **Min.Trial.Size**
 The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded from the analysis. Default `2`.
Alpha

The α-level that is used to determine the confidence intervals around R^2_h and R^2_{ht}. Default 0.05.

Number.Bootstraps

The standard errors and confidence intervals for R^2_h, $R^2_{h,ind}$ and $R^2_{h,ind}$ are determined based on a bootstrap procedure. Number.Bootstraps specifies the number of bootstrap samples that are used. Default 50.

Seed

The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size = 1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

$$g_T(E(T_{ij})) = \mu_{T1} + \beta_{i} Z_{ij},$$
$$g_T(E(T_{ij}|S_{ij})) = \gamma_{0i} + \gamma_{1i} Z_{ij} + \gamma_{2i} S_{ij},$$

where i and j are the trial and subject indicators, g_T is an appropriate link function (i.e., a logit link when binary endpoints are considered), S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, and Z_{ij} is the treatment indicator for subject j in trial i. μ_{T1} and β_{i} are the trial-specific intercepts and treatment-effects on the true endpoint in trial i. γ_{0i} and γ_{1i} are the trial-specific intercepts and treatment-effects on the true endpoint in trial i after accounting for the effect of the surrogate endpoint.

The -2 log likelihood values of the previous models in each of the i trials (i.e., L_{1i} and L_{2i}, respectively) are subsequently used to compute individual-level surrogacy based on the so-called Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

$$R^2_h = 1 - \frac{1}{N} \sum_i exp \left(-\frac{L_{2i} - L_{1i}}{n_i} \right),$$

where N is the number of trials and n_i is the number of patients within trial i.

When it can be assumed (i) that the treatment-corrected association between the surrogate and the true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e., when $N = 1$), the previous expression simplifies to:

$$R^2_{h,ind} = 1 - exp \left(-\frac{L_2 - L_1}{N} \right).$$

The upper bound does not reach to 1 when T is binary, i.e., its maximum is 0.75. Kent (1983) claims that 0.75 is a reasonable upper bound and thus $R^2_{h,ind}$ can usually be interpreted without paying special consideration to the discreteness of T. Alternatively, to address the upper bound problem, a scaled version of the mutual information can be used when both S and T are binary (Joe, 1989):

$$R^2_{b,ind} = \frac{I(T, S)}{\min[H(T), H(S)]},$$
where the entropy of T and S in the previous expression can be estimated using the log likelihood functions of the GLMs shown above.

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument `Model="Full"`) or `Model="SemiReduced"` in the function call), trial-level surrogacy is assessed by fitting the following univariate models:

\[S_{ij} = \mu_{Si} + \alpha_i Z_{ij} + \varepsilon_{S_{ij}}, \]
\[T_{ij} = \mu_{Ti} + \beta_i Z_{ij} + \varepsilon_{T_{ij}}, \]

where i and j are the trial and subject indicators, S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, Z_{ij} is the treatment indicator for subject j in trial i, μ_{Si} and μ_{Ti} are the fixed trial-specific intercepts for S and T, and α_i and β_i are the fixed trial-specific treatment effects on S and T, respectively. The error terms $\varepsilon_{S_{ij}}$ and $\varepsilon_{T_{ij}}$ are assumed to be independent.

When a reduced model is requested by the user (by using the argument `Model="Reduced"` in the function call), the following univariate models are fitted:

\[S_{ij} = \mu_{S} + \alpha_i Z_{ij} + \varepsilon_{S_{ij}}, \]
\[T_{ij} = \mu_{T} + \beta_i Z_{ij} + \varepsilon_{T_{ij}}, \]

where μ_{S} and μ_{T} are the common intercepts for S and T. The other parameters are the same as defined above, and $\varepsilon_{S_{ij}}$ and $\varepsilon_{T_{ij}}$ are again assumed to be independent.

When the user requested a full model approach (by using the argument `Model="Full"` in the function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

\[\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu}_{Si} + \lambda_2 \hat{\alpha}_i + \varepsilon_i, \]

where the parameter estimates for $\hat{\beta}_i$, $\hat{\mu}_{Si}$, and $\hat{\alpha}_i$ are based on models (1) (see above). When a weighted model is requested (using the argument `Weighted=TRUE` in the function call), model (3) is a weighted regression model (with weights based on the number of observations in trial i). The -2 log likelihood value of the (weighted or unweighted) model (3) (L_1) is subsequently compared to the -2 log likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_3$; L_0), and R^2_{ht} is computed based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

\[R^2_{ht} = 1 - \exp \left(-\frac{L_1 - L_0}{N} \right), \]

where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument `Model="SemiReduced"` or `Model="Reduced"` in the function call), the following model is fitted:

\[\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \varepsilon_i, \]

where the parameter estimates for $\hat{\beta}_i$ and $\hat{\alpha}_i$ are based on models (1) when a semi-reduced model is fitted or on models (2) when a reduced model is fitted. The -2 log likelihood value of this (weighted or unweighted) model (L_1) is subsequently compared to the -2 log likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_3$; L_0), and R^2_{ht} is computed based on the reduction in the likelihood (as described above).
Value

An object of class FixedBinBinIT with components,

- **Data.Analyze** Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded. Data.Analyze is the dataset on which the surrogacy analysis was conducted.

- **Obs.Per.Trial** A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in Data.Analyze).

- **Trial.Spec.Results** A data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

- **R2ht** A data.frame that contains the trial-level surrogacy estimate and its confidence interval.

- **R2h.ind** A data.frame that contains the individual-level surrogacy estimate $R^2_{h.ind}$ (single-trial based estimate) and its confidence interval.

- **R2h** A data.frame that contains the individual-level surrogacy estimate R^2_h (cluster-based estimate) and its confidence interval (based on a bootstrap).

- **R2b.ind** A data.frame that contains the individual-level surrogacy estimate $R^2_{h.ind}$ (single-trial based estimate accounting for upper bound) and its confidence interval (based on a bootstrap).

- **R2h.Ind.By.Trial** A data.frame that contains individual-level surrogacy estimates $R^2_{h,Ind}$ (cluster-based estimates) and their confidence interval for each of the trials separately.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

FixedBinContIT

See Also

FixedBinContIT, FixedContBinIT, plot Information-Theoretic BinCombn

Examples

Not run: # Time consuming (>5sec) code part
Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=5000, N.Trial=50, R.Trial.Target=.9, R.Indiv.Target=.9,
Fixed.Effects=c(0, 0, 0, 0), D.aa=10, D.bb=10, Seed=1,
Model=c("Full"))
Dichtomize Surr and True
Surr_Bin <- Data.Observed.MTS$Surr
Surr_Bin[Data.Observed.MTS$Surr>.5] <- 1
Surr_Bin[Data.Observed.MTS$Surr<=.5] <- 0
True_Bin <- Data.Observed.MTS$True
True_Bin[Data.Observed.MTS$True>.15] <- 1
True_Bin[Data.Observed.MTS$True<=.15] <- 0
Data.Observed.MTS$Surr <- Surr_Bin
Data.Observed.MTS$True <- True_Bin

Assess surrogacy using info-theoretic framework
Fit <- FixedBinBinIT(Dataset = Data.Observed.MTS, Surr = Surr,
True = True, Treat = Treat, Trial.ID = Trial.ID,
Pat.ID = Pat.ID, Number.Bootstraps=100)

Examine results
summary(Fit)
plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)

End(Not run)

FixedBinContIT

(Fits (univariate) fixed-effect models to assess surrogacy in the case
where the true endpoint is binary and the surrogate endpoint is con-
tinuous (based on the Information-Theoretic framework))

Description

The function FixedBinContIT uses the information-theoretic approach (Alonso & Molenberghs,
2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when T is binary
and S is continuous. The user can specify whether a (weighted or unweighted) full, semi-reduced,
or reduced model should be fitted. See the Details section below.

Usage

FixedBinContIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05,
Number.Bootstraps=50, Seed=sample(1:1000, size=1))
Arguments

Dataset A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and -1 for the control group, or as 1 for the experimental group and 0 for the control group.

Trial.ID The name of the variable in Dataset that contains the trial ID to which the patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"), or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Weighted Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regression models are fitted. If Weighted=FALSE, unweighted regression analyses are conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The α-level that is used to determine the confidence intervals around R^2_h and R^2_{ht}. Default 0.05.

Number.Bootstraps The standard errors and confidence intervals for R^2_h and R^2_{ht} are determined based on a bootstrap procedure. Number.Bootstraps specifies the number of bootstrap samples that are used. Default 50.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size = 1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

$$g_T(E(T_{ij})) = \mu_Ti + \beta_i Z_{ij},$$

$$g_T(E(T_{ij}|S_{ij})) = \gamma_0 + \gamma_1 Z_{ij} + \gamma_2 S_{ij},$$

where i and j are the trial and subject indicators, g_T is an appropriate link function (i.e., a logit link for binary endpoints and an identity link for normally distributed continuous endpoints), S_{ij}
and T_{ij} are the surrogate and true endpoint values of subject j in trial i, and Z_{ij} is the treatment indicator for subject j in trial i. μ_{Ti} and β_i are the trial-specific intercepts and treatment-effects on the true endpoint in trial i. γ_{0i} and γ_{1i} are the trial-specific intercepts and treatment-effects on the true endpoint in trial i after accounting for the effect of the surrogate endpoint.

The $-2 \log$ likelihood values of the previous models in each of the i trials (i.e., L_1 and L_2, respectively) are subsequently used to compute individual-level surrogacy based on the so-called Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

$$R^2_h = 1 - \frac{1}{N} \sum_i \exp \left(-\frac{L_{2i} - L_{1i}}{n_i} \right),$$

where N is the number of trials and n_i is the number of patients within trial i.

When it can be assumed (i) that the treatment-corrected association between the surrogate and the true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e., when $N = 1$), the previous expression simplifies to:

$$R^2_{h,ind} = 1 - \exp \left(-\frac{L_2 - L_1}{N} \right).$$

The upper bound does not reach to 1 when T is binary, i.e., its maximum is 0.75. Kent (1983) claims that 0.75 is a reasonable upper bound and thus $R^2_{h, ind}$ can usually be interpreted without paying special consideration to the discreteness of T. Alternatively, to address the upper bound problem, a scaled version of the mutual information can be used when both S and T are binary (Joe, 1989):

$$R^2_{b, ind} = \frac{I(T, S)}{\min[H(T), H(S)]},$$

where the entropy of T and S in the previous expression can be estimated using the log likelihood functions of the GLMs shown above.

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument `Model=c("Full")` or `Model=c("SemiReduced")` in the function call), trial-level surrogacy is assessed by fitting the following univariate models:

$$S_{ij} = \mu_{Si} + \alpha_i Z_{ij} + \varepsilon_{Si j}, (1)$$

$$T_{ij} = \mu_{Ti} + \beta_i Z_{ij} + \varepsilon_{Tij}, (1)$$

where i and j are the trial and subject indicators, S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, Z_{ij} is the treatment indicator for subject j in trial i, μ_{Si} and μ_{Ti} are the fixed trial-specific intercepts for S and T, and α_i and β_i are the fixed trial-specific treatment effects on S and T, respectively. The error terms $\varepsilon_{Si j}$ and ε_{Tij} are assumed to be independent.

When a reduced model is requested by the user (by using the argument `Model=c("Reduced")` in the function call), the following univariate models are fitted:

$$S_{ij} = \mu_{S} + \alpha_i Z_{ij} + \varepsilon_{Si j}, (2)$$
where μ_S and μ_T are the common intercepts for S and T. The other parameters are the same as defined above, and ε_{Sij} and ε_{Tij} are again assumed to be independent.

When the user requested a full model approach (by using the argument Model=c("Full") in the function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

$$\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu}_{Si} + \lambda_2 \hat{\alpha}_i + \varepsilon_i,$$

where the parameter estimates for β_i, μ_{Si}, and α_i are based on models (1) (see above). When a weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is a weighted regression model (with weights based on the number of observations in trial i). The -2 log likelihood value of the (weighted or unweighted) model (3) (L_1) is subsequently compared to the -2 log likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_3$; L_0), and R^2_{ht} is computed based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

$$R^2_{ht} = 1 - \exp\left(-\frac{L_1 - L_0}{N}\right),$$

where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument Model=c("SemiReduced") or Model=c("Reduced") in the function call), the following model is fitted:

$$\hat{\beta}_i = \lambda_0 + \lambda_1 \ddot{\alpha}_i + \varepsilon_i,$$

where the parameter estimates for β_i and α_i are based on models (1) when a semi-reduced model is fitted or on models (2) when a reduced model is fitted. The -2 log likelihood value of this (weighted or unweighted) model (L_1) is subsequently compared to the -2 log likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_3$; L_0), and R^2_{ht} is computed based on the reduction in the likelihood (as described above).

Value

An object of class FixedBinContIT with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded. Data.Analyze is the dataset on which the surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in Data.Analyze).
Trial.Spec.Results

A data frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

R2ht

A data frame that contains the trial-level surrogacy estimate and its confidence interval.

R2h.ind

A data frame that contains the individual-level surrogacy estimate $R^2_{h, ind}$ (single-trial based estimate) and its confidence interval.

R2h

A data frame that contains the individual-level surrogacy estimate R^2_h (cluster-based estimate) and its confidence interval (bootstrap-based).

R2b.ind

A data frame that contains the individual-level surrogacy estimate $R^2_{b, ind}$ (single-trial based estimate accounting for upper bound) and its confidence interval (based on a bootstrap).

R2h.Ind.By.Trial

A data frame that contains individual-level surrogacy estimates R^2_h (cluster-based estimate) and their confidence interval for each of the trials separately.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`FixedBinBinIT, FixedContBinIT, plot Information-Theoretic BinCombn`

Examples

```r
## Not run: # Time consuming (>5sec) code part
# Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8, Seed=123, Model="Full")

# Make T binary
Data.Observed.MTS$True_Bin <- Data.Observed.MTS$True
Data.Observed.MTS$True_Bin[Data.Observed.MTS$True>=0] <- 1
Data.Observed.MTS$True_Bin[Data.Observed.MTS$True<0] <- 0

# Analyze data
Fit <- FixedBinContIT(Dataset = Data.Observed.MTS, Surr = Surr, True = True_Bin, Treat = Treat, Trial.ID = Trial.ID, Pat.ID = Pat.ID,
```
Model = "Full", Number.Bootstraps=50)

Examine results
summary(Fit)
plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)

End(Not run)

FixedContBinIT Fits (univariate) fixed-effect models to assess surrogacy in the case
where the true endpoint is continuous and the surrogate endpoint is
binary (based on the Information-Theoretic framework)

Description

The function FixedContBinIT uses the information-theoretic approach (Alonso
& Molenberghs, 2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when T is continuous normally distributed and S is binary. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the Details section below.

Usage

FixedContBinIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05,
Number.Bootstraps=50, Seed=sample(1:1000, size=1))

Arguments

Dataset A data.frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.
Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
−1 for the control group, or as 1 for the experimental group and 0 for the control
group.
Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.
Pat.ID The name of the variable in Dataset that contains the patient’s ID.
Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").
Weighted Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regression models are fitted. If Weighted=FALSE, unweighted regression analyses are conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The α-level that is used to determine the confidence intervals around R^2_h and R^2_{ht}. Default 0.05.

Number.Bootstraps The standard error and confidence interval for $R^2_{h.ind}$ is determined based on a bootstrap procedure. Number.Bootstraps specifies the number of bootstrap samples that are used. Default 50.

Seed The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size = 1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

\[
g_T(E(T_{ij})) = \mu_T + \beta_i Z_{ij},
\]
\[
g_T(E(T_{ij}|S_{ij})) = \gamma_{0i} + \gamma_{1i} Z_{ij} + \gamma_{2i} S_{ij},
\]

where i and j are the trial and subject indicators, g_T is an appropriate link function (i.e., a logit link for binary endpoints and an identity link for normally distributed continuous endpoints), S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, and Z_{ij} is the treatment indicator for subject j in trial i. μ_T and β_i are the trial-specific intercepts and treatment-effects on the true endpoint in trial i. γ_{0i} and γ_{1i} are the trial-specific intercepts and treatment-effects on the true endpoint in trial i after accounting for the effect of the surrogate endpoint.

The $-2 \log$ likelihood values of the previous models in each of the i trials (i.e., L_{1i} and L_{2i}, respectively) are subsequently used to compute individual-level surrogacy based on the so-called Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

\[
R^2_h = 1 - \frac{1}{N} \sum_i \exp \left(- \frac{L_{2i} - L_{1i}}{n_i} \right),
\]

where N is the number of trials and n_i is the number of patients within trial i.

When it can be assumed (i) that the treatment-corrected association between the surrogate and the true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e., when $N = 1$), the previous expression simplifies to:
\[R_{h,ind}^2 = 1 - \exp \left(-\frac{L_2 - L_1}{N} \right) . \]

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument `Model=c("Full")` or `Model=c("SemiReduced")` in the function call), trial-level surrogacy is assessed by fitting the following univariate models:

\[
S_{ij} = \mu_S + \alpha_i Z_{ij} + \varepsilon_{Sij}, \tag{1}
\]

\[
T_{ij} = \mu_T + \beta_i Z_{ij} + \varepsilon_{Tij}, \tag{1}
\]

where \(i\) and \(j\) are the trial and subject indicators, \(S_{ij}\) and \(T_{ij}\) are the surrogate and true endpoint values of subject \(j\) in trial \(i\), \(Z_{ij}\) is the treatment indicator for subject \(j\) in trial \(i\), \(\mu_S\) and \(\mu_T\) are the fixed trial-specific intercepts for \(S\) and \(T\), and \(\alpha_i\) and \(\beta_i\) are the fixed trial-specific treatment effects on \(S\) and \(T\), respectively. The error terms \(\varepsilon_{Sij}\) and \(\varepsilon_{Tij}\) are assumed to be independent.

When a reduced model is requested by the user (by using the argument `Model=c("Reduced")` in the function call), the following univariate models are fitted:

\[
S_{ij} = \mu_S + \alpha_i Z_{ij} + \varepsilon_{Sij}, \tag{2}
\]

\[
T_{ij} = \mu_T + \beta_i Z_{ij} + \varepsilon_{Tij}, \tag{2}
\]

where \(\mu_S\) and \(\mu_T\) are the common intercepts for \(S\) and \(T\). The other parameters are the same as defined above, and \(\varepsilon_{Sij}\) and \(\varepsilon_{Tij}\) are again assumed to be independent.

When the user requested a full model approach (by using the argument `Model=c("Full")` in the function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

\[
\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu}_S + \lambda_2 \hat{\alpha}_i + \varepsilon_i \tag{3}
\]

where the parameter estimates for \(\beta_i\), \(\mu_S\), and \(\alpha_i\) are based on models (1) (see above). When a weighted model is requested (using the argument `Weighted=TRUE` in the function call), model (3) is a weighted regression model (with weights based on the number of observations in trial \(i\)). The \(-2\) log likelihood value of the (weighted or unweighted) model (3) \(L_1\) is subsequently compared to the \(-2\) log likelihood value of an intercept-only model \((\hat{\beta}_i = \lambda_3; L_0)\), and \(R_{h,ind}^2\) is computed based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

\[
R_{h,ind}^2 = 1 - \exp \left(-\frac{L_2 - L_1}{N} \right) ,
\]

where \(N\) is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument `Model=c("SemiReduced")` or `Model=c("Reduced")` in the function call), the following model is fitted:

\[
\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \varepsilon_i ,
\]

where the parameter estimates for \(\beta_i\) and \(\alpha_i\) are based on models (1) when a semi-reduced model is fitted or on models (2) when a reduced model is fitted. The \(-2\) log likelihood value of this
(weighted or unweighted) model (L_1) is subsequently compared to the -2 log likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_i; L_0$), and R^2_{ht} is computed based on the reduction in the likelihood (as described above).

Value

An object of class `FixedContBinIT` with components,

- **Data.Analyze**
 Prior to conducting the surrogate analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded. `Data.Analyze` is the dataset on which the surrogacy analysis was conducted.

- **Obs.Per.Trial**
 A `data.frame` that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in `Data.Analyze`).

- **Trial.Spec.Results**
 A `data.frame` that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

- **R2ht**
 A `data.frame` that contains the trial-level surrogacy estimate and its confidence interval.

- **R2h**
 A `data.frame` that contains the individual-level surrogacy estimate R^2_h (cluster-based estimate) and its confidence interval.

- **R2h.ind**
 A `data.frame` that contains the individual-level surrogacy estimate $R^2_{h,ind}$ (single-trial based estimate) and its confidence interval based on a bootstrap. The $R^2_{h,ind}$ shown is the mean of the bootstrapped values.

- **R2h.Ind.By.Trial**
 A `data.frame` that contains individual-level surrogacy estimates R^2_h (cluster-based estimate) and their confidence interval for each of the trials separately.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`FixedBinBinIT, FixedBinContIT, plot Information-Theoretic BinCombn`
Examples

Not run: # Time consuming (>5sec) code part
Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8,
R.Indiv.Target=.8, Seed=123, Model="Full")

Make S binary
Data.Observed.MTS$Surr_Bin <- Data.Observed.MTS$Surr
Data.Observed.MTS$Surr_Bin[Data.Observed.MTS$Surr>=0] <- 1
Data.Observed.MTS$Surr_Bin[Data.Observed.MTS$Surr<0] <- 0

Analyze data
Fit <- FixedContInt(Dataset = Data.Observed.MTS, Surr = Surr_Bin,
True = True, Treat = Treat, Trial.ID = Trial.ID, Pat.ID = Pat.ID,
Model = "Full", Number.Bootstraps=50)

Examine results
summary(Fit)
plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)

End(Not run)

FixedContContIT

Fits (univariate) fixed-effect models to assess surrogacy in the continuous-continuous case based on the Information-Theoretic framework.

Description

The function `FixedContContIT` uses the information-theoretic approach (Alonso & Molenberghs, 2007) to estimate trial- and individual-level surrogacy based on fixed-effect models when both S and T are continuous variables. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the Details section below.

Usage

`FixedContContIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID,
Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2,
Alpha=.05, Number.Bootstraps=500, Seed=sample(1:1000, size=1))`

Arguments

- **Dataset**: A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.
- **Surr**: The name of the variable in `Dataset` that contains the surrogate endpoint values.
- **True**: The name of the variable in `Dataset` that contains the true endpoint values.
The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and −1 for the control group, or as 1 for the experimental group and 0 for the control group.

The name of the variable in Dataset that contains the trial ID to which the patient belongs.

The name of the variable in Dataset that contains the patient’s ID.

The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"), or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").

Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regression models are fitted. If Weighted=FALSE, unweighted regression analyses are conducted. See the Details section below. Default TRUE.

The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

The α-level that is used to determine the confidence intervals around R^2_h and R^2_{ht}. Default 0.05.

The standard error and confidence interval for R^2_h is determined based on a bootstrap procedure. Number.Bootstraps specifies the number of bootstrap samples that are used. Default 500.

The seed to be used in the bootstrap procedure. Default sample(1 : 1000, size = 1).

Details

Individual-level surrogacy

The following univariate generalised linear models are fitted:

$$g_T(E(T_{ij})) = \mu_{Ti} + \beta_i Z_{ij},$$

$$g_T(E(T_{ij}|S_{ij})) = \gamma_{0i} + \gamma_1 Z_{ij} + \gamma_2 S_{ij},$$

where i and j are the trial and subject indicators, g_T is an appropriate link function (i.e., an identity link when a continuous true endpoint is considered), S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, and Z_{ij} is the treatment indicator for subject j in trial i. μ_{Ti} and β_i are the trial-specific intercepts and treatment-effects on the true endpoint in trial i. γ_{0i} and γ_1 are the trial-specific intercepts and treatment-effects on the true endpoint in trial i after accounting for the effect of the surrogate endpoint.

The $-2 \log$ likelihood values of the previous models in each of the i trials (i.e., L_{1i} and L_{2i}, respectively) are subsequently used to compute individual-level surrogacy based on the so-called Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):
\[R^2_{h,\text{ind}} = 1 - \frac{1}{N} \sum_i \exp \left(- \frac{L_{2i} - L_{1i}}{n_i} \right), \]

where \(N \) is the number of trials and \(n_i \) is the number of patients within trial \(i \).

When it can be assumed (i) that the treatment-corrected association between the surrogate and the true endpoint is constant across trials, or (ii) when all data come from a single clinical trial (i.e., when \(N = 1 \)), the previous expression simplifies to:

\[R^2_{h,\text{ind.clust}} = 1 - \exp \left(- \frac{L_2 - L_1}{N} \right). \]

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full") or Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the following univariate models:

\[
\begin{align*}
S_{ij} &= \mu_S + \alpha_i Z_{ij} + \varepsilon_{Sij}, \quad (1) \\
T_{ij} &= \mu_T + \beta_i Z_{ij} + \varepsilon_{Tij}, \quad (1)
\end{align*}
\]

where \(i \) and \(j \) are the trial and subject indicators, \(S_{ij} \) and \(T_{ij} \) are the surrogate and true endpoint values of subject \(j \) in trial \(i \), \(Z_{ij} \) is the treatment indicator for subject \(j \) in trial \(i \), and \(\alpha_i \) and \(\beta_i \) are the fixed trial-specific treatment effects on \(S \) and \(T \), respectively. The error terms \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are assumed to be independent.

When a reduced model is requested by the user (by using the argument Model=c("Reduced") in the function call), the following univariate models are fitted:

\[
\begin{align*}
S_{ij} &= \mu_S + \alpha_i Z_{ij} + \varepsilon_{Sij}, \quad (2) \\
T_{ij} &= \mu_T + \beta_i Z_{ij} + \varepsilon_{Tij}, \quad (2)
\end{align*}
\]

where \(\mu_S \) and \(\mu_T \) are the common intercepts for \(S \) and \(T \). The other parameters are the same as defined above, and \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are again assumed to be independent.

When the user requested a full model approach (by using the argument Model=c("Full") in the function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

\[
\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu}_S + \lambda_2 \hat{\alpha}_i + \varepsilon_i, \quad (3)
\]

where the parameter estimates for \(\hat{\beta}_i, \hat{\mu}_S, \) and \(\hat{\alpha}_i \) are based on models (1) (see above). When a weighted model is requested (using the argument Weighted=TRUE in the function call), model (3) is a weighted regression model (with weights based on the number of observations in trial \(i \)). The \(-2\) log likelihood value of the (weighted or unweighted) model (3) (\(L_1 \)) is subsequently compared to the \(-2\) log likelihood value of an intercept-only model (\(\hat{\beta}_i = \lambda_0; L_0 \)), and \(R^2_{ht} \) is computed based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

\[R^2_{ht} = 1 - \exp \left(- \frac{L_1 - L_0}{N} \right), \]
where N is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument `Model=c("SemiReduced")` or `Model=c("Reduced")` in the function call), the following model is fitted:

$$\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \varepsilon_i,$$

where the parameter estimates for β_i and α_i are based on models (1) when a semi-reduced model is fitted or on models (2) when a reduced model is fitted. The $-2 \log$ likelihood value of this (weighted or unweighted) model (L_1) is subsequently compared to the $-2 \log$ likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_3; L_0$), and R^2_{ht} is computed based on the reduction in the likelihood (as described above).

Value

An object of class `FixedContContIT` with components,

- **Data.Analyze**: Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded. `Data.Analyze` is the dataset on which the surrogacy analysis was conducted.

- **Obs.Per.Trial**: A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in `Data.Analyze`).

- **Trial.Spec.Results**: A data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

- **R2ht**: A data.frame that contains the trial-level surrogacy estimate and its confidence interval.

- **R2h.ind.clust**: A data.frame that contains the individual-level surrogacy estimate and its confidence interval.

- **R2h.ind**: A data.frame that contains the individual-level surrogacy estimate and its confidence interval under the assumption that the treatment-corrected association between the surrogate and the true endpoints is constant across trials or when all data come from a single clinical trial.

- **Boot.CI**: A data.frame that contains the bootstrapped R^2_{ht} values.

- **Cor.Endpoints**: A data.frame that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., ρ_{T0S0}) and in the experimental treatment group (i.e., ρ_{T1S1}), their standard errors and their confidence intervals.
FixedContContIT

Residuals A data.frame that contains the residuals for the surrogate and true endpoints \((\varepsilon_{Sij} \text{ and } \varepsilon_{Tij}) \) that are obtained when models (1) or models (2) are fitted (see the Details section above).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
MixedContContIT, FixedContBinIT, FixedBinContIT, FixedBinBinIT, plot Information-Theoretic

Examples

Example 1
Based on the ARMD data
data(ARMD)
Assess surrogacy based on a full fixed-effect model
in the information-theoretic framework:
Sur <- FixedContContIT(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center, Pat.ID=Id, Model="Full", Number.Bootstraps=50)
Obtain a summary of the results:
summary(Sur)

Not run: #time consuming code
Example 2
Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
and Rindiv=Rtrial=.8
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8, Seed=123, Model="Full")
Assess surrogacy based on a full fixed-effect model
in the information-theoretic framework:
Sur2 <- FixedContContIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat, Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Full", Number.Bootstraps=50)
Show a summary of the results:
summary(Sur2)
End(Not run)
FixedDiscrDiscrIT

Investigates surrogacy for binary or ordinal outcomes using the Information Theoretic framework

Description

The function `FixedDiscrDiscrIT` uses the information theoretic approach (Alonso and Molenberghs 2007) to estimate trial and individual level surrogacy based on fixed-effects models when the surrogate is binary and the true outcome is ordinal, the converse case or when both outcomes are ordinal (the user must specify which form the data is in). The user can specify whether a weighted or unweighted analysis is required at the trial level. The penalized likelihood approach of Firth (1993) is applied to resolve issues of separation in discrete outcomes for particular trials. Requires packages `OrdinalLogisticBiplot` and `logistf`.

Usage

```r
FixedDiscrDiscrIT(Dataset, Surr, True, Treat, Trial.ID,
Weighted = TRUE, Setting = c("binord"))
```

Arguments

- **Dataset**: A `data.frame` that should consist of one line per patient. Each line contains (at least) a surrogate value, a true outcome value, a treatment indicator and a trial ID.
- **Surr**: The name of the variable in `Dataset` that contains the surrogate outcome values.
- **True**: The name of the variable in `Dataset` that contains the true outcome values.
- **Treat**: The name of the in `Dataset` that contains the treatment group values, 0/1 or -1/+1 are recommended.
- **Trial.ID**: The name of the variable in `Dataset` that contains the trial ID to which the patient belongs.
- **Weighted**: Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If `Weighted=TRUE`, weighted regression models are fitted. If `Weighted=FALSE`, unweighted regression analyses are conducted. See the **Details** section below. Default TRUE.
- **Setting**: Specifies whether an ordinal or binary surrogate or true outcome are present in `Dataset`. `Setting=c("binord")` for a binary surrogate and ordinal true outcome, `Setting=c("ordbin")` for an ordinal surrogate and binary true outcome and `Setting=c("ordord")` where both outcomes are ordinal.

FixedDiscrDiscrIT

Investigates surrogacy for binary or ordinal outcomes using the Information Theoretic framework

Description

The function `FixedDiscrDiscrIT` uses the information theoretic approach (Alonso and Molenberghs 2007) to estimate trial and individual level surrogacy based on fixed-effects models when the surrogate is binary and the true outcome is ordinal, the converse case or when both outcomes are ordinal (the user must specify which form the data is in). The user can specify whether a weighted or unweighted analysis is required at the trial level. The penalized likelihood approach of Firth (1993) is applied to resolve issues of separation in discrete outcomes for particular trials. Requires packages `OrdinalLogisticBiplot` and `logistf`.

Usage

```r
FixedDiscrDiscrIT(Dataset, Surr, True, Treat, Trial.ID,
Weighted = TRUE, Setting = c("binord"))
```

Arguments

- **Dataset**: A `data.frame` that should consist of one line per patient. Each line contains (at least) a surrogate value, a true outcome value, a treatment indicator and a trial ID.
- **Surr**: The name of the variable in `Dataset` that contains the surrogate outcome values.
- **True**: The name of the variable in `Dataset` that contains the true outcome values.
- **Treat**: The name of the in `Dataset` that contains the treatment group values, 0/1 or -1/+1 are recommended.
- **Trial.ID**: The name of the variable in `Dataset` that contains the trial ID to which the patient belongs.
- **Weighted**: Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If `Weighted=TRUE`, weighted regression models are fitted. If `Weighted=FALSE`, unweighted regression analyses are conducted. See the **Details** section below. Default TRUE.
- **Setting**: Specifies whether an ordinal or binary surrogate or true outcome are present in `Dataset`. `Setting=c("binord")` for a binary surrogate and ordinal true outcome, `Setting=c("ordbin")` for an ordinal surrogate and binary true outcome and `Setting=c("ordord")` where both outcomes are ordinal.
Details

Individual level surrogacy

The following univariate logistic regression models are fitted when Setting=c("ordbin"):

\[
\text{logit}(P(T_{ij} = 1)) = \mu_{T_i} + \beta_i Z_{ij},
\]

\[(1)\]

\[
\text{logit}(P(T_{ij} = 1|S_{ij} = s)) = \gamma_{0i} + \gamma_{1i} Z_{ij} + \gamma_{2i} S_{ij},
\]

\[(1)\]

where: \(i\) and \(j\) are the trial and subject indicators; \(S_{ij}\) and \(T_{ij}\) are the surrogate and true outcome values of subject \(j\) in trial \(i\); and \(Z_{ij}\) is the treatment indicator for subject \(j\) in trial \(i\); \(\mu_{T_i}\) and \(\beta_i\) are the trial-specific intercepts and treatment-effects on the true endpoint in trial \(i\); and \(\gamma_{0i}\) and \(\gamma_{1i}\) are the trial-specific intercepts and treatment-effects on the true endpoint in trial \(i\) after accounting for the effect of the surrogate endpoint. The \(-2\) log likelihood values of the previous models in each of the \(i\) trials (i.e., \(L_{1i}\) and \(L_{2i}\), respectively) are subsequently used to compute individual-level surrogacy based on the so-called Likelihood Reduction Factor (LRF; for details, see Alonso & Molenberghs, 2006):

\[
R^2_h = 1 - \frac{1}{N} \sum_i \exp \left(-\frac{L_{2i} - L_{1i}}{n_i} \right),
\]

where \(N\) is the number of trials and \(n_i\) is the number of patients within trial \(i\).

At the individual level in the discrete case \(R^2_h\) is bounded above by a number strictly less than one and is re-scaled (see Alonso & Molenberghs (2007)):

\[
\hat{R}^2_h = \frac{R^2_h}{1 - e^{-2L_0}},
\]

where \(L_0\) is the log-likelihood of the intercept only model of the true outcome (logit\((P(T_{ij} = 1) = \gamma_3)\).

In the case of Setting=c("binord") or Setting=c("ordord") proportional odds models in (1) are used to accommodate the ordinal true response outcome, in all other respects the calculation of \(R^2_h\) would proceed in the same manner.

Trial-level surrogacy

When Setting=c("ordbin") trial-level surrogacy is assessed by fitting the following univariate logistic regression and proportional odds models for the ordinal surrogate and binary true response variables regressed on treatment for each trial \(i\):

\[
\text{logit}(P(S_{ij} \leq W)) = \mu_{S_{wi}} + \alpha_i Z_{ij},
\]

\[(2)\]

\[
\text{logit}(P(T_{ij} = 1)) = \mu_{T_i} + \beta_i Z_{ij},
\]

\[(2)\]

where: \(i\) and \(j\) are the trial and subject indicators; \(S_{ij}\) and \(T_{ij}\) are the surrogate and true outcome values of subject \(j\) in trial \(i\); \(Z_{ij}\) is the treatment indicator for subject \(j\) in trial \(i\); \(\mu_{S_{wi}}\) are the trial-specific intercept values for each cut point \(w\), where \(w = 1,..,W - 1\), of the ordinal surrogate outcome; \(\mu_{T_i}\) are the fixed trial-specific intercepts for \(T\); and \(\alpha_i\) and \(\beta_i\) are the fixed trial-specific treatment effects on \(S\) and \(T\), respectively. The mean trial-specific intercepts for the surrogate are calculated, \(\bar{\mu}_{S_{wi}}\). The following model is subsequently fitted:

\[
\hat{\beta}_i = \lambda_0 + \lambda_1 \bar{\mu}_{S_{wi}} + \lambda_2 \hat{\alpha}_i + \epsilon_i,
\]

\[(3)\]
where the parameter estimates for β_i, $\mu_{S_{wi}}$, and α_i are based on models (2) (see above). When a weighted model is requested (using the argument Weighted=TRUE in the function call), model (2) is a weighted regression model (with weights based on the number of observations in trial i). The -2 log likelihood value of the (weighted or unweighted) model (2) (L_1) is subsequently compared to the -2 log likelihood value of an intercept-only model ($\hat{\beta}_i = \lambda_3; L_0$), and R^2_{ht} is computed based on the Likelihood Reduction Factor (for details, see Alonso & Molenberghs, 2006):

$$R^2_{ht} = 1 - \exp \left(-\frac{L_1 - L_0}{N} \right),$$

where N is the number of trials.

When separation (the presence of zero cells) occurs in the cross tabs of treatment and the true or surrogate outcome for a particular trial in models (2) extreme bias can occur in R^2_{ht}. Under separation there are no unique maximum likelihood for parameters β_i, $\mu_{S_{wi}}$, and α_i, in (2), for the affected trial i. This typically leads to extreme bias in the estimation of these parameters and hence outlying influential points in model (3), bias in R^2_{ht} inevitably follows.

To resolve the issue of separation the penalized likelihood approach of Firth (1993) is applied. This approach adds an asymptotically negligible component to the score function to allow unbiased estimation of β_i, $\mu_{S_{wi}}$, and α_i and in turn R^2_{ht}. The penalized likelihood R function logitr from the package of the same name is applied in the case of binary separation (Heinze and Schumper, 2002). The function pordlogistf from the package OrdinalLogisticBioplot is applied in the case of ordinal separation (Heinze, 2013). All instances of separation are reported.

In the case of Setting=c("binord") or Setting=c("ordord") the appropriate models (either logistic regression or a proportional odds models) are fitted in (2) to accommodate the form (either binary or ordinal) of the true or surrogate response variable. The rest of the analysis would proceed in a similar manner as that described above.

Value

An object of class FixedDiscrDiscrIT with components,

- **Trial.Spec.Results**
 - A data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints. Also, the number of observations per trial; whether the trial was able to be included in the analysis for both R^2_{S} and R^2_{HT}; whether separation occurred and hence the penalized likelihood approach used for the surrogate or true outcome.

- **R2ht**
 - A data.frame that contains the trial-level surrogacy estimate and its confidence interval.

- **R2h**
 - A data.frame that contains the individual-level surrogacy estimate and its confidence interval.

Author(s)

Hannah M. Ensor & Christopher J. Weir
FixedDiscrDiscrIT

References

See Also

FixedContContIT, *plot Information-Theoretic.logistf*

Examples

```r
## Not run: # Time consuming (>5sec) code part
# Example 1
# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and RIndiv=Rtrial=.8

# Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Full")

# create a binary true and ordinal surrogate outcome
Data.Observed.MTS$True<-findInterval(Data.Observed.MTS$True,
c(quantile(Data.Observed.MTS$True,0.5)))
Data.Observed.MTS$Surr<-findInterval(Data.Observed.MTS$Surr,
c(quantile(Data.Observed.MTS$Surr,0.333),quantile(Data.Observed.MTS$Surr,0.666)))

# Assess surrogacy based on a full fixed-effect model
# in the information-theoretic framework for a binary surrogate and ordinal true outcome:
SurEval <- FixedDiscrDiscrIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Setting="ordbin")

# Show a summary of the results:
summary(SurEval)
SurEval$Trial.Spec.Results
SurEval$R2h
SurEval$R2ht

## End(Not run)
```
frank_loglik_copula_scale

Loglikelihood on the Copula Scale for the Frank Copula

Description

frank_loglik_copula_scale() computes the loglikelihood on the copula scale for the Frank copula which is parameterized by theta as follows:

\[C(u, v) = \frac{1}{\theta} \log \left[1 - \frac{(1 - e^{-\theta u})(1 - e^{-\theta v})}{1 - e^{-\theta}} \right] \]

Usage

frank_loglik_copula_scale(theta, u, v, d1, d2)

Arguments

- \(\text{theta} \): Copula parameter
- \(\text{u} \): A numeric vector. Corresponds to first variable on the copula scale.
- \(\text{v} \): A numeric vector. Corresponds to second variable on the copula scale.
- \(\text{d1} \): An integer vector. Indicates whether first variable is observed or right-censored,
 - \(d1[i] = 1 \) if \(u[i] \) corresponds to non-censored value
 - \(d1[i] = 0 \) if \(u[i] \) corresponds to right-censored value
 - \(d1[i] = -1 \) if \(u[i] \) corresponds to left-censored value
- \(\text{d2} \): An integer vector. Indicates whether first variable is observed or right-censored,
 - \(d2[i] = 1 \) if \(v[i] \) corresponds to non-censored value
 - \(d2[i] = 0 \) if \(v[i] \) corresponds to right-censored value
 - \(d2[i] = -1 \) if \(v[i] \) corresponds to left-censored value

Value

Value of the copula loglikelihood evaluated in \(\text{theta} \).
gaussian_loglik_copula_scale

Loglikelihood on the Copula Scale for the Gaussian Copula

Description

gaussian_loglik_copula_scale() computes the loglikelihood on the copula scale for the Gaussian copula which is parameterized by \(\theta \) as follows:

\[
C(u, v) = \Psi \left[\Phi^{-1}(u), \Phi^{-1}(v) \mid \rho \right]
\]

Usage

gaussian_loglik_copula_scale(theta, u, v, d1, d2)

Arguments

- **theta**: Copula parameter
- **u**: A numeric vector. Corresponds to first variable on the copula scale.
- **v**: A numeric vector. Corresponds to second variable on the copula scale.
- **d1**: An integer vector. Indicates whether first variable is observed or right-censored,
 - \(d1[i] = 1 \) if \(u[i] \) corresponds to non-censored value
 - \(d1[i] = 0 \) if \(u[i] \) corresponds to right-censored value
 - \(d1[i] = -1 \) if \(u[i] \) corresponds to left-censored value
- **d2**: An integer vector. Indicates whether first variable is observed or right-censored,
 - \(d2[i] = 1 \) if \(v[i] \) corresponds to non-censored value
 - \(d2[i] = 0 \) if \(v[i] \) corresponds to right-censored value
 - \(d2[i] = -1 \) if \(v[i] \) corresponds to left-censored value

Value

Value of the copula loglikelihood evaluated in \(\theta \).

gumbel_loglik_copula_scale

Loglikelihood on the Copula Scale for the Gumbel Copula

Description

gumbel_loglik_copula_scale() computes the loglikelihood on the copula scale for the Gumbel copula which is parameterized by \(\theta \) as follows:

\[
C(u, v) = \exp \left[- \left\{ (\log u)^\theta + (\log v)^\theta \right\} \right]
\]
ICA.BinBin

Usage

gumbel_loglik_copula_scale(theta, u, v, d1, d2)

Arguments

theta
Copula parameter

u
A numeric vector. Corresponds to first variable on the copula scale.

v
A numeric vector. Corresponds to second variable on the copula scale.

d1
An integer vector. Indicates whether first variable is observed or right-censored,
 • d1[i] = 1 if u[i] corresponds to non-censored value
 • d1[i] = 0 if u[i] corresponds to right-censored value
 • d1[i] = -1 if u[i] corresponds to left-censored value

d2
An integer vector. Indicates whether first variable is observed or right-censored,
 • d2[i] = 1 if v[i] corresponds to non-censored value
 • d2[i] = 0 if v[i] corresponds to right-censored value
 • d2[i] = -1 if v[i] corresponds to left-censored value

Value

Value of the copula loglikelihood evaluated in theta.

ICA.BinBin
Assess surrogacy in the causal-inference single-trial setting in the binary-binary case

Description

The function ICA.BinBin quantifies surrogacy in the single-trial causal-inference framework (individual causal association and causal concordance) when both the surrogate and the true endpoints are binary outcomes. See Details below.

Usage

ICA.BinBin(pi1_1_, pi1_0_, pi_1_1, pi_1_0, pi0_1_, pi_0_1,
Monotonicity=c("General"), Sum_Pi_f = seq(from=0.01, to=0.99, by=.01),
M=10000, Volume.Perc=0, Seed=sample(1:100000, size=1))

Arguments

pi1_1_ A scalar or vector that contains values for P(T = 1, S = 1|Z = 0), i.e., the probability that S = T = 1 when under treatment Z = 0. A vector is specified to account for uncertainty, i.e., rather than keeping P(T = 1, S = 1|Z = 0) fixed at one estimated value, a distribution can be specified (see examples below) from which a value is drawn in each run.
In the continuous normal setting, surrogacy can be assessed by studying the association between the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed the individual causal association (ICA; R_F^2), which captures the association between the individual causal effects of the treatment on S (ΔS) and T (ΔT) using information-theoretic principles.

The function ICA.BinBin computes R_F^2 based on plausible values of the potential outcomes. Denote by $Y' = (T_0, T_1, S_0, S_1)$ the vector of potential outcomes. The vector Y' can take 16 values and the set of parameters $\pi_{ijpq} = P(T_0 = i, T_1 = j, S_0 = p, S_1 = q)$ (with $i, j, p, q = 0/1$) fully characterizes its distribution.

However, the parameters in π_{ijpq} are not all functionally independent, e.g., $1 = \pi_00$. When no assumptions regarding monotonicity are made, the data impose a total of 7 restrictions, and thus only 9 probabilities in π_{ijpq} are allowed to vary freely (for details, see Alonso et al., 2014). Based on the data and assuming SUTVA, the marginal probabilities $\pi_{1.1}, \pi_{1.0}, \pi_{1.1}, \pi_{1.0}, \pi_{0.1},$ and $\pi_{0.1}$ can be computed (by hand or using the function MarginalProbs). Define the vector

$$b' = (1, \pi_{1.1}, \pi_{1.0}, \pi_{1.1}, \pi_{1.0}, \pi_{0.1}, \pi_{0.1})$$
and A is a contrast matrix such that the identified restrictions can be written as a system of linear equation

$$A\pi = b.$$

The matrix A has rank 7 and can be partitioned as $A = (A_r \big| A_f)$, and similarly the vector π can be partitioned as $\pi' = (\pi'_r \big| \pi'_f)$ (where f refers to the submatrix/vector given by the 9 last columns/components of A/π). Using these partitions the previous system of linear equations can be rewritten as

$$A_r\pi_r + A_f\pi_f = b.$$

The following algorithm is used to generate plausible distributions for Y. First, select a value of the specified grid of values (specified using Sum_Pi_f in the function call). For $k = 1$ to M (specified using M in the function call), generate a vector π_f that contains 9 components that are uniformly sampled from hyperplane subject to the restriction that the sum of the generated components equals Sum_Pi_f (the function RandVec, which uses the randfixedsum algorithm written by Roger Stafford, is used to obtain these components). Next, $\pi_r = A^{-1}_r(b - A_f\pi_f)$ is computed and the π_r vectors where all components are in the $[0; 1]$ range are retained. This procedure is repeated for each of the Sum_Pi_f values. Based on these results, R^2_H is estimated. The obtained values can be used to conduct a sensitivity analysis during the validation exercise.

The previous developments hold when no monotonicity is assumed. When monotonicity for S, T, or for S and T is assumed, some of the probabilities of π are zero. For example, when monotonicity is assumed for T, then $P(T_0 = T_1) = 1$, or equivalently, $\pi_{1000} = \pi_{1010} = \pi_{1001} = \pi_{1011} = 0$. When monotonicity is assumed, the procedure described above is modified accordingly (for details, see Alonso et al., 2014). When a general analysis is requested (using Monotonicity="General" in the function call), all settings are considered (no monotonicity, monotonicity for S alone, for T alone, and for both for S and T.)

To account for the uncertainty in the estimation of the marginal probabilities, a vector of values can be specified from which a random draw is made in each run (see Examples below).

Value

An object of class ICA.BinBin with components,

- **Pi.Vectors**: An object of class data.frame that contains the valid π vectors.
- **R2_H**: The vector of the R^2_H values.
- **Theta_T**: The vector of odds ratios for T.
- **Theta_S**: The vector of odds ratios for S.
- **H_Delta_T**: The vector of the entropies of Δ_T.
- **Monotonicity**: The assumption regarding monotonicity that was made.
- **Volume.No**: The ‘volume’ of the parameter space when monotonicity is not assumed. Is only provided when the argument Volume.Perc is used (i.e., when it is not equal to 0.
- **Volume.T**: The ‘volume’ of the parameter space when monotonicity for T is assumed. Is only provided when the argument Volume.Perc is used.
- **Volume.S**: The ‘volume’ of the parameter space when monotonicity for S is assumed. Is only provided when the argument Volume.Perc is used.
- **Volume.ST**: The ‘volume’ of the parameter space when monotonicity for S and T is assumed. Is only provided when the argument Volume.Perc is used.
ICA (binary-binary setting) that is obtained when the counterfactual correlations are assumed to fall within some prespecified ranges.

Description

Shows the results of ICA (binary-binary setting) in the subgroup of results where the counterfactual correlations are assumed to fall within some prespecified ranges.
ICA.BinBin.CounterAssum

Usage

ICA.BinBin.CounterAssum(x, r2_h_S0S1_min, r2_h_S0S1_max, r2_h_S0T1_min, r2_h_S0T1_max, r2_h_T0T1_min, r2_h_T0T1_max, r2_h_T0S1_min, r2_h_T0S1_max, Monotonicity="General", Type="Freq", MainPlot=" ", Cex.Legend=1, Cex.Position="topright", ...)
ICA.BinBin.Grid.Full

Assess surrogacy in the causal-inference single-trial setting in the binary-binary case when monotonicity for S and T is assumed using the full grid-based approach

Description

The function ICA.BinBin.Grid.Full quantifies surrogacy in the single-trial causal-inference framework (individual causal association and causal concordance) when both the surrogate and the true endpoints are binary outcomes. This method provides an alternative for ICA.BinBin and ICA.BinBin.Grid.Sample. It uses an alternative strategy to identify plausible values for \(\pi \). See Details below.

References

See Also

ICA.BinBin

Examples

```r
## Not run: #Time consuming (>5 sec) code part
# Compute R2_H given the marginals specified as the pi's, making no
# assumptions regarding monotonicity (general case)
ICA <- ICA.BinBin.Grid.Sample(pi1_1=0.261, pi1_0=0.285,
                             pi1_1=0.637, pi1_0=0.078, pi0_1=0.134, pi0_1=0.127,
                             Monotonicity=c("General"), M=5000, Seed=1)

# Obtain a density plot of R2_H, assuming that
# r2_h_S0S1>=0.2, r2_h_S0T1>=0, r2_h_T0T1>=0.2, and r2_h_T0S1>=0
ICA.BinBin.CounterAssum(ICA, r2_h_S0S1_min=0.2, r2_h_S0S1_max=1,
                         r2_h_S0T1_min=0, r2_h_S0T1_max=1, r2_h_T0T1_min=0.2, r2_h_T0T1_max=1,
                         r2_h_T0S1_min=0, r2_h_T0S1_max=1, Monotonicity="General",
                         Type="Density")

# Now show the densities of R2_H under the different
# monotonicity assumptions
ICA.BinBin.CounterAssum(ICA, r2_h_S0S1_min=0.2, r2_h_S0S1_max=1,
                         r2_h_S0T1_min=0, r2_h_S0T1_max=1, r2_h_T0T1_min=0.2, r2_h_T0T1_max=1,
                         r2_h_T0S1_min=0, r2_h_T0S1_max=1, Monotonicity="General",
                         Type="All.Densities", MainPlot="", Cex.Legend=1,
                         Cex.Position="topright", ylim=c(0, 20))

## End(Not run)
```
ICA.BinBin.Grid.Full

Usage

ICA.BinBin.Grid.Full(pi1_1_, pi1_0_, pi_1_1, pi_1_0, pi0_1_, pi_0_1,
Monotonicity=c("General"), pi_1001=seq(0, 1, by=.02),
pi_1110=seq(0, 1, by=.02), pi_1101=seq(0, 1, by=.02),
pi_0110=seq(0, 1, by=.02), pi_0011=seq(0, 1, by=.02),
pi_0111=seq(0, 1, by=.02), pi_1100=seq(0, 1, by=.02),
Seed=sample(1:100000, size=1))

Arguments

pi1_1_ A scalar that contains \(P(T = 1, S = 1|Z = 0) \), i.e., the probability that \(S = T = 1 \) when under treatment \(Z = 0 \).
pi1_0_ A scalar that contains \(P(T = 1, S = 0|Z = 0) \).
pi_1_1 A scalar that contains \(P(T = 1, S = 1|Z = 1) \).
pi_1_0 A scalar that contains \(P(T = 1, S = 0|Z = 1) \).
pi0_1_ A scalar that contains \(P(T = 0, S = 1|Z = 0) \).
pi_0_1 A scalar that contains \(P(T = 0, S = 1|Z = 1) \).
Monotonicity Specifies which assumptions regarding monotonicity should be made: Monotonicity=c("General"), Monotonicity=c("No"), Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"), or Monotonicity=c("Surr.True.Endp"). When a general analysis is requested (using Monotonicity=c("General") in the function call), all settings are considered (no monotonicity, monotonicity for \(S \) alone, for \(T \) alone, and for both for \(S \) and \(T \). Default Monotonicity=c("General")
pi_1001 A vector that specifies the grid of values that should be considered for \(\pi_{1001} \). Default pi_1001=seq(0, 1, by=.02).
pi_1110 A vector that specifies the grid of values that should be considered for \(\pi_{1110} \). Default pi_1110=seq(0, 1, by=.02).
pi_1101 A vector that specifies the grid of values that should be considered for \(\pi_{1101} \). Default pi_1101=seq(0, 1, by=.02).
pi_1011 A vector that specifies the grid of values that should be considered for \(\pi_{1011} \). Default pi_1011=seq(0, 1, by=.02).
pi_1111 A vector that specifies the grid of values that should be considered for \(\pi_{1111} \). Default pi_1111=seq(0, 1, by=.02).
pi_0110 A vector that specifies the grid of values that should be considered for \(\pi_{0110} \). Default pi_0110=seq(0, 1, by=.02).
pi_0011 A vector that specifies the grid of values that should be considered for \(\pi_{0011} \). Default pi_0011=seq(0, 1, by=.02).
pi_0111 A vector that specifies the grid of values that should be considered for \(\pi_{0111} \). Default pi_0111=seq(0, 1, by=.02).
pi_1100 A vector that specifies the grid of values that should be considered for \(\pi_{1100} \). Default pi_1100=seq(0, 1, by=.02).
Seed The seed to be used to generate \(\pi_r \). Default Seed=sample(1:100000, size=1).
Details

In the continuous normal setting, surrogacy can be assessed by studying the association between the individual causal effects on \(S \) and \(T \) (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When \(S \) and \(T \) are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed the individual causal association (ICA; \(R_H^2 \)), which captures the association between the individual causal effects of the treatment on \(S(\Delta S) \) and \(T(\Delta T) \) using information-theoretic principles.

The function ICA.BinBin.Grid.Full computes \(R_H^2 \) using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed that are allowed to vary freely are considered. When it is not assumed that monotonicity holds for both \(S \) and \(T \), the computationally less demanding algorithm ICA.BinBin.Grid.Sample may be preferred.

Value

An object of class ICA.BinBin with components,

- **Pi.Vectors**: An object of class data.frame that contains the valid \(\pi \) vectors.
- **R2_H**: The vector of the \(R_H^2 \) values.
- **Theta_T**: The vector of odds ratios for \(T \).
- **Theta_S**: The vector of odds ratios for \(S \).
- **H_Delta_T**: The vector of the entropies of \(\Delta_T \).

Author(s)

Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs

References

See Also

ICA.ContCont, MICA.ContCont, ICA.BinBin, ICA.BinBin.Grid.Sample

Examples

```r
## Not run: # time consuming code part
# Compute R2_H given the marginals,
# assuming monotonicity for S and T and grids
# pi_0111=seq(0, 1, by=.001) and
# pi_1100=seq(0, 1, by=.001)
ICA <- ICA.BinBin.Grid.Full(pi1_1_=0.2619048, pi1_0_=0.2857143, pi_1_1=0.6372549, pi_1_0=0.07843137, pi_0_1_=0.1349206, pi_0_1=0.127451, pi_0111=seq(0, 1, by=.01), pi_1100=seq(0, 1, by=.01), Seed=1)
```
ICA.BinBin.Grid.Sample

Assess surrogacy in the causal-inference single-trial setting in the binary-binary case when monotonicity for \(S \) and \(T \) is assumed using the grid-based sample approach

Description

The function ICA.BinBin.Grid.Sample quantifies surrogacy in the single-trial causal-inference framework (individual causal association and causal concordance) when both the surrogate and the true endpoints are binary outcomes. This method provides an alternative for ICA.BinBin and ICA.BinBin.Grid.Full. It uses an alternative strategy to identify plausible values for \(\pi \). See Details below.

Usage

ICA.BinBin.Grid.Sample(pi1_1_, pi1_0_, pi_1_1, pi_1_0, pi0_1_,
pi_0_1, Monotonicity=c("General"), M=100000,
Volume.Perc=0, Seed=sample(1:100000, size=1))

Arguments

- \(\pi_{1_1} \) A scalar that contains values for \(P(T = 1, S = 1|Z = 0) \), i.e., the probability that \(S = T = 1 \) when under treatment \(Z = 0 \).
- \(\pi_{1_0} \) A scalar that contains values for \(P(T = 1, S = 0|Z = 0) \).
- \(\pi_{1_1} \) A scalar that contains values for \(P(T = 1, S = 1|Z = 1) \).
- \(\pi_{1_0} \) A scalar that contains values for \(P(T = 1, S = 0|Z = 1) \).
- \(\pi_{0_1} \) A scalar that contains values for \(P(T = 0, S = 1|Z = 0) \).
- \(\pi_{0_1} \) A scalar that contains values for \(P(T = 0, S = 1|Z = 1) \).
- \(\text{Monotonicity} \) Specifies which assumptions regarding monotonicity should be made: \(\text{Monotonicity} = \text{c("General")} \), \(\text{Monotonicity} = \text{c("No")} \), \(\text{Monotonicity} = \text{c("True.Endp")} \), \(\text{Monotonicity} = \text{c("Surr.Endp")} \), or \(\text{Monotonicity} = \text{c("Surr.True.Endp")} \). When a general analysis is requested (using \(\text{Monotonicity} = \text{c("General")} \) in the function call), all settings are considered (no monotonicity, monotonicity for \(S \) alone, for \(T \) alone, and for both for \(S \) and \(T \)). Default \(\text{Monotonicity} = \text{c("General")} \).
- \(M \) The number of random samples that have to be drawn for the freely varying parameters. Default \(M=100000 \). This argument is not used when \(\text{Volume.Perc}=0 \). Default \(M=10000 \).
Note that the marginals that are observable in the data set set a number of restrictions on the unidentified correlations. For example, under monotonicity for S and T, it holds that $\pi_{0111} \leq \min(\pi_{01}, \pi_{11})$ and $\pi_{1100} \leq \min(\pi_{01}, \pi_{10})$.

For example, when $\min(\pi_{01}, \pi_{11}) = 0.10$ and $\min(\pi_{01}, \pi_{10}) = 0.08$, then all valid $\pi_{0111} \leq 0.10$ and all valid $\pi_{1100} \leq 0.08$. The argument Volume.Perc specifies the fraction of the ‘volume’ of the parameter space that is explored. This volume is computed based on the grids $G(0, 0.01, \ldots, \text{maximum possible value for the counterfactual probability at hand})$. E.g., in the previous example, the ‘volume’ of the parameter space would be $11 \times 9 = 99$, and when e.g., the argument Volume.Perc=1 is used a total of 99 runs will be conducted. Notice that when monotonicity is not assumed, relatively high values of Volume.Perc will lead to a large number of runs and consequently a long analysis time.

The seed to be used to generate π_r. Default $M=100000$.

In the continuous normal setting, surrogacy can be assessed by studying the association between the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed the individual causal association (ICA; R_H^2), which captures the association between the individual causal effects of the treatment on S (Δ_S) and T (Δ_T) using information-theoretic principles.

The function ICA.BinBin.Grid.Full computes R_H^2 using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed that are allowed to vary freely are considered. When it is not assumed that monotonicity holds for both S and T, the number of possible combinations become very high. The function ICA.BinBin.Grid.Sample considers a random sample of all possible combinations.

An object of class ICA.BinBin with components,

- **Pi.Vectors**: An object of class data.frame that contains the valid π vectors.
- **R2_H**: The vector of the R_H^2 values.
- **Theta_T**: The vector of odds ratios for T.
- **Theta_S**: The vector of odds ratios for S.
- **H_Delta_T**: The vector of the entropies of Δ_T.
- **Volume.No**: The ‘volume’ of the parameter space when monotonicity is not assumed.
- **Volume.T**: The ‘volume’ of the parameter space when monotonicity for T is assumed.
- **Volume.S**: The ‘volume’ of the parameter space when monotonicity for S is assumed.
- **Volume.ST**: The ‘volume’ of the parameter space when monotonicity for S and T is assumed.

Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs
ICA.BinBin.Grid.Sample.Uncert

References

See Also

ICA.ContCont, MICA.ContCont, ICA.BinBin, ICA.BinBin.Grid.Sample

Examples

```r
## Not run: #time-consuming code parts
# Compute R2_H given the marginals,
# assuming monotonicity for S and T and grids
# pi_0111=seq(0, 1, by=.001) and
# pi_1100=seq(0, 1, by=.001)
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.261, pi1_0_=0.285,
pi_1_1=0.637, pi_1_0=0.078, pi0_1_1=0.134, pi_0_1=0.127,
Monotonicity=c("Surr.True.Endp"), M=2500, Seed=1)

# obtain plot of R2_H
plot(ICA, R2_H=TRUE)
## End(Not run)
```

ICA.BinBin.Grid.Sample.Uncert

Assess surrogacy in the causal-inference single-trial setting in the binary-binary case when monotonicity for S and T is assumed using the grid-based sample approach, accounting for sampling variability in the marginal π.

Description

The function ICA.BinBin.Grid.Sample.Uncert quantifies surrogacy in the single-trial causal-inference framework (individual causal association and causal concordance) when both the surrogate and the true endpoints are binary outcomes. This method provides an alternative for ICA.BinBin and ICA.BinBin.Grid.Full. It uses an alternative strategy to identify plausible values for π. The function allows to account for sampling variability in the marginal π. See Details below.

Usage

ICA.BinBin.Grid.Sample.Uncert(pi1_1_, pi1_0_, pi_1_1, pi_1_0, pi0_1_,
pi_0_1, Monotonicity=c("General"), M=100000,
Volume.Perc=0, Seed=sample(1:100000, size=1))
Arguments

\textbf{pi1_1} \hspace{1cm} A vector that contains values for $P(T = 1, S = 1 | Z = 0)$, i.e., the probability that $S = T = 1$ when under treatment $Z = 0$. A vector is specified to account for uncertainty, i.e., rather than keeping $P(T = 1, S = 1 | Z = 0)$ fixed at one estimated value, a distribution can be specified (see examples below) from which a value is drawn in each run.

\textbf{pi1_0} \hspace{1cm} A vector that contains values for $P(T = 1, S = 0 | Z = 0)$.

\textbf{pi_1_1} \hspace{1cm} A vector that contains values for $P(S = 1 | Z = 1)$.

\textbf{pi_1_0} \hspace{1cm} A vector that contains values for $P(S = 0 | Z = 1)$.

\textbf{pi0_1} \hspace{1cm} A vector that contains values for $P(T = 0, S = 1 | Z = 0)$.

\textbf{pi_0_1} \hspace{1cm} A vector that contains values for $P(T = 0, S = 1 | Z = 1)$.

\textbf{Monotonicity} \hspace{1cm} Specifies which assumptions regarding monotonicity should be made: Monotonicity=c("General"), Monotonicity=c("No"), Monotonicity=c("True.Endp"), Monotonicity=c("Surr.Endp"), or Monotonicity=c("Surr.True.Endp"). When a general analysis is requested (using Monotonicity=c("General") in the function call), all settings are considered (no monotonicity, monotonicity for S alone, for T alone, and for both for S and T). Default Monotonicity=c("General").

\textbf{M} \hspace{1cm} The number of random samples that have to be drawn for the freely varying parameters. Default M=100000. This argument is not used when Volume.Perc=0. Default M=10000.

\textbf{Volume.Perc} \hspace{1cm} Note that the marginals that are observable in the data set a number of restrictions on the unidentified correlations. For example, under monotonicity for S and T, it holds that $\pi_{011} <= \min(\pi_{01}, \pi_{11})$ and $\pi_{1100} <= \min(\pi_{10}, \pi_{10})$. For example, when $\min(\pi_{01}, \pi_{11}) = 0.10$ and $\min(\pi_{10}, \pi_{10}) = 0.08$, then all valid $\pi_{011} <= 0.10$ and all valid $\pi_{1100} <= 0.08$. The argument Volume.Perc specifies the fraction of the ‘volume’ of the parameter space that is explored. This volume is computed based on the grids $G=\{0, 0.01, ..., \text{maximum possible value for the counterfactual probability at hand}\}$. E.g., in the previous example, the ‘volume’ of the parameter space would be $11 * 9 = 99$, and when e.g., the argument Volume.Perc=1 is used a total of 99 runs will be conducted. Notice that when monotonicity is not assumed, relatively high values of Volume.Perc will lead to a large number of runs and consequently a long analysis time.

\textbf{Seed} \hspace{1cm} The seed to be used to generate π_r. Default M=100000.

Details

In the continuous normal setting, surroagacy can be assessed by studying the association between the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2014) proposed the individual causal association (ICA; R^2_H), which captures the association between the individual causal effects of the treatment on S (Δ_S) and T (Δ_T) using information-theoretic principles.

The function ICA.BinBin.Grid.Full computes R^2_H using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed that are allowed to vary
freely are considered. When it is not assumed that monotonicity holds for both S and T, the number of possible combinations become very high. The function `ICA.BinBin.Grid.Sample.Uncert` considers a random sample of all possible combinations.

Value

An object of class `ICA.BinBin` with components,

- **Pi.Vectors**: An object of class `data.frame` that contains the valid π vectors.
- **R2_H**: The vector of the R^2_H values.
- **Theta_T**: The vector of odds ratios for T.
- **Theta_S**: The vector of odds ratios for S.
- **H_Delta_T**: The vector of the entropies of Δ_T.
- **Volume.No**: The ‘volume’ of the parameter space when monotonicity is not assumed.
- **Volume.T**: The ‘volume’ of the parameter space when monotonicity for T is assumed.
- **Volume.S**: The ‘volume’ of the parameter space when monotonicity for S is assumed.
- **Volume.ST**: The ‘volume’ of the parameter space when monotonicity for S and T is assumed.

Author(s)

Wim Van der Elst, Paul Meyvisch, Ariel Alonso & Geert Molenberghs

References

See Also

- `ICA.ContCont`, `MICA.ContCont`, `ICA.BinBin`, `ICA.BinBin.Grid.Sample.Uncert`

Examples

```r
# Compute R2_H given the marginals (sample from uniform),
# assuming no monotonicity
ICA_No2 <- ICA.BinBin.Grid.Sample.Uncert(p1_1_=runif(10000, 0.3562, 0.4868),
pi0_1_=runif(10000, 0.0240, 0.0837), pi1_0_=runif(10000, 0.0240, 0.0837),
pi_1_1=runif(10000, 0.4434, 0.5742), pi_1_0=runif(10000, 0.0081, 0.0533),
pi_0_1=runif(10000, 0.0202, 0.0763), Seed=1, Monotonicity=c("No"), M=1000)
summary(ICA_No2)
# obtain plot of R2_H
plot(ICA_No2)
```
ICA.BinCont

Assess surrogacy in the causal-inference single-trial setting in the binary-continuous case

Description

The function ICA.BinCont quantifies surrogacy in the single-trial setting within the causal-inference framework (individual causal association) when the surrogate endpoint is continuous (normally distributed) and the true endpoint is a binary outcome. For details, see Alonso Abad *et al.* (2023).

Usage

ICA.BinCont(Dataset, Surr, True, Treat,
BS=FALSE,
G_pi_10=c(0,1),
G_rhoe_01_00=c(-1,1),
G_rhoe_01_01=c(-1,1),
G_rhoe_01_10=c(-1,1),
G_rhoe_01_11=c(-1,1),
Theta.S_0,
Theta.S_1,
M=1000, Seed=123,
Monotonicity=FALSE,
Independence=FALSE,
HAA=FALSE,
Cond_ind=FALSE,
Plots=TRUE, Save.Plots="No", Show.Details=FALSE)

Arguments

- **Dataset**
 A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, and a treatment indicator.

- **Surr**
 The name of the variable in Dataset that contains the surrogate endpoint values.

- **True**
 The name of the variable in Dataset that contains the true endpoint values.

- **Treat**
 The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should be coded as 1 for the experimental group and −1 for the control group.

- **BS**
 Logical. If BS=TRUE, the sampling variability is accounted for in the analysis by using a bootstrap procedure. Default BS=FALSE.

- **G_pi_10**
 The lower and upper limits of the uniform distribution from which the probability parameter \(\pi_{10} \) is sampled. Default \(c(0,1) \). When Monotonicity=TRUE the values of these limits are set as \(c(0,0) \).

- **G_rhoe_01_00**
 The lower and upper limits of the uniform distribution from which the association parameter \(\rho_{01} \) is sampled. Default \(c(-1,1) \).
ICA.BinCont

G_rho_01_01 The lower and upper limits of the uniform distribution from which the association parameter ρ_{01}^{01} is sampled. Default $c(-1,1)$.

G_rho_01_10 The lower and upper limits of the uniform distribution from which the association parameter ρ_{01}^{10} is sampled. Default $c(-1,1)$.

G_rho_01_11 The lower and upper limits of the uniform distribution from which the association parameter ρ_{01}^{11} is sampled. Default $c(-1,1)$.

Theta.S_0 The starting values of the means and standard deviations for the mixture distribution of the surrogate endpoint in the control group. The argument should contain eight values, where the first four values represent the starting values for the means and the last four values represent the starting values for the standard deviations. These starting values should be approximated based on the data on hand. Example: Theta.S_0=c(-10,-5,5,10,10,10,10,10).

Theta.S_1 The starting values of the means and standard deviations for the mixture distribution of the surrogate endpoint in the treatment group. The argument should contain eight values, where the first four values represent the starting values for the means and the last four values represent the starting values for the standard deviations. These starting values should be approximated based on the data on hand. Example: Theta.S_1=c(-10,-5,5,10,10,10,10,10).

M The number of Monte Carlo iterations. Default M=1000.

Seed The random seed to be used in the analysis (for reproducibility). Default Seed=123.

Monotonicity Logical. If Monotonicity=TRUE, the analysis is performed assuming monotonicity, i.e. $P(T_1 < T_0) = 0$. Default Monotonicity=FALSE.

Independence Logical. If Independence=TRUE, the analysis is performed assuming independence between the treatment effect in both groups, i.e. $\pi_{ij} = \pi_i \times \pi_j$. Default Independence=FALSE.

HAA Logical. If HAA=TRUE, the analysis is performed assuming homogeneous association, i.e. $\rho_{01}^{ij} = \rho_{01}$. Default HAA=FALSE.

Cond_ind Logical. If Cond_ind=TRUE, the analysis is performed assuming conditional independence, i.e. $\rho_{01} = 0$. Default Cond_ind=FALSE.

Plots Logical. Should histograms of S_0 (surrogate endpoint in control group) and S_1 (surrogate endpoint in experimental treatment group) be provided together with density of fitted mixtures? Default Plots=TRUE.

Save.Plots Should the plots (see previous item) be saved? If Save.Plots="No", no plots are saved. If plots have to be saved, replace "No" by the desired location, e.g., Save.Plots="C:/". Default Save.Plots="No".

Show.Details Should some details regarding the availability of some output from the function be displayed in the console when the analysis is running? Setting Show.Details=TRUE could be useful for debugging procedure (if any). Default Show.Details=FALSE.

Value

An object of class ICA.BinCont with components,

R2_H The vector of the R^2_H values.

pi_00 The vector of π_{00} values.
\(\pi_{01} \) The vector of \(\pi_{01}^T \) values.
\(\pi_{10} \) The vector of \(\pi_{10}^T \) values.
\(\pi_{11} \) The vector of \(\pi_{11}^T \) values.
\(G_{\rho_{01}00} \) The vector of the \(\rho_{00}^{01} \) values.
\(G_{\rho_{01}01} \) The vector of the \(\rho_{01}^{01} \) values.
\(G_{\rho_{01}10} \) The vector of the \(\rho_{10}^{01} \) values.
\(G_{\rho_{01}11} \) The vector of the \(\rho_{11}^{01} \) values.
\(\pi_{\Delta T_min1} \) The vector of the \(\pi_{\Delta T}^{-1} \) values.
\(\pi_{\Delta T_0} \) The vector of the \(\pi_{\Delta T}^{0} \) values.
\(\pi_{\Delta T_1} \) The vector of the \(\pi_{\Delta T}^{1} \) values.
\(\pi_{0_00} \) The vector of \(\pi_{00} \) values of \(f(S_0) \).
\(\pi_{0_01} \) The vector of \(\pi_{01} \) values of \(f(S_0) \).
\(\pi_{0_10} \) The vector of \(\pi_{10} \) values of \(f(S_0) \).
\(\pi_{0_11} \) The vector of \(\pi_{11} \) values of \(f(S_0) \).
\(\mu_{0_00} \) The vector of mean \(\mu_{00} \) values of \(f(S_0) \).
\(\mu_{0_01} \) The vector of mean \(\mu_{01} \) values of \(f(S_0) \).
\(\mu_{0_10} \) The vector of mean \(\mu_{10} \) values of \(f(S_0) \).
\(\mu_{0_11} \) The vector of mean \(\mu_{11} \) values of \(f(S_0) \).
\(\sigma^2_{00_00} \) The vector of variance \(\sigma_{00}^{00} \) values of \(f(S_0) \).
\(\sigma^2_{00_01} \) The vector of variance \(\sigma_{00}^{01} \) values of \(f(S_0) \).
\(\sigma^2_{00_10} \) The vector of variance \(\sigma_{00}^{10} \) values of \(f(S_0) \).
\(\sigma^2_{00_11} \) The vector of variance \(\sigma_{00}^{11} \) values of \(f(S_0) \).
\(\pi_{1_00} \) The vector of \(\pi_{00} \) values of \(f(S_1) \).
\(\pi_{1_01} \) The vector of \(\pi_{01} \) values of \(f(S_1) \).
\(\pi_{1_10} \) The vector of \(\pi_{10} \) values of \(f(S_1) \).
\(\pi_{1_11} \) The vector of \(\pi_{11} \) values of \(f(S_1) \).
\(\mu_{1_00} \) The vector of mean \(\mu_{00} \) values of \(f(S_1) \).
\(\mu_{1_01} \) The vector of mean \(\mu_{01} \) values of \(f(S_1) \).
\(\mu_{1_10} \) The vector of mean \(\mu_{10} \) values of \(f(S_1) \).
\(\mu_{1_11} \) The vector of mean \(\mu_{11} \) values of \(f(S_1) \).
\(\sigma^2_{11_00} \) The vector of variance \(\sigma_{11}^{00} \) values of \(f(S_1) \).
\(\sigma^2_{11_01} \) The vector of variance \(\sigma_{11}^{01} \) values of \(f(S_1) \).
\(\sigma^2_{11_10} \) The vector of variance \(\sigma_{11}^{10} \) values of \(f(S_1) \).
\(\sigma^2_{11_11} \) The vector of variance \(\sigma_{11}^{11} \) values of \(f(S_1) \).
\(\text{mean}_Y_{S0} \) The vector of mean \(\mu_{0} \) values of \(f(S_0) \).
\(\text{mean}_Y_{S1} \) The vector of mean \(\mu_{1} \) values of \(f(S_1) \).
The vector of variance σ_{00} values of $f(S_0)$.

The vector of variance σ_{11} values of $f(S_1)$.

The vector of deviance values of the normal mixture for $f(S_0)$.

The vector of deviance values of the normal mixture for $f(S_1)$.

An integer indicating why the optimization process to estimate the mixture normal parameters of $f(S_0)$ terminated: 1) relative gradient is close to zero, current iterate is probably solution; 2) successive iterates within tolerance, current iterate is probably solution; 3) last global step failed to locate a point lower than the estimate, the estimate might be an approximate local minimum of the function.

An integer indicating why the optimization process to estimate the mixture normal parameters of $f(S_1)$ terminated: 1) relative gradient is close to zero, current iterate is probably solution; 2) successive iterates within tolerance, current iterate is probably solution; 3) last global step failed to locate a point lower than the estimate, the estimate might be an approximate local minimum of the function.

The mean of S_0.

The variance of S_0.

The mean of S_1.

The variance of S_1.

Wim Van der Elst, Fenny Ong, Ariel Alonso, and Geert Molenberghs

ICA.ContCont, MICA.ContCont, ICA.BinBin

Examples

```r
## Not run: # Time consuming code part
data(Schizo)
Fit <- ICA.BinCont(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin,
Theta.S_0=c(-10,-5,5,10,10,10,10,10), Theta.S_1=c(-10,-5,5,10,10,10,10,10),
Treat=Treat, M=50, Seed=1)

summary(Fit)
plot(Fit)

## End(Not run)
```
Assess surrogacy in the causal-inference single-trial setting in the binary-continuous case with an additional bootstrap procedure before the assessment

Description

The function ICA.BinCont.BS quantifies surrogacy in the single-trial setting within the causal-inference framework (individual causal association) when the surrogate endpoint is continuous (normally distributed) and the true endpoint is a binary outcome. This function also allows for an additional bootstrap procedure before the assessment to take the imprecision due to finite sample size into account. For details, see Alonso Abad et al. (2023).

Usage

ICA.BinCont.BS(Dataset, Surr, True, Treat,
BS=TRUE,
 nb=300,
 G_pi_10=c(0,1),
 G_rho_01_00=c(-1,1),
 G_rho_01_01=c(-1,1),
 G_rho_01_10=c(-1,1),
 G_rho_01_11=c(-1,1),
 Theta.S_0,
 Theta.S_1,
 M=1000, Seed=123,
 Monotonicity=FALSE,
 Independence=FALSE,
 HAA=FALSE,
 Cond_ind=FALSE,
 Plots=TRUE, Save.Plots="No", Show.Details=FALSE)

Arguments

Dataset A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, and a treatment indicator.

Surr The name of the variable in Dataset that contains the surrogate endpoint values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should be coded as 1 for the experimental group and -1 for the control group.

BS Logical. If BS=TRUE, the additional bootstrap procedure is performed before the sensitivity analysis to account for the imprecision due to finite sample size. Default BS=TRUE.

nb The number of bootstrap. Default nb=300.
ICA.BinCont.BS

G_pi_10 The lower and upper limits of the uniform distribution from which the probability parameter π_{10} is sampled. Default $c(0,1)$. Even though the default is $c(0,1)$, due to the restriction that all π_{ij} should be between $(0,1)$, the value of π_{10} will always be between $(0, \min(\pi_{11}, \pi_{00}))$. When Monotonicity=TRUE the values of these limits are set as $c(0,0)$.

G_rho_01_00 The lower and upper limits of the uniform distribution from which the association parameter ρ_{00} is sampled. Default $c(-1,1)$.

G_rho_01_01 The lower and upper limits of the uniform distribution from which the association parameter ρ_{01} is sampled. Default $c(-1,1)$.

G_rho_01_10 The lower and upper limits of the uniform distribution from which the association parameter ρ_{10} is sampled. Default $c(-1,1)$.

G_rho_01_11 The lower and upper limits of the uniform distribution from which the association parameter ρ_{11} is sampled. Default $c(-1,1)$.

Theta.S_0 The starting values of the means and standard deviations for the mixture distribution of the surrogate endpoint in the control group. The argument should contain eight values, where the first four values represent the starting values for the means and the last four values represent the starting values for the standard deviations. These starting values should be approximated based on the data on hand. Example: Theta.S_0=c(-10,-5,5,10,10,10,10,10).

Theta.S_1 The starting values of the means and standard deviations for the mixture distribution of the surrogate endpoint in the treatment group. The argument should contain eight values, where the first four values represent the starting values for the means and the last four values represent the starting values for the standard deviations. These starting values should be approximated based on the data on hand. Example: Theta.S_1=c(-10,-5,5,10,10,10,10,10).

M The number of Monte Carlo iterations. Default $M=1000$.

Seed The random seed to be used in the analysis (for reproducibility). Default Seed=123.

Monotonicity Logical. If Monotonicity=TRUE, the analysis is performed assuming monotonicity, i.e. $P(T_1 < T_0) = 0$. Default Monotonicity=FALSE.

Independence Logical. If Independence=TRUE, the analysis is performed assuming independence between the treatment effect in both groups, i.e. $\pi_{ij} = \pi_i \times \pi_j$. Default Independence=FALSE.

HAA Logical. If HAA=TRUE, the analysis is performed assuming homogeneous association, i.e. $\rho_{ij} = \rho_{01}$. Default HAA=FALSE.

Cond_ind Logical. If Cond_ind=TRUE, the analysis is performed assuming conditional independence, i.e. $\rho_{01} = 0$. Default Cond_ind=FALSE.

Plots Logical. Should histograms of S_0 (surrogate endpoint in control group) and S_1 (surrogate endpoint in experimental treatment group) be provided together with density of fitted mixtures? Default Plots=TRUE.

Save.Plots Should the plots (see previous item) be saved? If Save.Plots="No", no plots are saved. If plots have to be saved, replace "No" by the desired location, e.g., Save.Plots="C:/". Default Save.Plots="No".

Show.Details Should some details regarding the availability of some output from the function be displayed in the console when the analysis is running? Setting Show.Details=TRUE could be useful for debugging procedure (if any). Default Show.Details=FALSE.
Value

An object of class `ICA.BinCont` with components,

- `nboots`: The identification number of bootstrap samples being analyzed in the sensitivity analysis.
- `R2_H`: The vector of the R^2_H values.
- `pi_00`: The vector of π_{00} values.
- `pi_01`: The vector of π_{01} values.
- `pi_10`: The vector of π_{10} values.
- `pi_11`: The vector of π_{11} values.
- `G_rho_01_00`: The vector of the ρ_{00}^{01} values.
- `G_rho_01_01`: The vector of the ρ_{01}^{01} values.
- `G_rho_01_10`: The vector of the ρ_{10}^{01} values.
- `G_rho_01_11`: The vector of the ρ_{11}^{01} values.
- `mu_0_00`: The vector of mean μ_{00} values of $f(S_0)$.
- `mu_0_01`: The vector of mean μ_{01} values of $f(S_0)$.
- `mu_0_10`: The vector of mean μ_{10} values of $f(S_0)$.
- `mu_0_11`: The vector of mean μ_{11} values of $f(S_0)$.
- `mu_1_00`: The vector of mean μ_{00} values of $f(S_1)$.
- `mu_1_01`: The vector of mean μ_{01} values of $f(S_1)$.
- `mu_1_10`: The vector of mean μ_{10} values of $f(S_1)$.
- `mu_1_11`: The vector of mean μ_{11} values of $f(S_1)$.
- `sigma_00`: The vector of variance σ_{00} values of $f(S_0)$.
- `sigma_11`: The vector of variance σ_{11} values of $f(S_1)$.

Author(s)

Wim Van der Elst, Fenny Ong, Ariel Alonso, and Geert Molenberghs

References

See Also

`ICA.BinCont`
Examples

```r
## Not run: # Time consuming code part
data(Schizo)
Fit <- ICA.BinCont.BS(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin, nb = 10,
                      Theta.S_0=c(-10,-5,5,10,10,10,10,10), Theta.S_1=c(-10,-5,5,10,10,10,10,10),
                      Treat=Treat, M=50, Seed=1)
summary(Fit)
plot(Fit)
## End(Not run)
```

Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) in the Continuous-continuous case

Description

The function `ICA.ContCont` quantifies surrogacy in the single-trial causal-inference framework. See **Details** below.

Usage

`ICA.ContCont(T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.1),
 T0S1=seq(-1, 1, by=.1), T1S0=seq(-1, 1, by=.1), S0S1=seq(-1, 1, by=.1))`

Arguments

- `T0S0`: A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the control treatment condition that should be considered in the computation of ρ_Δ.
- `T1S1`: A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the experimental treatment condition that should be considered in the computation of ρ_Δ.
- `T0T0`: A scalar that specifies the variance of the true endpoint in the control treatment condition that should be considered in the computation of ρ_Δ. Default 1.
- `T1T1`: A scalar that specifies the variance of the true endpoint in the experimental treatment condition that should be considered in the computation of ρ_Δ. Default 1.
- `S0S0`: A scalar that specifies the variance of the surrogate endpoint in the control treatment condition that should be considered in the computation of ρ_Δ. Default 1.
- `S1S1`: A scalar that specifies the variance of the surrogate endpoint in the experimental treatment condition that should be considered in the computation of ρ_Δ. Default 1.
ICA.ContCont

T0T1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.1), i.e., the values $-1, -0.9, -0.8, \ldots, 1$.

T0S1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.1).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.1).

S0S1 A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.1).

Details

Based on the causal-inference framework, it is assumed that each subject j has four counterfactuals (or potential outcomes), i.e., T_{0j}, T_{1j}, S_{0j}, and S_{1j}. Let T_{0j} and T_{1j} denote the counterfactuals for the true endpoint (T) under the control ($Z = 0$) and the experimental ($Z = 1$) treatments of subject j, respectively. Similarly, S_{0j} and S_{1j} denote the corresponding counterfactuals for the surrogate endpoint (S) under the control and experimental treatments, respectively. The individual causal effects of Z on T and S for a given subject j are then defined as $\Delta_{Tj} = T_{1j} - T_{0j}$ and $\Delta_{Sj} = S_{1j} - S_{0j}$, respectively.

In the single-trial causal-inference framework, surrogacy can be quantified as the correlation between the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):

$$
\rho_\Delta = \rho(\Delta_{Tj}, \Delta_{Sj}) = \frac{\sqrt{\sigma_S S_0 T_0 T_1 \rho_{S0T0} + \sqrt{\sigma_S S_1 T_1 T_0 \rho_{S1T1} - \sqrt{\sigma_S S_0 T_0 T_1 \rho_{S0T0} - \sqrt{\sigma_S S_1 T_1 T_0 \rho_{S1T0}}}}}{\sqrt{(\sigma_{T_0 T_0} + \sigma_{T_1 T_1} - 2\sqrt{\sigma_{T_0 T_0} \sigma_{T_1 T_1} \rho_{T_0 T_1}})(\sigma_{S_0 S_0} + \sigma_{S_1 S_1} - 2\sqrt{\sigma_{S_0 S_0} \sigma_{S_1 S_1} \rho_{S0S1}})}},
$$

where the correlations ρ_{S0T1}, ρ_{S1T0}, ρ_{T0T1}, and ρ_{S0S1} are not estimable. It is thus warranted to conduct a sensitivity analysis (by considering vectors of possible values for the correlations between the counterfactuals – rather than point estimates).

When the user specifies a vector of values that should be considered for one or more of the counterfactual correlations in the above expression, the function ICA.ContCont constructs all possible matrices that can be formed as based on these values, identifies the matrices that are positive definite (i.e., valid correlation matrices), and computes ρ_Δ for each of these matrices. The obtained vector of ρ_Δ values can subsequently be used to examine (i) the impact of different assumptions regarding the correlations between the counterfactuals on the results (see also plot Causal-Inference ContCont), and (ii) the extent to which proponents of the causal-inference and meta-analytic frameworks will reach the same conclusion with respect to the appropriateness of the candidate surrogate endpoint. The function ICA.ContCont also generates output that is useful to examine the plausibility of finding a good surrogate endpoint (see GoodSurr in the Value section below). For details, see Alonso et al. (submitted).

Notes

A single ρ_Δ value is obtained when all correlations in the function call are scalars.
Value

An object of class ICA.ContCont with components,

Total.Num.Matrices
An object of class numeric that contains the total number of matrices that can be formed as based on the user-specified correlations in the function call.

Pos.Def
A data.frame that contains the positive definite matrices that can be formed based on the user-specified correlations. These matrices are used to compute the vector of the ρ_Δ values.

ICA
A scalar or vector that contains the individual causal association (ICA; ρ_Δ) value(s).

GoodSurr
A data.frame that contains the ICA (ρ_Δ), σ_{Δ_T}, and δ.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
MICA.ContCont, ICA.Sample.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont

Examples

```r
## Not run: #time-consuming code parts
# Generate the vector of ICA.ContCont values when rho_T0S0=rho_T1S1=.95, # sigma_T0T0=90, sigma_T1T1=100, sigma_S0S0=10, sigma_S1S1=15, and # the grid of values {0, .2, ..., 1} is considered for the correlations # between the counterfactuals:
SurICA <- ICA.ContCont(T0S0=.95, T1S1=.95, T0T0=90, T1T1=100, S0S0=10, S1S1=15, T0T1=seq(0, 1, by=.2), T0S1=seq(0, 1, by=.2), T1S0=seq(0, 1, by=.2), S0S1=seq(0, 1, by=.2))

# Examine and plot the vector of generated ICA values:
summary(SurICA)
plot(SurICA)

# Obtain the positive definite matrices than can be formed as based on the # specified (vectors) of the correlations (these matrices are used to # compute the ICA values)
SurICA$Pos.Def

# Same, but specify vectors for rho_T0S0 and rho_T1S1: Sample from # normal with mean .95 and SD=.05 (to account for uncertainty # in estimation)
```
ICA.ContCont.MultS

Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous S

Description

The function ICA.ContCont.MultS quantifies surrogacy in the single-trial causal-inference framework where T is continuous and there are multiple continuous S.

Usage

ICA.ContCont.MultS(M = 500, N, Sigma,
G = seq(from=-1, to=1, by = .00001),
Seed=c(123), Show.Progress=FALSE)

Arguments

M The number of multivariate ICA values (R^2_H) that should be sampled. Default M=500.

N The sample size of the dataset.

Sigma A matrix that specifies the variance-covariance matrix between T_0, T_1, S_{10}, S_{11}, S_{20}, S_{21}, ..., S_{k0}, and S_{k1} (in this order, the T_0 and T_1 data should be in Sigma[c(1,2), c(1,2)], the S_{10} and S_{11} data should be in Sigma[c(3,4), c(3,4)], and so on). The unidentifiable covariances should be defined as NA (see example below).

G A vector of the values that should be considered for the unidentified correlations. Default G=seq(-1, 1, by=.00001), i.e., values with range -1 to 1.

Seed The seed that is used. Default Seed=123.

Show.Progress Should progress of runs be graphically shown? (i.e., 1% done..., 2% done..., etc). Mainly useful when a large number of S have to be considered (to follow progress and estimate total run time).
Details

The multivariate ICA (R^2_H) is not identifiable because the individual causal treatment effects on T, S_1, ..., S_k cannot be observed. A simulation-based sensitivity analysis is therefore conducted in which the multivariate ICA (R^2_H) is estimated across a set of plausible values for the unidentifiable correlations. To this end, consider the variance covariance matrix of the potential outcomes Σ (0 and 1 subscripts refer to the control and experimental treatments, respectively):

$$
\Sigma = \begin{pmatrix}
\sigma_{T_0T_0} & \sigma_{T_0T_1} & \sigma_{T_0S_{10}} & \sigma_{T_0S_{11}} & \sigma_{T_0S_{20}} & \sigma_{T_0S_{21}} & \cdots & \sigma_{T_0S_{k0}} & \sigma_{T_0S_{k1}} \\
\sigma_{T_1T_0} & \sigma_{T_1T_1} & \sigma_{T_1S_{10}} & \sigma_{T_1S_{11}} & \sigma_{T_1S_{20}} & \sigma_{T_1S_{21}} & \cdots & \sigma_{T_1S_{k0}} & \sigma_{T_1S_{k1}} \\
\sigma_{S_{10}T_0} & \sigma_{S_{10}T_1} & \sigma_{S_{10}S_{10}} & \sigma_{S_{10}S_{11}} & \sigma_{S_{10}S_{20}} & \sigma_{S_{10}S_{21}} & \cdots & \sigma_{S_{10}S_{k0}} & \sigma_{S_{10}S_{k1}} \\
\sigma_{S_{11}T_0} & \sigma_{S_{11}T_1} & \sigma_{S_{11}S_{10}} & \sigma_{S_{11}S_{11}} & \sigma_{S_{11}S_{20}} & \sigma_{S_{11}S_{21}} & \cdots & \sigma_{S_{11}S_{k0}} & \sigma_{S_{11}S_{k1}} \\
\sigma_{S_{20}T_0} & \sigma_{S_{20}T_1} & \sigma_{S_{20}S_{10}} & \sigma_{S_{20}S_{11}} & \sigma_{S_{20}S_{20}} & \sigma_{S_{20}S_{21}} & \cdots & \sigma_{S_{20}S_{k0}} & \sigma_{S_{20}S_{k1}} \\
\sigma_{S_{21}T_0} & \sigma_{S_{21}T_1} & \sigma_{S_{21}S_{10}} & \sigma_{S_{21}S_{11}} & \sigma_{S_{21}S_{20}} & \sigma_{S_{21}S_{21}} & \cdots & \sigma_{S_{21}S_{k0}} & \sigma_{S_{21}S_{k1}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\sigma_{S_{k0}T_0} & \sigma_{S_{k0}T_1} & \sigma_{S_{k0}S_{10}} & \sigma_{S_{k0}S_{11}} & \sigma_{S_{k0}S_{20}} & \sigma_{S_{k0}S_{21}} & \cdots & \sigma_{S_{k0}S_{k0}} & \sigma_{S_{k0}S_{k1}} \\
\sigma_{S_{k1}T_0} & \sigma_{S_{k1}T_1} & \sigma_{S_{k1}S_{10}} & \sigma_{S_{k1}S_{11}} & \sigma_{S_{k1}S_{20}} & \sigma_{S_{k1}S_{21}} & \cdots & \sigma_{S_{k1}S_{k0}} & \sigma_{S_{k1}S_{k1}}
\end{pmatrix}
$$

The ICA.ContCont.MultS function requires the user to specify a distribution G for the unidentifiable correlations. Next, the identifiable correlations are fixed at their estimated values and the unidentifiable correlations are independently and randomly sampled from G. In the function call, the unidentifiable correlations are marked by specifying NA in the Sigma matrix (see example section below). The algorithm generates a large number of 'completed' matrices, and only those that are positive definite are retained (the number of positive definite matrices that should be obtained is specified by the $M=$ argument in the function call). Based on the identifiable variances, these positive definite correlation matrices are converted to covariance matrices Σ and the multiple-surrogate ICA are estimated.

An issue with this approach (i.e., substituting unidentified correlations by random and independent samples from G) is that the probability of obtaining a positive definite matrix is very low when the dimensionality of the matrix increases. One approach to increase the efficiency of the algorithm is to build-up the correlation matrix in a gradual way. In particular, the property that a $(k \times k)$ matrix is positive definite if and only if all principal minors are positive (i.e., Sylvester’s criterion) can be used. In other words, a $(k \times k)$ matrix is positive definite when the determinants of the upper-left (2×2), (3×3), ..., $(k \times k)$ submatrices all have a positive determinant. Thus, when a positive definite $(k \times k)$ matrix has to be generated, one can start with the upper-left (2×2) submatrix and randomly sample a value from the unidentified correlation (here: $\rho_{T_0T_0}$) from G. When the determinant is positive (which will always be the case for a (2×2) matrix), the same procedure is used for the upper-left (3×3) submatrix, and so on. When a particular draw from G for a particular submatrix does not give a positive determinant, new values are sampled for the unidentified correlations until a positive determinant is obtained. In this way, it can be guaranteed that the final $(k \times k)$ submatrix will be positive definite. The latter approach is used in the current function. This procedure is used to generate many positive definite matrices. Based on these matrices, Σ_Δ is generated and the multivariate ICA (R^2_H) is computed (for details, see Van der Elst et al., 2017).

Value

An object of class ICA.ContCont.MultS with components,

R^2_H The multiple-surrogate individual causal association value(s).
ICA.ContCont.MultS

Corr.R2_H The corrected multiple-surrogate individual causal association value(s).

Lower.Dig.Corr. All A data.frame that contains the matrix that contains the identifiable and unidentifiable correlations (lower diagonal elements) that were used to compute (R^2_H) in the run.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont, ICA.ContCont.MultS_alt

Examples

Not run: # time-consuming code parts
Specify matrix Sigma (var-covar matrix T_0, T_1, S1_0, S1_1, ...)
here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64),8)

s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4
s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1
s[5,3] <- 160.3; s[7,3] <- 142.8
s[6,4] <- 134.3; s[8,4] <- 130.4
s[7,5] <- 209.3;
s[8,6] <- 214.7
s[upper.tri(s)] = t(s)[upper.tri(s)]

Matrix looks like (NA indicates unidentified covariances):
T_0 T_1 S1_0 S1_1 S2_0 S2_1 S2_0 S2_1
T_0 [1,] 450.0 NA 160.8 NA 208.5 NA 268.4 NA
T_1 [2,] NA 413.5 NA 124.6 NA 212.30 NA 287.1
S1_0 [3,] 160.8 NA 174.2 NA 160.3 NA 142.8 NA
S1_1 [4,] NA 124.6 NA 157.5 NA 134.30 NA 130.4
S2_0 [5,] 208.5 NA 160.3 NA 244.0 NA 209.3 NA
S2_1 [6,] NA 212.3 NA 134.3 NA 229.99 NA 214.7
S3_0 [7,] 268.4 NA 142.8 NA 209.3 NA 294.2 NA
S3_1 [8,] NA 287.1 NA 130.4 NA 214.70 NA 302.5

Conduct analysis
ICA <- ICA.ContCont.MultS(M=100, N=200, Show.Progress = TRUE,
Sigma=s, G = seq(from=-1, to=1, by = .00001), Seed=c(123))
Explore results
summary(ICA)
plot(ICA)

End(Not run)

ICA.ContCont.MultS.MPC

Description

The function `ICA.ContCont.MultS.MPC` quantifies surrogacy in the single-trial causal-inference framework in which the true endpoint (T) and multiple surrogates (S) are continuous. This function is a modification of the `ICA.ContCont.MultS.PC` algorithm based on partial correlations. It mitigates the effect of non-informative surrogates and effectively explores the PD space to capture the ICA range (Florez, et al. 2021).

Usage

```r
ICA.ContCont.MultS.MPC(M=1000, N, Sigma, prob = NULL, Seed=123, Save.Corr=F, Show.Progress=FALSE)
```

Arguments

- **M**: The number of multivariate ICA values \(R^2_{HT}\) that should be sampled. Default \(M=1000\).
- **N**: The sample size of the dataset.
- **Sigma**: A matrix that specifies the variance-covariance matrix between \(T_0, T_1, S_{10}, S_{11}, S_{20}, S_{21}, ..., S_{k0}, S_{k1}\) (in this order, the \(T_0\) and \(T_1\) data should be in `Sigma[c(1,2), c(1,2)]`, the \(S_{10}\) and \(S_{11}\) data should be in `Sigma[c(3,4), c(3,4)]`, and so on). The unidentifiable covariances should be defined as NA (see example below).
- **prob**: vector of probabilities to choose the number of surrogates \(r\) with their non-identifiable correlations equal to zero. The default (\(prob=NULL\)) vector of probabilities is:
 \[
 \pi_r = \frac{\binom{p}{r}}{\sum_{i=1}^{p} \binom{p}{i}}, \text{ for } r = 0, \ldots, p.
 \]
 In this way, each possible combination of \(Sr\$ surrogates has the same probability of being selected.
- **Save.Corr**: If true, the lower diagonal elements of the correlation matrix (identifiable and unidentifiable elements) are stored. If false, these results are not saved.
Seed
The seed that is used. Default Seed=123.

Show Progress
Should progress of runs be graphically shown? (i.e., 1% done..., 2% done..., etc). Mainly useful when a large number of S have to be considered (to follow progress and estimate total run time).

Details
The multivariate ICA (R^2_H) is not identifiable because the individual causal treatment effects on T, S_1, ..., S_k cannot be observed. A simulation-based sensitivity analysis is therefore conducted in which the multivariate ICA (R^2_H) is estimated across a set of plausible values for the unidentifiable correlations. To this end, consider the variance covariance matrix of the potential outcomes Σ (0 and 1 subscripts refer to the control and experimental treatments, respectively):

$$
\Sigma =
\begin{pmatrix}
\sigma_{T_0T_0} & \sigma_{T_0T_1} & \cdots & \sigma_{T_0S_{10}} \\
\sigma_{T_0T_1} & \sigma_{T_1T_1} & \cdots & \sigma_{T_1S_{10}} \\
\sigma_{T_0S_{10}} & \sigma_{T_1S_{10}} & \cdots & \sigma_{S_{10}S_{10}} \\
\sigma_{T_0S_{11}} & \sigma_{T_1S_{11}} & \cdots & \sigma_{S_{11}S_{11}} \\
\sigma_{T_0S_{20}} & \sigma_{T_1S_{20}} & \cdots & \sigma_{S_{20}S_{20}} \\
\sigma_{T_0S_{21}} & \sigma_{T_1S_{21}} & \cdots & \sigma_{S_{21}S_{21}} \\
\sigma_{T_0S_{22}} & \sigma_{T_1S_{22}} & \cdots & \sigma_{S_{22}S_{22}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{T_0S_{k0}} & \sigma_{T_1S_{k0}} & \cdots & \sigma_{S_{k0}S_{k0}} \\
\sigma_{T_0S_{k1}} & \sigma_{T_1S_{k1}} & \cdots & \sigma_{S_{k1}S_{k1}} \\
\sigma_{T_0S_{k2}} & \sigma_{T_1S_{k2}} & \cdots & \sigma_{S_{k2}S_{k2}} \\
\sigma_{T_0S_{k3}} & \sigma_{T_1S_{k3}} & \cdots & \sigma_{S_{k3}S_{k3}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{T_0S_{k4}} & \sigma_{T_1S_{k4}} & \cdots & \sigma_{S_{k4}S_{k4}} \\
\end{pmatrix}
$$

The identifiable correlations are fixed at their estimated values and the unidentifiable correlations are independently and randomly sampled using a modification of an algorithm based on partial correlations (PC), called modified partial correlation (MPC) algorithm. In the function call, the unidentifiable correlations are marked by specifying NA in the Sigma matrix (see example section below).

The PC algorithm generate each correlation matrix progressively based on parameterization of terms of the correlations $\rho_{i,i+1}$, for $i = 1, \ldots, d - 1$, and the partial correlations $\rho_{i,j|i+1,\ldots,j-1}$, for $j - i > 2$ (for details, see Joe, 2006 and Florez et al., 2018). The MPC algorithm randomly fixed some of the unidentifiable correlations to zero in order to explore the PD, which is coherent with the estimable entries of the correlation matrix, to capture the ICA range more efficiently.

Based on the identifiable variances, these correlation matrices are converted to covariance matrices Σ and the multiple-surrogate ICA are estimated (for details, see Van der Elst et al., 2017).

This approach to simulate the unidentifiable parameters of Σ is computationally more efficient than the one used in the function ICA.ContCont.MultS.

Value
An object of class ICA.ContCont.MultS.PC with components,

- R^2_H The multiple-surrogate individual causal association value(s).
- Corr.R^2_H The corrected multiple-surrogate individual causal association value(s).
- Lower.Dig.CorrS.All A data frame that contains the matrix that contains the identifiable and unidentifiable correlations (lower diagonal elements) that were used to compute (R^2_H) in the run.
ICA.ContCont.MultS.MPC
surr.eval.r

97

Matrix indicating the surrogates of which their unidentifiable correlations are
fixed to zero in each simulation.

Author(s)
Wim Van der Elst, Ariel Alonso, Geert Molenberghs & Alvaro Florez
References
causally assessing surrogacy in a multivariate setting.
Computational Statistics & Data Analysis 142.
Multivariate Analysis, 97(10):2177-2189.
See Also
MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont, ICA.ContCont.MultS,
ICA.ContCont.MultS_alt
Examples
Not run:
Specify matrix Sigma (var-cavar matrix T_0, T_1, S1_0, S1_1, ...)
here we have 1 true endpoint and 10 surrogates (8 of these are non-informative)
Sigma = ks::invvech(
c(25, NA, 17.8, NA, -10.6, NA, 0, NA,
4, NA, -0.32, NA, -1.32, NA, 0, 16,
NA, -4, NA, 0, NA, 1, NA, 0.48, NA,
0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, 16, NA, 0, NA, 0, NA, 0, NA, 0,
NA, 0, NA, 0, NA, 0, NA, 0, NA, 1, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0, NA, 0,
NA, 0, 16, NA, 8, NA, 1, NA, 0.5, NA, 0.5,
NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA, 8, NA, 8, NA, 8, NA, 8,
NA, 8, NA, 1, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA,
8, NA, 8, NA, 8, NA, 8, NA, 1,NA,0.5,NA,0.5,NA,0.5,NA,0.5,NA,0.5, 16, NA, 8, NA, 8,
NA, 8, NA, 8, NA, 1, NA, 0.5, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA, 8, NA, 8, NA,
1, NA, 0.5, NA, 0.5, NA, 0.5, 16, NA, 8, NA, 8, NA, 1, NA, 0.5, NA, 0.5, 16, NA, 8, NA,
1, NA, 0.5, 16, NA, 1))
Conduct analysis using the PC and MPC algorithm
first evaluating two surrogates
ICA.PC.2 = ICA.ContCont.MultS.PC(M = 30000, N=200, Sigma[1:6,1:6], Seed = 123)
ICA.MPC.2 = ICA.ContCont.MultS.MPC(M = 30000, N=200, Sigma[1:6,1:6],prob=NULL,
Seed = 123, Save.Corr=T, Show.Progress = TRUE)


later evaluating two surrogates
ICA.PC.10 = ICA.ContCont.MultS.PC(M = 150000, N=200, Sigma, Seed = 123)
ICA.MPC.10 = ICA.ContCont.MultS.MPC(M = 150000, N=200, Sigma,prob=NULL,
Seed = 123, Save.Corr=T, Show.Progress = TRUE)

Explore results
range(ICA.PC.2$R2_H)
range(ICA.PC.10$R2_H)

range(ICA.MPC.2$R2_H)
range(ICA.MPC.10$R2_H)

as we observe, the MPC algorithm displays a wider interval of possible values for the ICA

End(Not run)

ICA.ContCont.MultS.PC Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous S, by simulating correlation matrices using an algorithm based on partial correlations

Description

The function ICA.ContCont.MultS quantifies surrogacy in the single-trial causal-inference framework where T is continuous and there are multiple continuous S. This function provides an alternative for **ICA.ContCont.MultS**.

Usage

ICA.ContCont.MultS.PC(M=1000,N,Sigma,Seed=123,Show.Progress=FALSE)

Arguments

- **M**: The number of multivariate ICA values \(R^2_H\) that should be sampled. Default \(M=1000\).
- **N**: The sample size of the dataset.
- **Sigma**: A matrix that specifies the variance-covariance matrix between \(T_0, T_1, S_{10}, S_{11}, S_{20}, S_{21}, ..., S_{k0}, \) and \(S_{k1}\) (in this order, the \(T_0\) and \(T_1\) data should be in \(\text{Sigma}[c(1,2), c(1,2)]\), the \(S_{10}\) and \(S_{11}\) data should be in \(\text{Sigma}[c(3,4), c(3,4)]\), and so on). The unidentifiable covariances should be defined as NA (see example below).
- **Seed**: The seed that is used. Default Seed=123.
- **Show.Progress**: Should progress of runs be graphically shown? (i.e., 1% done..., 2% done..., etc). Mainly useful when a large number of S have to be considered (to follow progress and estimate total run time).
Details

The multivariate ICA (R^2_H) is not identifiable because the individual causal treatment effects on T, S_1, ..., S_k cannot be observed. A simulation-based sensitivity analysis is therefore conducted in which the multivariate ICA (R^2_H) is estimated across a set of plausible values for the unidentifiable correlations. To this end, consider the variance covariance matrix of the potential outcomes Σ (0 and 1 subscripts refer to the control and experimental treatments, respectively):

\[
\Sigma = \begin{pmatrix}
\sigma_{T_0T_0} & \sigma_{T_0S_{10}} & \sigma_{S_{10}S_{10}} \\
\sigma_{T_0S_{10}} & \sigma_{T_1S_{10}} & \sigma_{S_{10}S_{10}} \\
\sigma_{T_0S_{10}} & \sigma_{T_1S_{10}} & \sigma_{S_{10}S_{11}} \\
\sigma_{T_0S_{20}} & \sigma_{T_1S_{20}} & \sigma_{S_{20}S_{20}} & \sigma_{S_{11}S_{20}} & \sigma_{S_{20}S_{20}} \\
\sigma_{T_0S_{21}} & \sigma_{T_1S_{21}} & \sigma_{S_{21}S_{21}} & \sigma_{S_{11}S_{21}} & \sigma_{S_{21}S_{21}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
\sigma_{T_0S_{k0}} & \sigma_{T_1S_{k0}} & \sigma_{S_{k0}S_{k0}} & \sigma_{S_{11}S_{k0}} & \sigma_{S_{20}S_{k0}} & \sigma_{S_{21}S_{k0}} & \sigma_{S_{21}S_{k0}} \\
\sigma_{T_0S_{k1}} & \sigma_{T_1S_{k1}} & \sigma_{S_{k1}S_{k1}} & \sigma_{S_{11}S_{k1}} & \sigma_{S_{20}S_{k1}} & \sigma_{S_{21}S_{k1}} & \sigma_{S_{21}S_{k1}} & \sigma_{S_{k1}S_{k1}} \\
\end{pmatrix}
\]

The identifiable correlations are fixed at their estimated values and the unidentifiable correlations are independently and randomly sampled using an algorithm based on partial correlations (PC). In the function call, the unidentifiable correlations are marked by specifying NA in the Sigma matrix (see example section below). The PC algorithm generate each correlation matrix progressively based on parameterization of terms of the correlations $\rho_{i,i+1}$, for $i = 1, \ldots, d - 1$, and the partial correlations $\rho_{i,j|i+1,\ldots,j-1}$, for $j - i > 2$ (for details, see Joe, 2006 and Florez et al., 2018). Based on the identifiable variances, these correlation matrices are converted to covariance matrices Σ and the multiple-surrrogate ICA are estimated (for details, see Van der Elst et al., 2017).

This approach to simulate the unidentifiable parameters of Σ is computationally more efficient than the one used in the function ICA.ContCont.MultS.

Value

An object of class ICA.ContCont.MultS.PC with components,

- R^2_H The multiple-surrrogate individual causal association value(s).
- Corr.R^2_H The corrected multiple-surrrogate individual causal association value(s).
- Lower.Dig.Corr.As All A data.frame that contains the matrix that contains the identifiable and unidentifiable correlations (lower diagonal elements) that were used to compute (R^2_H) in the run.

Author(s)

Alvaro Florez

References

See Also

MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont, ICA.ContCont.MultS, ICA.ContCont.MultS_alt

Examples

```r
## Not run:
# Specify matrix Sigma (var-covar matrix T_0, T_1, S1_0, S1_1, ...)
# here for 1 true endpoint and 3 surrogates

s <- matrix(rep(NA, times=64),8)
s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4
s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1
s[5,3] <- 160.3; s[7,3] <- 142.8
s[6,4] <- 134.3; s[8,4] <- 130.4
s[7,5] <- 209.3;
s[8,6] <- 214.7
s[upper.tri(s)] = t(s)[upper.tri(s)]

# Matrix looks like (NA indicates unidentified covariances):
#   T_0   T_1  S1_0  S1_1  S2_0  S2_1  S2_0  S2_1
#  [1,]   450.0 NA    160.8 NA    208.5 NA    268.4 NA
#  [2,]   413.5 NA    174.2 NA    212.3 NA    287.1 NA
#  [3,]   160.8 NA    142.8 NA    134.3 NA    130.4 NA
#  [4,]   157.5 NA    134.3 NA    130.4 NA    302.5 NA
#  [5,]   244.0 NA    209.3 NA    214.7 NA    214.7 NA
#  [6,]   229.99 NA    287.1 NA    214.7 NA    214.7 NA
#  [7,]   294.2 NA    302.5 NA    214.7 NA    214.7 NA
#  [8,]   302.5 NA    302.5 NA    214.7 NA    214.7 NA

# Conduct analysis
ICA <- ICA.ContCont.MultS.PC(M=1000, N=200, Show.Progress = TRUE, Sigma=s, Seed=c(123))

# Explore results
summary(ICA)
plot(ICA)

## End(Not run)
```
ICA.ContCont.MultS_alt

Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) using a continuous univariate T and multiple continuous S, alternative approach

Description

The function ICA.ContCont.MultS_alt quantifies surrogacy in the single-trial causal-inference framework where T is continuous and there are multiple continuous S. This function provides an alternative for ICA.ContCont.MultS.

Usage

ICA.ContCont.MultS_alt(M = 500, N, Sigma,
G = seq(-1, 1, by = .00001),
Seed=c(123), Model = "Delta_T ~ Delta_S1 + Delta_S2",
Show.Progress=FALSE)

Arguments

- **M**: The number of multivariate ICA values (R_{HI}^2) that should be sampled. Default $M=500$.
- **N**: The sample size of the dataset.
- **Sigma**: A matrix that specifies the variance-covariance matrix between T_0, T_1, S_{10}, S_{11}, S_{20}, S_{21}, S_{k0}, and S_{k1}. The unidentifiable covariances should be defined as NA (see example below).
- **G**: A vector of the values that should be considered for the unidentified correlations. Default $G = \text{seq}(-1, 1, \text{by} = .00001)$, i.e., values with range -1 to 1.
- **Seed**: The seed that is used. Default Seed=123.
- **Model**: The multivariate ICA (R_{HI}^2) is essentially the coefficient of determination of a regression model in which ΔT is regressed on ΔS_1, ΔS_2, etc and so on. The Model= argument specifies the regression model to be used in the analysis. For example, for 2 surrogates, Model = "Delta_T ~ Delta_S1 + Delta_S2".
- **Show.Progress**: Should progress of runs be graphically shown? (i.e., 1% done..., 2% done..., etc). Mainly useful when a large number of S have to be considered (to follow progress and estimate total run time).

Details

The multivariate ICA (R_{HI}^2) is not identifiable because the individual causal treatment effects on T, S_1, ..., S_k cannot be observed. A simulation-based sensitivity analysis is therefore conducted in which the multivariate ICA (R_{HI}^2) is estimated across a set of plausible values for the unidentifiable
correlations. To this end, consider the variance covariance matrix of the potential outcomes \(\Sigma \) (0 and 1 subscripts refer to the control and experimental treatments, respectively):

\[
\Sigma = \begin{pmatrix}
\sigma_{T_0, T_0} & \sigma_{T_0, T_1} & \sigma_{T_0, S_{10}} \\
\sigma_{T_0, T_1} & \sigma_{T_1, T_1} & \sigma_{T_1, S_{10}} \\
\sigma_{T_0, S_{10}} & \sigma_{T_1, S_{10}} & \sigma_{S_{10}, S_{10}} \\
\sigma_{T_0, S_{11}} & \sigma_{T_1, S_{11}} & \sigma_{S_{10}, S_{11}} \\
\sigma_{T_0, S_{20}} & \sigma_{T_1, S_{20}} & \sigma_{S_{10}, S_{20}} \\
\sigma_{T_0, S_{21}} & \sigma_{T_1, S_{21}} & \sigma_{S_{20}, S_{21}} \\
\sigma_{T_0, S_{2k}} & \sigma_{T_1, S_{2k}} & \sigma_{S_{2k-1}, S_{2k}} \\
& \ddots & \ddots \\
\sigma_{T_0, S_{k0}} & \sigma_{T_1, S_{k0}} & \sigma_{S_{k0-1}, S_{k0}} \\
& & \sigma_{S_{k0}, S_{k0}} \\
\sigma_{T_0, S_{k1}} & \sigma_{T_1, S_{k1}} & \sigma_{S_{k1}, S_{k1}} \\
& & \ddots \\
& & \ddots \\
& & \ddots \\
& & \sigma_{S_{k1}, S_{k1}}
\end{pmatrix}
\]

The ICA..\text{ContCont}.\text{MultS}_\text{alt} function requires the user to specify a distribution \(\mathcal{G} \) for the unidentified correlations. Next, the identifiable correlations are fixed at their estimated values and the unidentified correlations are independently and randomly sampled from \(\mathcal{G} \). In the function call, the unidentified correlations are marked by specifying NA in the Sigma matrix (see example section below). The algorithm generates a large number of 'completed' matrices, and only those that are positive definite are retained (the number of positive definite matrices that should be obtained is specified by the \(\mathcal{M} \) argument in the function call). Based on the identifiable variances, these positive definite correlation matrices are converted to covariance matrices \(\Sigma \) and the multiple-surrogate ICA are estimated.

An issue with this approach (i.e., substituting unidentified correlations by random and independent samples from \(\mathcal{G} \)) is that the probability of obtaining a positive definite matrix is very low when the dimensionality of the matrix increases. One approach to increase the efficiency of the algorithm is to build-up the correlation matrix in a gradual way. In particular, the property that a \((k \times k)\) matrix is positive definite if and only if all principal minors are positive (i.e., Sylvester’s criterion) can be used. In other words, a \((k \times k)\) matrix is positive definite when the determinants of the upper-left \((2 \times 2)\), \((3 \times 3)\), ..., \((k \times k)\) submatrices all have a positive determinant. Thus, when a positive definite \((k \times k)\) matrix has to be generated, one can start with the upper-left \((2 \times 2)\) submatrix and randomly sample a value from the unidentified correlation (here: \(\rho_{T_1, T_0} \)) from \(\mathcal{G} \). When the determinant is positive (which will always be the case for a \((2 \times 2)\) matrix), the same procedure is used for the upper-left \((3 \times 3)\) submatrix, and so on. When a particular draw from \(\mathcal{G} \) for a particular submatrix does not give a positive determinant, new values are sampled for the unidentified correlations until a positive determinant is obtained. In this way, it can be guaranteed that the final \((k \times k)\) submatrix will be positive definite. The latter approach is used in the current function. This procedure is used to generate many positive definite matrices. These positive definite matrices are used to generate \(\mathcal{M} \) datasets which contain \(\Delta T, \Delta S_1, \Delta S_2, ... , \Delta S_k \). Finally, the multivariate ICA \(R_H^2 \) is estimated by regressing \(\Delta T \) on \(\Delta S_1, \Delta S_2, ... , \Delta S_k \) and computing the multiple coefficient of determination.

Value

An object of class ICA..\text{ContCont}.\text{MultS}_\text{alt} with components,

- \text{R2.H} The multiple-surrogate individual causal association value(s).
- \text{Corr.R2.H} The corrected multiple-surrogate individual causal association value(s).
Res_Err_Delta_T
The residual errors (prediction errors) for intercept-only models of ΔT (i.e.,
models that do not include $\Delta S_1, \Delta S_2$, etc as predictors).

Res_Err_Delta_T_Given_S
The residual errors (prediction errors) for models where ΔT is regressed on
$\Delta S_1, \Delta S_2$, etc.

Lower.Dig.Corrs.All
A data frame that contains the matrix that contains the identifiable and uniden-
tifiable correlations (lower diagonal elements) that were used to compute (R^2_H)
in the run.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References
Van der Elst, W., Alonso, A. A., & Molenberghs, G. (2017). Univariate versus multivariate surro-
gate endpoints.

See Also
MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont

Examples
Not run: #time-consuming code parts
Specify matrix Sigma (var-covar matrix T_0, T_1, S1_0, S1_1, ...)
here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64),8)
s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4
s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1
s[5,3] <- 160.3; s[7,3] <- 142.8
s[6,4] <- 134.3; s[8,4] <- 130.4
s[7,5] <- 209.3;
s[8,6] <- 214.7
s[upper.tri(s)] = t(s)[upper.tri(s)]
Marix looks like (NA indicates unidentified covariances):
T_0 T_1 S1_0 S1_1 S2_0 S2_1 S2_0 S2_1
[1,] 450.0 NA 160.8 NA 208.5 NA 268.4 NA
[2,] NA 413.5 NA 124.6 NA 212.30 NA 287.1
[3,] 160.8 NA 174.2 NA 160.3 NA 142.8 NA
[4,] NA 124.6 NA 157.5 NA 134.30 NA 130.4
[5,] 208.5 NA 160.3 NA 244.0 NA 209.3 NA
[6,] NA 212.3 NA 134.3 NA 229.99 NA 214.7
[7,] 268.4 NA 142.8 NA 209.3 NA 294.2 NA
[8,] ...
ICA.Sample.ContCont

S3_1 [8,] NA 287.1 NA 130.4 NA 214.70 NA 302.5

Conduct analysis
ICA <- ICA.ContCont.MultS_alt(M=100, N=200, Show.Progress = TRUE,
 Sigma=s, G = seq(from=-1, to=1, by = .0001), Seed=c(123),
 Model = "Delta_T ~ Delta_S1 + Delta_S2 + Delta_S3")

Explore results
summary(ICA)
plot(ICA)

End(Not run)

ICA.Sample.ContCont

Assess surrogacy in the causal-inference single-trial setting (Individual Causal Association, ICA) in the Continuous-continuous case using the grid-based sample approach

Description

The function ICA.Sample.ContCont quantifies surrogacy in the single-trial causal-inference framework. It provides a faster alternative for ICA.ContCont. See Details below.

Usage

ICA.Sample.ContCont(T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.001),
 T0S1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001), S0S1=seq(-1, 1, by=.001), M=50000)

Arguments

T0S0 A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the control treatment condition that should be considered in the computation of ρ_Δ.

T1S1 A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the experimental treatment condition that should be considered in the computation of ρ_Δ.

T0T0 A scalar that specifies the variance of the true endpoint in the control treatment condition that should be considered in the computation of ρ_Δ. Default 1.

T1T1 A scalar that specifies the variance of the true endpoint in the experimental treatment condition that should be considered in the computation of ρ_Δ. Default 1.

S0S0 A scalar that specifies the variance of the surrogate endpoint in the control treatment condition that should be considered in the computation of ρ_Δ. Default 1.

S1S1 A scalar that specifies the variance of the surrogate endpoint in the experimental treatment condition that should be considered in the computation of ρ_Δ. Default 1.
A scalar or vector that contains the correlation(s) between the counterfactuals T_0 and T_1 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.001).

A scalar or vector that contains the correlation(s) between the counterfactuals T_0 and S_1 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.001).

A scalar or vector that contains the correlation(s) between the counterfactuals T_1 and S_0 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.001).

A scalar or vector that contains the correlation(s) between the counterfactuals S_0 and S_1 that should be considered in the computation of ρ_Δ. Default seq(-1, 1, by=.001).

The number of runs that should be conducted. Default 50000.

Details

Based on the causal-inference framework, it is assumed that each subject j has four counterfactuals (or potential outcomes), i.e., T_{0j}, T_{1j}, S_{0j}, and S_{1j}. Let T_{0j} and T_{1j} denote the counterfactuals for the true endpoint (T) under the control ($Z = 0$) and the experimental ($Z = 1$) treatments of subject j, respectively. Similarly, S_{0j} and S_{1j} denote the corresponding counterfactuals for the surrogate endpoint (S) under the control and experimental treatments, respectively. The individual causal effects of Z on T and S for a given subject j are then defined as $\Delta_{Tj} = T_{1j} - T_{0j}$ and $\Delta_{Sj} = S_{1j} - S_{0j}$, respectively.

In the single-trial causal-inference framework, surrogacy can be quantified as the correlation between the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):

$$\rho_\Delta = \rho(\Delta_{Tj}, \Delta_{Sj}) = \frac{\sqrt{\sigma_{S_0S_0}\sigma_{T_0T_0}\rho_{S_0T_0}} + \sqrt{\sigma_{S_1S_1}\sigma_{T_1T_1}\rho_{S_1T_1}} - \sqrt{\sigma_{S_0S_0}\sigma_{T_0T_0}\rho_{S_0T_0}} - \sqrt{\sigma_{S_1S_1}\sigma_{T_1T_1}\rho_{S_1T_1}}}{\sqrt{\sigma_{T_0T_0} + \sigma_{T_1T_1} - 2\sqrt{\sigma_{T_0T_0}\sigma_{T_1T_1}\rho_{T_0T_1}}} (\sigma_{S_0S_0} + \sigma_{S_1S_1} - 2\sqrt{\sigma_{S_0S_0}\sigma_{S_1S_1}\rho_{S_0S_1}})},$$

where the correlations $\rho_{S_0T_1}$, $\rho_{S_1T_0}$, $\rho_{T_0T_1}$, and $\rho_{S_0S_1}$ are not estimable. It is thus warranted to conduct a sensitivity analysis.

The function ICA.ContCont constructs all possible matrices that can be formed based on the specified vectors for $\rho_{S_0T_1}$, $\rho_{S_1T_0}$, $\rho_{T_0T_1}$, and $\rho_{S_0S_1}$, and retains the positive definite ones for the computation of ρ_Δ.

In contrast, the function ICA.Sample.ContCont samples random values for $\rho_{S_0T_1}$, $\rho_{S_1T_0}$, $\rho_{T_0T_1}$, and $\rho_{S_0S_1}$ based on a uniform distribution with user-specified minimum and maximum values, and retains the positive definite ones for the computation of ρ_Δ.

The obtained vector of ρ_Δ values can subsequently be used to examine (i) the impact of different assumptions regarding the correlations between the counterfactuals on the results (see also plot Causal-Inference ContCont), and (ii) the extent to which proponents of the causal-inference and meta-analytic frameworks will reach the same conclusion with respect to the appropriateness of the candidate surrogate at hand.

The function ICA.Sample.ContCont also generates output that is useful to examine the plausibility of finding a good surrogate endpoint (see GoodSurr in the Value section below). For details, see Alonso et al. (submitted).
Notes
A single ρ_Δ value is obtained when all correlations in the function call are scalars.

Value
An object of class ICA.ContCont with components,

Total.Num.Matrices
An object of class numeric that contains the total number of matrices that can be formed as based on the user-specified correlations in the function call.

Pos.Def
A data.frame that contains the positive definite matrices that can be formed based on the user-specified correlations. These matrices are used to compute the vector of the ρ_Δ values.

ICA
A scalar or vector that contains the individual causal association (ICA; ρ_Δ) value(s).

GoodSurr
A data.frame that contains the ICA (ρ_Δ), σ_{Δ_T}, and δ.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
MICA.ContCont, ICA.ContCont, Single.Trial.RE.AA, plot Causal-Inference ContCont

Examples
Generate the vector of ICA values when rho_T0S0=rho_T1S1=.95,
sigma_T0T0=90, sigma_T1T1=100,sigma_S0S0=10, sigma_S1S1=15, and
min=-1 max=1 is considered for the correlations
between the counterfactuals:
SurICA2 <- ICA.Sample.ContCont(T0S0=.95, T1S1=.95, T0T0=90, T1T1=100, S0S0=10, S1S1=15, M=5000)
Examine and plot the vector of generated ICA values:
summary(SurICA2)
plot(SurICA2)
ICA_given_model_constructor

Constructor for the function that returns ICA as a function of the identifiable parameters

Description

ICA_given_model_constructor() returns a function fixes the unidentifiable parameters at user-specified values and takes the identifiable parameters as argument.

Usage

ICA_given_model_constructor(
 fitted_model,
 copula_par_unid,
 copula_family2,
 rotation_par_unid,
 n_prec,
 measure = "ICA",
 mutinfo_estimator,
 composite,
 seed,
 restr_time = +Inf
)

Arguments

fitted_model Returned value from fit_model_SurvSurv(). This object contains the estimated identifiable part of the joint distribution for the potential outcomes.

copula_par_unid Parameter vector for the sequence of unidentifiable bivariate copulas that define the D-vine copula. The elements of copula_par correspond to \((c_{23}, c_{13};2, c_{24};3, c_{14};23)\).

copula_family2 Copula family of the other bivariate copulas. For the possible options, see loglik_copula_scale(). The elements of copula_family2 correspond to \((c_{23}, c_{13};2, c_{24};3, c_{14};23)\).

rotation_par_unid Vector of rotation parameters for the sequence of unidentifiable bivariate copulas that define the D-vine copula. The elements of rotation_par correspond to \((c_{23}, c_{13};2, c_{24};3, c_{14};23)\).

n_prec Number of Monte Carlo samples for the computation of the mutual information.

measure Compute intervals for which measure of surrogacy? Defaults to "ICA". See first column names of sens_results for other possibilities.

mutinfo_estimator Function that estimates the mutual information between the first two arguments which are numeric vectors. Defaults to FNN::mutinfo() with default arguments. @param plot_deltas (logical) Plot the sampled individual treatment effects?
composite (boolean) If composite is TRUE, then the surrogate endpoint is a composite of both a "pure" surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.

seed Seed for Monte Carlo sampling. This seed does not affect the global environment.

restr_time Restriction time for the potential outcomes. Defaults to +Inf which means no restriction. Otherwise, the sampled potential outcomes are replace by pmin(S0, restr_time) (and similarly for the other potential outcomes).

Value
A function that computes the ICA as a function of the identifiable parameters. In this computation, the unidentifiable parameters are fixed at the values supplied as arguments to ICA_given_model_constructor().

Description
Computes the individual-level surrogate threshold effect in the causal-inference single-trial setting where both the surrogate and the true endpoint are continuous normally distributed variables. For details, see paper in the references section.

Usage
ISTE.ContCont(Mean_T1, Mean_T0, Mean_S1, Mean_S0, N, Delta_S=c(-10, 0, 10),
 zeta.PI=0.05, PI.Bound=0, PI.Lower=TRUE, Show.Prediction.Plots=TRUE, Save.Plots="No",
 T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.001),
 T0S1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),
 S0S1=seq(-1, 1, by=.001), M.PosDef=500, Seed=123)

Arguments
Mean_T1 A scalar or vector that specifies the mean of the true endpoint in the experimental treatment condition (a vector is used to account for estimation uncertainty).
Mean_T0 A scalar or vector that specifies the mean of the true endpoint in the control condition (a vector is used to account for estimation uncertainty).
Mean_S1 A scalar or vector that specifies the mean of the surrogate endpoint in the experimental treatment condition (a vector is used to account for estimation uncertainty).
Mean_S0 A scalar or vector that specifies the mean of the surrogate endpoint in the control condition (a vector is used to account for estimation uncertainty).
N The sample size of the clinical trial.
Delta_S The vector or scalar of ΔS values for which the expected ΔT and its prediction error has to be computed.
zeta.PI The alpha-level to be used in the computation of the prediction interval around $E(\Delta T)$. Default zeta.PI=0.05, i.e., the 95% prediction interval.

PI.Bound The ISTE is defined as the value of ΔS for which the lower (or upper) bound of the $(1 - \alpha)\%$ prediction interval around $E(\Delta T)$ is 0. If another threshold value than 0 is desired, this can be requested by using the PI.Bound argument. For example, the argument PI.Bound=5 can be used in the function call to obtain the values of ΔS for which the lower (or upper) bound of the $(1 - \alpha)\%$ prediction intervals (in the different runs of the algorithm) around ΔT equal 5.

PI.Lower Logical. Should a lower (PI.Lower=TRUE) or upper (PI.Lower=FALSE) prediction interval be used in the computation of ISTE? Default PI.Lower=TRUE.

Show.Prediction.Plots Logical. Should plots that depict $E(\Delta T)$ against ΔS (prediction function), the prediction interval, and the ISTE for the different runs of the algorithm be shown? Default Show.Prediction.Plots=TRUE.

Save.Plots Should the prediction plots (see previous item) be saved? If Save.Plots="No" is used (the default argument), the plots are not saved. If the plots have to be saved, replace "No" by the desired location, e.g., Save.Plots="C:/Analysis directory/" on a windows computer or Save.Plots="/Users/wim/Desktop/Analysis directory/" on macOS or Linux.

T0S0 A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the control treatment condition that should be considered in the computation of ISTE.

T1S1 A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the experimental treatment condition that should be considered in the computation of ISTE.

T0T0 A scalar that specifies the variance of the true endpoint in the control treatment condition that should be considered in the computation of ISTE. Default 1.

T1T1 A scalar that specifies the variance of the true endpoint in the experimental treatment condition that should be considered in the computation of ISTE. Default 1.

S0S0 A scalar that specifies the variance of the surrogate endpoint in the control treatment condition that should be considered in the computation of ISTE. Default 1.

S1S1 A scalar that specifies the variance of the surrogate endpoint in the experimental treatment condition that should be considered in the computation of ISTE. Default 1.

T0T1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of ISTE. Default seq(-1, 1, by=.001).

T0S1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of ISTE. Default seq(-1, 1, by=.001).

T1S0 A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of ISTE. Default seq(-1, 1, by=.001).
S0S1

A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of ISTE. Default seq(-1, 1, by=.001).

M.PosDef

The number of positive definite Σ matrices that should be identified. This will also determine the amount of ISTE values that are identified. Default M.PosDef=500.

Seed

The seed to be used in the analysis (for reproducibility). Default Seed=123.

Details

See paper in the references section.

Value

An object of class ICA.ContCont with components,

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISTE_Low_PI</td>
<td>The vector of individual surrogate threshold effect (ISTE) values, i.e., the values of ΔS for which the lower bound of the $(1 - \alpha)%$ prediction interval around ΔT is 0 (or another threshold value, which can be requested by using the PI.Bound argument in the function call).</td>
</tr>
<tr>
<td>ISTE_Up_PI</td>
<td>Same as ISTE_Low_PI, but using the upper bound of the $(1 - \alpha)%$ prediction interval.</td>
</tr>
<tr>
<td>MSE</td>
<td>The vector of mean squared error values that are obtained in the prediction of ΔT based on ΔS.</td>
</tr>
<tr>
<td>gamma0</td>
<td>The vector of intercepts that are obtained in the prediction of ΔT based on ΔS.</td>
</tr>
<tr>
<td>gamma1</td>
<td>The vector of slope that are obtained in the prediction of ΔT based on ΔS.</td>
</tr>
<tr>
<td>Delta_S_For_Which_Delta_T_equal_0</td>
<td>The vector of ΔS values for which $E(\Delta T = 0)$.</td>
</tr>
<tr>
<td>S_squared_pred</td>
<td>The vector of variances of the prediction errors for ΔT.</td>
</tr>
<tr>
<td>Predicted_Delta_T</td>
<td>The vector/matrix of predicted values of ΔT for the ΔS values that were requested in the function call (argument Delta_S).</td>
</tr>
<tr>
<td>PI_Interval_Low</td>
<td>The vector/matrix of lower bound values of the $(1 - \alpha)%$ prediction interval around ΔT for the ΔS values that were requested in the function call (argument Delta_S).</td>
</tr>
<tr>
<td>PI_Interval_Up</td>
<td>The vector/matrix of upper bound values of the $(1 - \alpha)%$ prediction interval around ΔT for the ΔS values that were requested in the function call (argument Delta_S).</td>
</tr>
<tr>
<td>T0T0</td>
<td>The vector of variances of T0 (true endpoint in the control treatment) that are used in the computation (this is a constant if the variance is fixed in the function call).</td>
</tr>
<tr>
<td>T1T1</td>
<td>The vector of variances of T1 (true endpoint in the experimental treatment) that are used in the computations (this is a constant if the variance is fixed in the function call).</td>
</tr>
</tbody>
</table>
The vector of variances of S0 (surrogate endpoint in the control treatment) that are used in the computations (this is a constant if the variance is fixed in the function call).

The vector of variances of S1 (surrogate endpoint in the experimental treatment) that are used in the computations (this is a constant if the variance is fixed in the function call).

The vector of treatment effect values on the true endpoint that are used in the computations (this is a constant if the means of T0 and T1 are fixed in the function call).

The vector of treatment effect values on the surrogate endpoint that are used in the computations (this is a constant if the means of S0 and S1 are fixed in the function call).

An object of class numeric that contains the total number of matrices that can be formed as based on the user-specified correlations in the function call.

A data.frame that contains the positive definite matrices that can be formed based on the user-specified correlations. These matrices are used to compute the vector of the ISTE values.

Apart from ISTE, ICA is also computed (the individual causal association). For details, see ICA.ContCont.

The zeta.PI value specified in the function call.

The PI.Bound value specified in the function call.

The PI.Lower value specified in the function call.

The Delta_S value(s) specified in the function call.

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

ICA.ContCont

Define input for analysis using the Schizo dataset, # with S=BPRS and T = PANSS. # For each of the identifiable quantities, # uncertainty is accounted for by specifying a uniform # distribution with min, max values corresponding to # the 95% confidence interval of the quantity. T0S0 <- runif(min = 0.9524, max = 0.9659, n = 1000)
loglik_copula_scale

Loglikelihood on the Copula Scale

Description

loglik_copula_scale() computes the loglikelihood on the copula scale for possibly right-censored data.

Usage

loglik_copula_scale(theta, u, v, d1, d2, copula_family, r = 0L)
Arguments

theta Copula parameter
u A numeric vector. Corresponds to first variable on the copula scale.
v A numeric vector. Corresponds to second variable on the copula scale.
d1 An integer vector. Indicates whether first variable is observed or right-censored,
 • \(d1[i] = 1 \) if \(u[i] \) corresponds to non-censored value
 • \(d1[i] = 0 \) if \(u[i] \) corresponds to right-censored value
 • \(d1[i] = -1 \) if \(u[i] \) corresponds to left-censored value

d2 An integer vector. Indicates whether first variable is observed or right-censored,
 • \(d2[i] = 1 \) if \(v[i] \) corresponds to non-censored value
 • \(d2[i] = 0 \) if \(v[i] \) corresponds to right-censored value
 • \(d2[i] = -1 \) if \(v[i] \) corresponds to left-censored value

copula_family Copula family, one of the following:
 • "clayton"
 • "frank"
 • "gumbel"
 • "gaussian"

r rotation parameter. Should be 0L, 90L, 180L, or 270L.
The parameterization of the respective copula families can be found in the help files of the dedicated functions named copula_loglik_copula_scale().

Value

Value of the copula loglikelihood evaluated in theta.

Description

`log_likelihood_copula_model()` computes the loglikelihood for a given bivariate copula model and data set while allowing for right-censoring of both outcome variables.

Usage

```r
log_likelihood_copula_model(
  theta,
  X,
  Y,
  d1,
  d2,
)```
copula_family, 
cdf_X, 
cdf_Y, 
pdf_X, 
pdf_Y
)

Arguments

theta  Copula parameter
X      Numeric vector corresponding to first outcome variable.
Y      Numeric vector corresponding to second outcome variable.
d1     An integer vector. Indicates whether first variable is observed or right-censored,
       • d1[i] = 1 if u[i] corresponds to non-censored value
       • d1[i] = 0 if u[i] corresponds to right-censored value
       • d1[i] = -1 if u[i] corresponds to left-censored value

d2     An integer vector. Indicates whether first variable is observed or right-censored,
       • d2[i] = 1 if v[i] corresponds to non-censored value
       • d2[i] = 0 if v[i] corresponds to right-censored value
       • d2[i] = -1 if v[i] corresponds to left-censored value

copula_family Copula family, one of the following:
       • "clayton"
       • "frank"
       • "gumbel"
       • "gaussian"

cdf_X    Distribution function for the first outcome variable.
cdf_Y    Distribution function for the second outcome variable.
pdf_X    Density function for the first outcome variable.
pdf_Y    Density function for the second outcome variable.

Value

Loglikelihood of the bivariate copula model evaluated in the observed data.

LongToWide  Reshapes a dataset from the 'long' format (i.e., multiple lines per patient) into the 'wide' format (i.e., one line per patient)

Description

Reshapes a dataset that is in the 'long' format into the 'wide' format. The dataset should contain a single surrogate endpoint and a single true endpoint value per subject.
**Usage**

`LongToWide(Dataset, OutcomeIndicator, IdIndicator, TreatIndicator, OutcomeValue)`

**Arguments**

- **Dataset**  
  A data.frame in the 'long' format that contains (at least) five columns, i.e., one that contains the subject ID, one that contains the trial ID, one that contains the endpoint indicator, one that contains the treatment indicator, and one that contains the endpoint values.

- **OutcomeIndicator**  
  The name of the variable in Dataset that contains the indicator that distinguishes between the surrogate and true endpoints.

- **IdIndicator**  
  The name of the variable in Dataset that contains the subject ID.

- **TreatIndicator**  
  The name of the variable in Dataset that contains the treatment indicator. For the subsequent surrogacy analyses, the treatment indicator should either be coded as 1 for the experimental group and −1 for the control group, or as 1 for the experimental group and 0 for the control group. The −1/1 coding is recommended.

- **OutcomeValue**  
  The name of the variable in Dataset that contains the endpoint values.

**Value**

A data.frame in the 'wide' format, i.e., a data.frame that contains one line per subject. Each line contains a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

**Author(s)**

Wim Van der Elst, Ariel Alonso, and Geert Molenberghs

**Examples**

```r
Generate a dataset in the 'long' format that contains
S and T values for 100 patients
Outcome <- rep(x=c(0, 1), times=100)
ID <- rep(seq(1:100), each=2)
Treat <- rep(seq(c(0,1)), each=100)
Outcomes <- as.numeric(matrix(rnorm(1*200, mean=100, sd=10),
ncol=200))
Data <- data.frame(cbind(Outcome, ID, Treat, Outcomes))

Reshapes the Data object
LongToWide(Dataset=Data, OutcomeIndicator=Outcome, IdIndicator=ID,
TreatIndicator=Treat, OutcomeValue=Outcomes)
```
MarginalProbs  Computes marginal probabilities for a dataset where the surrogate and true endpoints are binary

Description
This function computes the marginal probabilities associated with the distribution of the potential outcomes for the true and surrogate endpoint.

Usage
MarginalProbs(Dataset=Dataset, Surr=Surr, True=True, Treat=Treat)

Arguments
Dataset
A data.frame that should consist of one line per patient. Each line contains (at least) a binary surrogate value, a binary true endpoint value, and a treatment indicator.

Surr
The name of the variable in Dataset that contains the binary surrogate endpoint values. Should be coded as 0 and 1.

True
The name of the variable in Dataset that contains the binary true endpoint values. Should be coded as 0 and 1.

Treat
The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should be coded as 1 for the experimental group and -1 for the control group.

Value
Theta_T0S0  The odds ratio for S and T in the control group.
Theta_T1S1  The odds ratio for S and T in the experimental group.
Freq.Cont  The frequencies for S and T in the control group.
Freq.Exp  The frequencies for S and T in the experimental group.
pi1_1_  The estimated \( \pi_{1,1} \).
pi0_1_  The estimated \( \pi_{0,1} \).
pi1_0_  The estimated \( \pi_{1,0} \).
pi0_0_  The estimated \( \pi_{0,0} \).
pi_1_1  The estimated \( \pi_{1,1} \).
pi_1_0  The estimated \( \pi_{1,0} \).
pi_0_1  The estimated \( \pi_{0,1} \).
pi_0_0  The estimated \( \pi_{0,0} \).

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
marginal_distribution

See Also

ICA.BinBin

Examples

# Open the ARMD dataset and recode Diff24 and Diff52 as 1
# when the original value is above 0, and 0 otherwise
data(ARMD)
ARMD$Diff24_Dich <- ifelse(ARMD$Diff24>0, 1, 0)
ARMD$Diff52_Dich <- ifelse(ARMD$Diff52>0, 1, 0)

# Obtain marginal probabilities and ORs
MarginalProbs(Dataset=ARMD, Surr=Diff24_Dich, True=Diff52_Dich,
Treat=Treat)

marginal_distribution  Fit marginal distribution

Description

The marginal_distribution() function is a wrapper for fitdistrplus::fitdist() that fits a
univariate distribution to a data vector.

Usage

marginal_distribution(x, distribution, fix.arg = NULL)

Arguments

x  (numeric) data vector

distribution  Distributional family. One of the following:

  • "normal": normal distribution
  • "logistic": logistic distribution as parameterized in dlogis()
  • "t": student t distribution is parameterized in dt()
  • "lognormal": lognormal distribution as parameterized in dlnorm()
  • "gamma": gamma distribution as parameterized in dgamma()
  • "weibull": weibull distribution as parameterized in dweibull()

fix.arg  An optional named list giving the values of fixed parameters of the named dis-

tribution or a function of data computing (fixed) parameter values and returning

a named list. Parameters with fixed value are thus NOT estimated by this maxi-
mum likelihood procedure.

Value

Object of class fitdistrplus::fitdist that represents the marginal surrogate distribution.
marginal_gof_plots_scr

Marginal survival function goodness of fit

Description

The `marginal_gof_plots_scr()` function plots the estimated marginal survival functions for the fitted model. This results in four plots of survival functions, one for each of $S_0$, $S_1$, $T_0$, $T_1$.

Usage

```r
marginal_gof_plots_scr(fitted_model, grid)
```

Arguments

- `fitted_model`: Returned value from `fit_model_SurvSurv()`. This object essentially contains the estimated identifiable part of the joint distribution for the potential outcomes.
- `grid`: grid of time-points for which to compute the estimated survival functions.

Examples

```r
data("Ovarian")
For simplicity, data is not recoded to semi-competing risks format, but is
left in the composite event format.
data = data.frame(
 Ovarian$Pfs,
 Ovarian$Surv,
 Ovarian$Treat,
 Ovarian$PfsInd,
 Ovarian$SurvInd
)

ovarian_fitted =
 fit_model_SurvSurv(data = data,
 copula_family = "clayton",
 n_knots = 1)
grid = seq(from = 0, to = 2, length.out = 50)
Surrogate::marginal_gof_plots_scr(ovarian_fitted, grid)
```
Description

The `marginal_gof_scr_S_plot()` and `marginal_gof_scr_T_plot()` functions plot the estimated marginal survival functions for the surrogate and true endpoints. In these plots, it is assumed that the copula model has been fitted for \((T_0, \tilde{S}_0, \tilde{S}_1, T_1)'\) where

\[
S_k = \min(\tilde{S}_k, T_k)
\]

is the (composite) surrogate of interest. In these plots, the model-based survival functions for \((T_0, S_0, S_1, T_1)'\) are plotted together with the corresponding Kaplan-Meier estimates.

Usage

```r
marginal_gof_scr_S_plot(fitted_model, grid, treated, ...)
marginal_gof_scr_T_plot(fitted_model, grid, treated, ...)
```

Arguments

- `fitted_model`: Returned value from `fit_model_SurvSurv()`. This object essentially contains the estimated identifiable part of the joint distribution for the potential outcomes.
- `grid`: Grid of time-points at which the model-based estimated regression functions, survival functions, or probabilities are evaluated.
- `treated`: (numeric) Treatment group. Should be 0 or 1.
- `...`: Additional arguments to pass to `plot()`.

Value

NULL

True Endpoint

The marginal goodness-of-fit plots for the true endpoint, build by `marginal_gof_scr_T_plot()`, is simply a comparison of the model-based estimate of \(P(T_k > t)\) with the Kaplan-Meier (KM) estimate obtained with `survival::survfit()`. A pointwise 95% confidence interval for the KM estimate is also plotted.

Surrogate Endpoint

The model-based estimate of \(P(S_k > s)\) follows indirectly from the fitted copula model because the copula model has been fitted for \(\tilde{S}_k\) instead of \(S_k\). However, the model-based estimate still follows easily from the copula model as follows,

\[
P(S_k > s) = P(\min(\tilde{S}_k, T_k)) = P(\tilde{S}_k > s, T_k > s).
\]

The `marginal_gof_scr_T_plot()` function plots the model-based estimate for \(P(\tilde{S}_k > s, T_k > s)\) together with the KM estimate (see above).
Examples

```r
Load Ovarian data
data("Ovarian")
Recode the Ovarian data in the semi-competing risks format.
data_scr = data.frame(
 ttp = Ovarian$Pfs,
 os = Ovarian$Surv,
 treat = Ovarian$Treat,
 ttp_ind = ifelse(
 Ovarian$Pfs == Ovarian$Surv &
 Ovarian$SurvInd == 1,
 0,
 Ovarian$PfsInd
),
 os_ind = Ovarian$SurvInd
)
Fit copula model.
fitted_model = fit_model_SurvSurv(data = data_scr,
 copula_family = "clayton",
 n_knots = 1)
Define grid for GoF plots.
grid = seq(from = 1e-3,
 to = 2.5,
 length.out = 30)
Assess marginal goodness-of-fit in the control group.
marginal_gof_scr_S_plot(fitted_model, grid = grid, treated = 0)
marginal_gof_scr_T_plot(fitted_model, grid = grid, treated = 0)
Assess goodness-of-fit of the association structure, i.e., the copula.
prob_dying_without_progression_plot(fitted_model, grid = grid, treated = 0)
mean_S_before_T_plot_scr(fitted_model, grid = grid, treated = 0)
```

MaxEntContCont

Use the maximum-entropy approach to compute ICA in the continuous-continuous single-trial setting

Description

In a surrogate evaluation setting where both $S$ and $T$ are continuous endpoints, a sensitivity-based approach where multiple 'plausible values' for ICA are retained can be used (see functions ICA.ContCont). The function MaxEntContCont identifies the estimate which has the maximum entropy.

Usage

```r
MaxEntContCont(x, T0T0, T1T1, S0S0, S1S1)
```
Arguments

- **x**: A fitted object of class `ICA.ContCont`.
- **T0T0**: A scalar that specifies the variance of the true endpoint in the control treatment condition.
- **T1T1**: A scalar that specifies the variance of the true endpoint in the experimental treatment condition.
- **S0S0**: A scalar that specifies the variance of the surrogate endpoint in the control treatment condition.
- **S1S1**: A scalar that specifies the variance of the surrogate endpoint in the experimental treatment condition.

Value

- **ICA.Max.Ent**: The ICA value with maximum entropy.
- **Max.Ent**: The maximum entropy.
- **Entropy**: The vector of entropies corresponding to the vector of 'plausible values' for ICA.
- **Table.ICA_entropy**: A data.frame that contains the vector of ICA, their entropies, and the correlations between the counterfactuals.
- **ICA.Fit**: The fitted `ICA.ContCont` object.

Author(s)

Wim Van der Elst, Ariel Alonso, Paul Meyvisch, & Geert Molenberghs

References

Add

See Also

`ICA.ContCont`, `MaxEntICABinBin`

Examples

```r
Not run: #time-consuming code parts
Compute ICA for ARMD dataset, using the grid
\(G=\{−1, −0.80, ..., 1\} \) for the unidentifiable correlations
ICA <- ICA.ContCont(T0S0 = 0.769, T1S1 = 0.712, S0S0 = 188.926, S1S1 = 132.638, T0T0 = 264.797, T1T1 = 231.771, T0T1 = seq(-1, 1, by = 0.2), T0S1 = seq(-1, 1, by = 0.2), T1S0 = seq(-1, 1, by = 0.2), S0S1 = seq(-1, 1, by = 0.2))

Identify the maximum entropy ICA
MaxEnt_ARMD <- MaxEntContCont(x = ICA, S0S0 = 188.926, S1S1 = 132.638, T0T0 = 264.797, T1T1 = 231.771)
```
MaxEntICABinBin

Use the maximum-entropy approach to compute ICA in the binary-binary setting

Description

In a surrogate evaluation setting where both $S$ and $T$ are binary endpoints, a sensitivity-based approach where multiple ‘plausible values’ for ICA are retained can be used (see functions ICA.BinBin, ICA.BinBin_Grid.Full, or ICA.BinBin_Grid.Sample). Alternatively, the maximum entropy distribution of the vector of potential outcomes can be considered, based upon which ICA is subsequently computed. The use of the distribution that maximizes the entropy can be justified based on the fact that any other distribution would necessarily (i) assume information that we do not have, or (ii) contradict information that we do have. The function MaxEntICABinBin implements the latter approach.

Usage

MaxEntICABinBin(pi1_1_, pi1_0_, pi_1_1,
pi_1_0, pi0_1_, pi_0_1, Method="BFGS",
Fitted.ICA=NULL)

Arguments

- **pi1_1** A scalar that contains the estimated value for $P(T = 1, S = 1|Z = 0)$, i.e., the probability that $S = T = 1$ when under treatment $Z = 0$.
- **pi1_0** A scalar that contains the estimated value for $P(T = 1, S = 0|Z = 0)$.
- **pi_1_1** A scalar that contains the estimated value for $P(T = 1, S = 1|Z = 1)$.
- **pi_1_0** A scalar that contains the estimated value for $P(T = 1, S = 0|Z = 1)$.
- **pi0_1** A scalar that contains the estimated value for $P(T = 0, S = 1|Z = 0)$.
- **pi_0_1** A scalar that contains the estimated value for $P(T = 0, S = 1|Z = 1)$.

Method

The maximum entropy frequency vector $p^*$ is calculated based on the optimal solution to an unconstrained dual convex programming problem (for details, see Alonso et al., 2015). Two different optimization methods can be specified, i.e., Method="BFGS" and Method="CG", which implement the quasi-Newton BFGS (Broyden, Fletcher, Goldfarb, and Shanno) and the conjugent gradient (CG) methods (for details on these methods, see the help files of the optim() function and the references therein). Alternatively, the $\pi$ vector (obtained when the functions ICA.BinBin, ICA.BinBin_Grid.Full, or ICA.BinBin_Grid.Sample are
executed) that is 'closest' to the vector $\pi$ can be retained. Here, the 'closest' vector is defined as the vector where the sum of the squared differences between the components in the vectors $\pi$ and $\pi$ is smallest. The latter 'Minimum Difference' method can be requested by specifying the argument Method="MD" in the function call. Default Method="BFGS".

**Fitted.ICA**

A fitted object of class `ICA.BinBin`, `ICA.BinBin.Grid.Full`, or `ICA.BinBin.Grid.Sample`. Only required when Method="MD" is used.

**Value**

- **R2_H**: The R2_H value.
- **Vector_p**: The maximum entropy frequency vector $p^*$
- **H_max**: The entropy of $p^*$

**Author(s)**

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

**References**


**See Also**

`ICA.BinBin`, `ICA.BinBin.Grid.Sample`, `ICA.BinBin.Grid.Full`, `plot.MaxEntICA.BinBin`  

**Examples**

```r
Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi_1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
 pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
 Monotonicity="No", M=5000)

Maximum-entropy based ICA
MaxEnt <- MaxEntICABinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
 pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

Explore maximum-entropy results
summary(MaxEnt)

Plot results
plot(x=MaxEnt, ICA.Fit=ICA)
```
Use the maximum-entropy approach to compute SPF (surrogate predictive function) in the binary-binary setting

Description

In a surrogate evaluation setting where both $S$ and $T$ are binary endpoints, a sensitivity-based approach where multiple 'plausible values' for vector $\pi$ (i.e., vectors $\pi$ that are compatible with the observable data at hand) can be used (for details, see SPF.BinBin). Alternatively, the maximum entropy distribution for vector $\pi$ can be considered (Alonso et al., 2015). The use of the distribution that maximizes the entropy can be justified based on the fact that any other distribution would necessarily (i) assume information that we do not have, or (ii) contradict information that we do have. The function MaxEntSPFBinBin implements the latter approach.

Based on vector $\pi$, the surrogate predictive function (SPF) is computed, i.e., $r(i, j) = P(\Delta T = i | \Delta S = j)$. For example, $r(-1, 1)$ quantifies the probability that the treatment has a negative effect on the true endpoint ($\Delta T = -1$) given that it has a positive effect on the surrogate ($\Delta S = 1$).

Usage

MaxEntSPFBinBin(pi1_1_, pi1_0_, pi_1_1, pi_1_0, pi0_1_, pi_0_1, Method="BFGS", Fitted.ICA=NULL)

Arguments

- **pi1_1_**: A scalar that contains the estimated value for $P(T = 1, S = 1 | Z = 0)$, i.e., the probability that $S = T = 1$ when under treatment $Z = 0$.
- **pi1_0_**: A scalar that contains the estimated value for $P(T = 1, S = 0 | Z = 0)$.
- **pi_1_1**: A scalar that contains the estimated value for $P(T = 1, S = 1 | Z = 1)$.
- **pi_1_0**: A scalar that contains the estimated value for $P(T = 1, S = 0 | Z = 1)$.
- **pi0_1_**: A scalar that contains the estimated value for $P(T = 0, S = 1 | Z = 0)$.
- **pi_0_1**: A scalar that contains the estimated value for $P(T = 0, S = 1 | Z = 1)$.
- **Method**: The maximum entropy frequency vector $\pi^*$ is calculated based on the optimal solution to an unconstrained dual convex programming problem (for details, see Alonso et al., 2015). Two different optimization methods can be specified, i.e., Method="BFGS" and Method="CG", which implement the quasi-Newton BFGS (Broyden, Fletcher, Goldfarb, and Shanno) and the conjugent gradient (CG) methods (for details on these methods, see the help files of the optim() function and the references therein). Alternatively, the $\pi$ vector (obtained when the functions ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample are executed) that is 'closest' to the vector $\pi$ can be retained. Here, the 'closest' vector is defined as the vector where the sum of the squared differences between the components in the vectors $\pi$ and $\pi$ is smallest. The latter 'Minimum Difference' method can be requested by specifying the argument Method="MD" in the function call. Default Method="BFGS".
Fitted ICA

A fitted object of class ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample. Only required when Method="MD" is used.

Value

- **Vector_p**: The maximum entropy frequency vector $p^*$
- **r_1_1**: The vector of values for $r(1, 1)$, i.e., $P(\Delta T = 1|\Delta S = 1)$.
- **r_min1_1**: The vector of values for $r(-1, 1)$.
- **r_0_1**: The vector of values for $r(0, 1)$.
- **r_1_0**: The vector of values for $r(1, 0)$.
- **r_min1_0**: The vector of values for $r(-1, 0)$.
- **r_0_0**: The vector of values for $r(0, 0)$.
- **r_1_min1**: The vector of values for $r(1, -1)$.
- **r_min1_min1**: The vector of values for $r(-1, -1)$.
- **r_0_min1**: The vector of values for $r(0, -1)$.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References


See Also

ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot MaxEntSPF BinBin

Examples

```r
Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254, pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1, Monotonicity=c("No"), M=5000)

Sensitivity-based SPF
SPFSens <- SPF.BinBin(ICA)

Maximum-entropy based SPF
SPFMaxEnt <- MaxEntSPFBinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254, pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

Explore maximum-entropy results
summary(SPFMaxEnt)

Plot results
plot(x=SPFMaxEnt, SPF.Fit=SPFSens)
```
Description

The `mean_S_before_T_plot_scr()` and `prob_dying_without_progression_plot()` functions build plots to assess the goodness-of-fit of the copula model fitted by `fit_model_SurvSurv()`. Specifically, these two functions focus on the appropriateness of the copula. Note that to assess the appropriateness of the marginal functions, two other functions are available: `marginal_gof_scr_S_plot()` and `marginal_gof_scr_T_plot()`.

Usage

```r
mean_S_before_T_plot_scr(fitted_model, plot_method = NULL, grid, treated, ...)

prob_dying_without_progression_plot(
fitted_model,
plot_method = NULL,
grid,
treated,
...
)
```

Arguments

- `fitted_model` Returned value from `fit_model_SurvSurv()`. This object essentially contains the estimated identifiable part of the joint distribution for the potential outcomes.
- `plot_method` Defaults to `NULL`. Should not be modified.
- `grid` Grid of time-points at which the model-based estimated regression functions, survival functions, or probabilities are evaluated.
- `treated` (numeric) Treatment group. Should be 0 or 1.
- `...` Additional arguments to pass to `plot()`.

Value

`NULL`

Progression Before Death

If a patient progresses before death, this means that $S_k < T_k$. For these patients, we can look at the expected progression time given that the patient has died at $T_k = t$:

$$E(S_k | T_k = t, S_k < T_k).$$

The `mean_S_before_T_plot_scr()` function plots the model-based estimate of this regression function together with a non-parametric estimate.
This regression function can also be estimated non-parametrically by regressing $S_k$ onto $T_k$ in the subset of uncensored patients. This non-parametric estimate is obtained via `mgcv::gam(y~s(x))` with additionally `family = stats::quasi(link = "log", variance = "mu")` because this tends to describe survival data better. The 95% confidence intervals are added for this non-parametric estimate; although, they should be interpreted with caution because the Poisson mean-variance relation may be wrong.

**Death Before Progression**

If a patient dies before progressing, this means that $S_k = T_k$. This probability can be modeled as a function of time, i.e.,

$$\pi_k(t) = P(S_k = t | T_k = t).$$

The `prob_dying_without_progression_plot()` function plots the model-based estimate of this regression function together with a non-parametric estimate.

This regression function can also be estimated non-parametrically by regressing the censoring indicator for $S_k, \delta_{S_k}$, onto $T_k$ in the subset of patients with uncensored $T_k$.

**Examples**

```r
Load Ovarian data
data("Ovarian")
Recode the Ovarian data in the semi-competing risks format.
data_scr = data.frame(
 ttp = Ovarian$Pfs,
 os = Ovarian$Surv,
 treat = Ovarian$Treat,
 ttp_ind = ifelse(Ovarian$Pfs == Ovarian$Surv &
 Ovarian$SurvInd == 1,
 0,
 Ovarian$PfsInd
),
 os_ind = Ovarian$SurvInd
)
Fit copula model.
fitted_model = fit_model_SurvSurv(data = data_scr,
 copula_family = "clayton",
 n_knots = 1)

Define grid for GoF plots.
grid = seq(from = 1e-3,
 to = 2.5,
 length.out = 30)
Assess marginal goodness-of-fit in the control group.
marginal_gof_scr_S_plot(fitted_model, grid = grid, treated = 0)
marginal_gof_scr_T_plot(fitted_model, grid = grid, treated = 0)
Assess goodness-of-fit of the association structure, i.e., the copula.
prob_dying_without_progression_plot(fitted_model, grid = grid, treated = 0)
mean_S_before_T_plot_scr(fitted_model, grid = grid, treated = 0)
```
Assess surrogacy in the causal-inference multiple-trial setting (Meta-analytic Individual Causal Association; MICA) in the continuous-continuous case

Description

The function MICA.ContCont quantifies surrogacy in the multiple-trial causal-inference framework. See Details below.

Usage

MICA.ContCont(Trial.R, D.aa, D.bb, T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.1), T0S1=seq(-1, 1, by=.1), T1S0=seq(-1, 1, by=.1), S0S1=seq(-1, 1, by=.1))

Arguments

- **Trial.R**: A scalar that specifies the trial-level correlation coefficient (i.e., \( R_{trial} \)) that should be used in the computation of \( \rho_M \).
- **D.aa**: A scalar that specifies the between-trial variance of the treatment effects on the surrogate endpoint (i.e., \( d_{aa} \)) that should be used in the computation of \( \rho_M \).
- **D.bb**: A scalar that specifies the between-trial variance of the treatment effects on the true endpoint (i.e., \( d_{bb} \)) that should be used in the computation of \( \rho_M \).
- **T0S0**: A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the control treatment condition that should be considered in the computation of \( \rho_M \).
- **T1S1**: A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the experimental treatment condition that should be considered in the computation of \( \rho_M \).
- **T0T0**: A scalar that specifies the variance of the true endpoint in the control treatment condition that should be considered in the computation of \( \rho_M \). Default 1.
- **T1T1**: A scalar that specifies the variance of the true endpoint in the experimental treatment condition that should be considered in the computation of \( \rho_M \). Default 1.
- **S0S0**: A scalar that specifies the variance of the surrogate endpoint in the control treatment condition that should be considered in the computation of \( \rho_M \). Default 1.
- **S1S1**: A scalar that specifies the variance of the surrogate endpoint in the experimental treatment condition that should be considered in the computation of \( \rho_M \). Default 1.
- **T0T1**: A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of \( \rho_M \). Default seq(-1, 1, by=.1), i.e., the values \(-1, -0.9, -0.8, \ldots, 1\).
A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of $\rho_M$. Default seq(-1, 1, by=.1).

A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of $\rho_M$. Default seq(-1, 1, by=.1).

A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of $\rho_M$. Default seq(-1, 1, by=.1).

**Details**

Based on the causal-inference framework, it is assumed that each subject $j$ in trial $i$ has four counterfactuals (or potential outcomes), i.e., $T_{0ij}$, $T_{1ij}$, $S_{0ij}$, and $S_{1ij}$. Let $T_{0ij}$ and $T_{1ij}$ denote the counterfactuals for the true endpoint ($T$) under the control ($Z = 0$) and the experimental ($Z = 1$) treatments of subject $j$ in trial $i$, respectively. Similarly, $S_{0ij}$ and $S_{1ij}$ denote the corresponding counterfactuals for the surrogate endpoint ($S$) under the control and experimental treatments of subject $j$ in trial $i$, respectively. The individual causal effects of $Z$ on $T$ and $S$ for a given subject $j$ in trial $i$ are then defined as $\Delta_{T_{ij}} = T_{1ij} - T_{0ij}$ and $\Delta_{S_{ij}} = S_{1ij} - S_{0ij}$, respectively.

In the multiple-trial causal-inference framework, surrogacy can be quantified as the correlation between the individual causal effects of $Z$ on $T$ and $T$ (for details, see Alonso et al., submitted):

$$
\rho_M = \rho(\Delta_{T_{ij}}, \Delta_{S_{ij}}) = \sqrt{d_{aa}d_{bb}R_{trial}} + \frac{\sqrt{V(\varepsilon_{T_{ij}})V(\varepsilon_{S_{ij}})}\rho_{\Delta}}{\sqrt{V(\Delta_{T_{ij}})V(\Delta_{S_{ij}})}},
$$

where

$$
V(\varepsilon_{T_{ij}}) = \sigma_{T_0T_0} + \sigma_{T_1T_1} - 2\sqrt{\sigma_{T_0T_0}\sigma_{T_1T_1}}\rho_{T_0T_1},
$$

$$
V(\varepsilon_{S_{ij}}) = \sigma_{S_0S_0} + \sigma_{S_1S_1} - 2\sqrt{\sigma_{S_0S_0}\sigma_{S_1S_1}}\rho_{S_0S_1},
$$

$$
V(\Delta_{T_{ij}}) = d_{bb} + \sigma_{T_0T_0} + \sigma_{T_1T_1} - 2\sqrt{\sigma_{T_0T_0}\sigma_{T_1T_1}}\rho_{T_0T_1},
$$

$$
V(\Delta_{S_{ij}}) = d_{aa} + \sigma_{S_0S_0} + \sigma_{S_1S_1} - 2\sqrt{\sigma_{S_0S_0}\sigma_{S_1S_1}}\rho_{S_0S_1}.
$$

The correlations between the counterfactuals (i.e., $\rho_{S_0T_1}$, $\rho_{S_1T_0}$, $\rho_{T_0T_1}$, and $\rho_{S_0S_1}$) are not identifiable from the data. It is thus warranted to conduct a sensitivity analysis (by considering vectors of possible values for the correlations between the counterfactuals – rather than point estimates).

When the user specifies a vector of values that should be considered for one or more of the correlations that are involved in the computation of $\rho_M$, the function `MICA.ContCont` constructs all possible matrices that can be formed as based on the specified values, identifies the matrices that are positive definite (i.e., valid correlation matrices), and computes $\rho_M$ for each of these matrices. An examination of the vector of the obtained $\rho_M$ values allows for a straightforward examination of the impact of different assumptions regarding the correlations between the counterfactuals on the results (see also `plot Causal-Inference ContCont`), and the extent to which proponents of the causal-inference and meta-analytic frameworks will reach the same conclusion with respect to the appropriateness of the candidate surrogate at hand.

**Notes** A single $\rho_M$ value is obtained when all correlations in the function call are scalars.
Value

An object of class MICA.ContCont with components,

- **Total.Num.Matrices**
  An object of class numeric which contains the total number of matrices that can be formed as based on the user-specified correlations.

- **Pos.Def**
  A data.frame that contains the positive definite matrices that can be formed based on the user-specified correlations. These matrices are used to compute the vector of the $\rho_M$ values.

- **ICA**
  A scalar or vector of the $\rho_\Delta$ values.

- **MICA**
  A scalar or vector of the $\rho_M$ values.

Warning

The theory that relates the causal-inference and the meta-analytic frameworks in the multiple-trial setting (as developed in Alonso et al., submitted) assumes that a reduced or semi-reduced modelling approach is used in the meta-analytic framework. Thus $R_{trial}$, $d_{aa}$ and $d_{bb}$ should be estimated based on a reduced model (i.e., using the Model=c("Reduced") argument in the functions UnifixedContCont, UnimixedContCont, BifixedContCont, or BimixedContCont) or based on a semi-reduced model (i.e., using the Model=c("SemiReduced") argument in the functions UnifixedContCont, UnimixedContCont, or BifixedContCont).

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References


See Also

ICA.ContCont, MICA.Sample.ContCont, plot Causal-Inference ContCont, UnifixedContCont, UnimixedContCont, BifixedContCont, BimixedContCont

Examples

```r
Not run: #time-consuming code parts
Generate the vector of MICA values when R_trial=.8, rho_T0S0=rho_T1S1=.8,
sigma_T0T0=90, sigma_T1T1=100, sigma_S0S0=10, sigma_S1S1=15, D.aa=5, D.bb=10,
and when the grid of values {0, .2, ..., 1} is considered for the
correlations between the counterfactuals:
SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=5, D.bb=10, T0S0=.8, T1S1=.8,
 T0T0=90, T1T1=100, S0S0=10, S1S1=15, T0T1=seq(0, 1, by=.2),
 T0S1=seq(0, 1, by=.2), T1S0=seq(0, 1, by=.2), S0S1=seq(0, 1, by=.2))

Examine and plot the vector of the generated MICA values:
```
summary(SurMICA)
plot(SurMICA)

# Same analysis, but now assume that D.aa=.5 and D.bb=.1:
SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=.5, D.bb=.1, T0S0=.8, T1T1=100, S0S0=10, S1S1=15, T0T1=seq(0, 1, by=.2), T0S1=seq(0, 1, by=.2), T1S0=seq(0, 1, by=.2), S0S1=seq(0, 1, by=.2))

# Examine and plot the vector of the generated MICA values:
summary(SurMICA)
plot(SurMICA)

# Same as first analysis, but specify vectors for rho_T0S0 and rho_T1S1:
# Sample from normal with mean .8 and SD=.1 (to account for uncertainty
# in estimation)
SurMICA <- MICA.ContCont(Trial.R=.80, D.aa=5, D.bb=10,
T0S0=rnorm(n=1000000, mean=.8, sd=.1),
T1S1=rnorm(n=1000000, mean=.8, sd=.1),
T0T0=0, T1T1=100, S0S0=10, S1S1=15, T0T1=seq(0, 1, by=.2),
T0S1=seq(0, 1, by=.2), T1S0=seq(0, 1, by=.2), S0S1=seq(0, 1, by=.2))

## End(Not run)

MICA.Sample.ContCont

Assess surrogacy in the causal-inference multiple-trial setting (Meta-analytic Individual Causal Association; MICA) in the continuous-continuous case using the grid-based sample approach

Description

The function MICA.Sample.ContCont quantifies surrogacy in the multiple-trial causal-inference framework. It provides a faster alternative for MICA.ContCont. See Details below.

Usage

MICA.Sample.ContCont(Trial.R, D.aa, D.bb, T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.001), T0S1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001), S0S1=seq(-1, 1, by=.001), M=50000)

Arguments

Trial.R A scalar that specifies the trial-level correlation coefficient (i.e., \(R_{\text{trial}}\)) that should be used in the computation of \(\rho_M\).

D.aa A scalar that specifies the between-trial variance of the treatment effects on the surrogate endpoint (i.e., \(d_{\text{aa}}\)) that should be used in the computation of \(\rho_M\).

D.bb A scalar that specifies the between-trial variance of the treatment effects on the true endpoint (i.e., \(d_{\text{bb}}\)) that should be used in the computation of \(\rho_M\).
T0S0  A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the control treatment condition that should be considered in the computation of ρ_M.

T1S1  A scalar or vector that specifies the correlation(s) between the surrogate and the true endpoint in the experimental treatment condition that should be considered in the computation of ρ_M.

T0T0  A scalar that specifies the variance of the true endpoint in the control treatment condition that should be considered in the computation of ρ_M. Default 1.

T1T1  A scalar that specifies the variance of the true endpoint in the experimental treatment condition that should be considered in the computation of ρ_M. Default 1.

S0S0  A scalar that specifies the variance of the surrogate endpoint in the control treatment condition that should be considered in the computation of ρ_M. Default 1.

S1S1  A scalar that specifies the variance of the surrogate endpoint in the experimental treatment condition that should be considered in the computation of ρ_M. Default 1.

T0T1  A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of ρ_M. Default seq(-1, 1, by=.001).

T0S1  A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of ρ_M. Default seq(-1, 1, by=.001).

T1S0  A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of ρ_M. Default seq(-1, 1, by=.001).

S0S1  A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of ρ_M. Default seq(-1, 1, by=.001).

M  The number of runs that should be conducted. Default 50000.

Details

Based on the causal-inference framework, it is assumed that each subject j in trial i has four counterfactuals (or potential outcomes), i.e., T_{0ij}, T_{1ij}, S_{0ij}, and S_{1ij}. Let T_{0ij} and T_{1ij} denote the counterfactuals for the true endpoint (T) under the control (Z = 0) and the experimental (Z = 1) treatments of subject j in trial i, respectively. Similarly, S_{0ij} and S_{1ij} denote the corresponding counterfactuals for the surrogate endpoint (S) under the control and experimental treatments of subject j in trial i, respectively. The individual causal effects of Z on T and S for a given subject j in trial i are then defined as Δ_{T_{ij}} = T_{1ij} - T_{0ij} and Δ_{S_{ij}} = S_{1ij} - S_{0ij}, respectively.

In the multiple-trial causal-inference framework, surrogacy can be quantified as the correlation between the individual causal effects of Z on S and T (for details, see Alonso et al., submitted):

$$\rho_M = \rho(\Delta_{T_{ij}}, \Delta_{S_{ij}}) = \frac{\sqrt{d_{bb}d_{aa}R_{trial}}} {\sqrt{V(\Delta_{T_{ij}})}\sqrt{V(\Delta_{S_{ij}})}} + \sqrt{\frac{V(\varepsilon_{\Delta_{T_{ij}}})V(\varepsilon_{\Delta_{S_{ij}}})} {V(\Delta_{T_{ij}})V(\Delta_{S_{ij}})}},$$

where
The correlations between the counterfactuals (i.e., $\rho_{S_0T_1}$, $\rho_{S_1T_0}$, $\rho_{T_0T_1}$, and $\rho_{S_0S_1}$) are not identifiable from the data. It is thus warranted to conduct a sensitivity analysis (by considering vectors of possible values for the correlations between the counterfactuals – rather than point estimates).

When the user specifies a vector of values that should be considered for one or more of the correlations that are involved in the computation of $\rho_M$, the function MICA.ContCont constructs all possible matrices that can be formed as based on the specified values, and retains the positive definite ones for the computation of $\rho_M$.

In contrast, the function MICA.Sample.ContCont samples random values for $\rho_{S_0T_1}$, $\rho_{S_1T_0}$, $\rho_{T_0T_1}$, and $\rho_{S_0S_1}$ based on a uniform distribution with user-specified minimum and maximum values, and retains the positive definite ones for the computation of $\rho_M$.

An examination of the vector of the obtained $\rho_M$ values allows for a straightforward examination of the impact of different assumptions regarding the correlations between the counterfactuals on the results (see also plot Causal-Inference ContCont), and the extent to which proponents of the causal-inference and meta-analytic frameworks will reach the same conclusion with respect to the appropriateness of the candidate surrogate at hand.

**Notes** A single $\rho_M$ value is obtained when all correlations in the function call are scalars.

**Value**

An object of class MICA.ContCont with components,

- **Total.Num.Matrices** An object of class numeric which contains the total number of matrices that can be formed as based on the user-specified correlations.
- **Pos.Def** A data.frame that contains the positive definite matrices that can be formed based on the user-specified correlations. These matrices are used to compute the vector of the $\rho_M$ values.
- **ICA** A scalar or vector of the $\rho_\Delta$ values.
- **MICA** A scalar or vector of the $\rho_M$ values.

**Warning**

The theory that relates the causal-inference and the meta-analytic frameworks in the multiple-trial setting (as developped in Alonso et al., submitted) assumes that a reduced or semi-reduced modelling approach is used in the meta-analytic framework. Thus $R_{\text{trial}}$, $d_{aa}$ and $d_{bb}$ should be estimated based on a reduced model (i.e., using the Model=c("Reduced") argument in the functions UnifixedContCont, UnimixedContCont, BifixedContCont, or BimixedContCont) or based on a semi-reduced model (i.e., using the Model=c("SemiReduced") argument in the functions UnifixedContCont, UnimixedContCont, or BifixedContCont).
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References


See Also

ICA.ContCont, MICA.ContCont, plot Causal-Inference ContCont, UnifixedContCont, UnimixedContCont, BifixedContCont, BimixedContCont

Examples

```r
Not run: #Time consuming (>5 sec) code part
Generate the vector of MICA values when R_trial=.8, rho_T0S0=rho_T1S1=.8,
sigma_T0T0=90, sigma_T1T1=100, sigma_S0S0=10, sigma_S1S1=15, D.aa=5, D.bb=10,
and when the grid of values {-1, -0.999, ..., 1} is considered for the
correlations between the counterfactuals:
SurMICA <- MICA.Sample.ContCont(Trial.R=.80, D.aa=5, D.bb=10, T0S0=.8, T1S1=.8,
 T0T0=90, T1T1=100, S0S0=10, S1S1=15, T0T1=seq(-1, 1, by=.001),
 T0S1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),
 S0S1=seq(-1, 1, by=.001), M=10000)

Examine and plot the vector of the generated MICA values:
summary(SurMICA)
plot(SurMICA, ICA=FALSE, MICA=TRUE)

Same analysis, but now assume that D.aa=.5 and D.bb=.1:
SurMICA <- MICA.Sample.ContCont(Trial.R=.80, D.aa=.5, D.bb=.1, T0S0=.8, T1S1=.8,
 T0T0=90, T1T1=100, S0S0=10, S1S1=15, T0T1=seq(-1, 1, by=.001),
 T0S1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001),
 S0S1=seq(-1, 1, by=.001), M=10000)

Examine and plot the vector of the generated MICA values:
summary(SurMICA)
plot(SurMICA)

End(Not run)
```
Description

The function MinSurrContCont examines the plausibility of finding a good surrogate endpoint in the continuous-continuous setting. For details, see Alonso et al. (submitted).

Usage

MinSurrContCont(T0T0, T1T1, Delta, T0T1=seq(from=0, to=1, by=.01))

Arguments

T0T0 A scalar that specifies the variance of the true endpoint in the control treatment condition.
T1T1 A scalar that specifies the variance of the true endpoint in the experimental treatment condition.
Delta A scalar that specifies an upper bound for the prediction mean squared error when predicting the individual causal effect of the treatment on the true endpoint based on the individual causal effect of the treatment on the surrogate.
T0T1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of $\rho_{min}^2$. Default seq(0, 1, by=.1), i.e., the values 0, 0.10, 0.20, ..., 1.

Value

An object of class MinSurrContCont with components,

T0T1 A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that were considered (i.e., $\rho_{T0,T1}$).
Sigma.Delta.T A scalar or vector that contains the standard deviations of the individual causal treatment effects on the true endpoint as a function of $\rho_{T0,T1}$.
Rho2.Min A scalar or vector that contains the $\rho_{min}^2$ values as a function of $\rho_{T0,T1}$.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References


See Also

ICA.ContCont, plot Causal-Inference ContCont, plot MinSurrContCont
Examples

```r
Assess the plausibility of finding a good surrogate when
sigma_T0T0 = sigma_T1T1 = 8 and Delta = 1
Not run:
MinSurr <- MinSurrContCont(T0T0 = 8, T1T1 = 8, Delta = 1)
summary(MinSurr)
plot(MinSurr)
End(Not run)
```

```r
MixedContContIT

Fits (univariate) mixed-effect models to assess surrogacy in the continuous-continuous case based on the Information-Theoretic framework.

Description

The function `MixedContContIT` uses the information-theoretic approach (Alonso & Molenberghs, 2007) to estimate trial- and individual-level surrogacy based on mixed-effect models when both S and T are continuous endpoints. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the Details section below.

Usage

```r
MixedContContIT(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, ...)
```

Arguments

- **Dataset**: A `data.frame` that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.
- **Surr**: The name of the variable in `Dataset` that contains the surrogate endpoint values.
- **True**: The name of the variable in `Dataset` that contains the true endpoint values.
- **Treat**: The name of the variable in `Dataset` that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and -1 for the control group, or as 1 for the experimental group and 0 for the control group.
- **Trial.ID**: The name of the variable in `Dataset` that contains the trial ID to which the patient belongs.
- **Pat.ID**: The name of the variable in `Dataset` that contains the patient’s ID.
- **Model**: The type of model that should be fitted, i.e., `Model=c("Full"), Model=c("Reduced"), or Model=c("SemiReduced")`. See the Details section below. Default `Model=c("Full")`.
- **Weighted**: A logical value indicating whether a weighted model should be used.
- **Min.Trial.Size**: An integer specifying the minimum trial-size that should be used.
- **Alpha**: A number specifying the significance level (i.e., 1 - confidence level) that should be used.
MixedContContIT

Weighted Logical. In practice it is often the case that different trials (or other clustering units) have different sample sizes. Univariate models are used to assess surrogacy in the information-theoretic approach, so it can be useful to adjust for heterogeneity in information content between the trial-specific contributions (particularly when trial-level surrogacy measures are of primary interest and when the heterogeneity in sample sizes is large). If Weighted=TRUE, weighted regression models are fitted. If Weighted=FALSE, unweighted regression analyses are conducted. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The α-level that is used to determine the confidence intervals around R^2 and R^2_{hit}. Default 0.05.

Details

Individual-level surrogacy

The following generalised linear mixed-effect models are fitted:

$$g_T(E(T_{ij})) = \mu_T + m_Ti + \beta Z_{ij} + b_iZ_{ij},$$
$$g_T(E(T_{ij}|S_{ij})) = \theta_0 + c_Ti + \theta_1 Z_{ij} + a_iZ_{ij} + \theta_2 S_{ij},$$

where i and j are the trial and subject indicators, g_T is an appropriate link function (i.e., an identity link when a continuous true endpoint is considered), S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, and Z_{ij} is the treatment indicator for subject j in trial i. μ_T and β are a fixed intercept and a fixed treatment-effect on the true endpoint, while m_Ti and b_i are the corresponding random effects. θ_0 and θ_1 are the fixed intercept and the fixed treatment effect on the true endpoint after accounting for the effect of the surrogate endpoint, and c_Ti and a_i are the corresponding random effects.

The $-2 \log$ likelihood values of the previous models (i.e., L_1 and L_2, respectively) are subsequently used to compute individual-level surrogacy (based on the so-called Variance Reduction Factor, VFR; for details, see Alonso & Molenberghs, 2007):

$$R^2_{hind} = 1 - exp \left(- \frac{L_2 - L_1}{N} \right),$$

where N is the number of trials.

Trial-level surrogacy

When a full or semi-reduced model is requested (by using the argument Model=c("Full") or Model=c("SemiReduced") in the function call), trial-level surrogacy is assessed by fitting the following mixed models:

$$S_{ij} = \mu_S + m_{Si} + (\alpha + a_i)Z_{ij} + \varepsilon_{Sij}, (1)$$
\[T_{ij} = \mu_T + m_{Ti} + (\beta + b_i)Z_{ij} + \varepsilon_{Tij}, (1) \]

where \(i \) and \(j \) are the trial and subject indicators, \(S_{ij} \) and \(T_{ij} \) are the surrogate and true endpoint values of subject \(j \) in trial \(i \), \(Z_{ij} \) is the treatment indicator for subject \(j \) in trial \(i \), \(\mu_S \) and \(\mu_T \) are the fixed intercepts for \(S \) and \(T \), \(m_{Si} \) and \(m_{Ti} \) are the corresponding random intercepts, \(\alpha \) and \(\beta \) are the fixed treatment effects on \(S \) and \(T \), and \(a_i \) and \(b_i \) are the corresponding random effects. The error terms \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are assumed to be independent.

When a reduced model is requested by the user (by using the argument \(\text{Model}=c(“Reduced”) \) in the function call), the following univariate models are fitted:

\[S_{ij} = \mu_S + (\alpha + a_i)Z_{ij} + \varepsilon_{Sij}, (2) \]
\[T_{ij} = \mu_T + (\beta + b_i)Z_{ij} + \varepsilon_{Tij}, (2) \]

where \(\mu_S \) and \(\mu_T \) are the common intercepts for \(S \) and \(T \). The other parameters are the same as defined above, and \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are again assumed to be independent.

When the user requested that a full model approach is used (by using the argument \(\text{Model}=c(“Full”) \) in the function call, i.e., when models (1) were fitted), the following model is subsequently fitted:

\[\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu}_{Si} + \lambda_2 \hat{\alpha}_i + \varepsilon_i, \ (3) \]

where the parameter estimates for \(\hat{\beta}_i \), \(\mu_{Si} \), and \(\alpha_i \) are based on models (1) (see above). When a weighted model is requested (using the argument \(\text{Weighted}=\text{TRUE} \) in the function call), model (3) is a weighted regression model (with weights based on the number of observations in trial \(i \)). The \(-2 \) log likelihood value of the (weighted or unweighted) models (3) (\(L_1 \)) is subsequently compared to the \(-2 \) log likelihood value of an intercept-only model (\(\hat{\beta}_i = \lambda_3; \ L_0 \)), and \(R^2_{ht} \) is computed based on the Variance Reduction Factor (VFR; for details, see Alonso & Molenberghs, 2007):

\[R^2_{ht} = 1 - \exp \left(\frac{-L_1 - L_0}{N} \right), \]

where \(N \) is the number of trials.

When a semi-reduced or reduced model is requested (by using the argument \(\text{Model}=c(“SemiReduced”) \) or \(\text{Model}=c(“Reduced”) \) in the function call), the following model is fitted:

\[\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \varepsilon_i, \]

where the parameter estimates for \(\hat{\beta}_i \) and \(\alpha_i \) are based on models (2). The \(-2 \) log likelihood value of this (weighted or unweighted) model (\(L_1 \)) is subsequently compared to the \(-2 \) log likelihood value of an intercept-only model (\(\hat{\beta}_i = \lambda_3; \ L_0 \)), and \(R^2_{ht} \) is computed based on the reduction in the likelihood (as described above).

Value

An object of class \texttt{MixedContContIT} with components,
Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded. `Data.Analyze` is the dataset on which the surrogacy analysis was conducted.

A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in `Data.Analyze`).

A data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

A data.frame that contains the trial-level surrogacy estimate and its confidence interval.

A data.frame that contains the individual-level surrogacy estimate and its confidence interval.

A data.frame that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., ρ_{T0S0}) and in the experimental treatment group (i.e., ρ_{T1S1}), their standard errors and their confidence intervals.

A data.frame that contains the residuals for the surrogate and true endpoints (ϵ_{Sij} and ϵ_{Tij}) that are obtained when models (1) or models (2) are fitted (see the Details section above).

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

FixedContContIT, plot Information-Theoretic

Not run: # Time consuming (>5sec) code part
Example 1
Based on the ARMD data:
data(ARMD)
Assess surrogacy based on a full mixed-effect model
in the information-theoretic framework:
Sur <- MixedContContIT(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center,
Pat.ID=Id, Model="Full")
Obtain a summary of the results:
summary(Sur)

Example 2
Conduct an analysis based on a simulated dataset with 2000 patients, 200 trials,
and Rindiv=Rtrial=.8
Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=200, R.Trial.Target=.8, R.Indiv.Target=.8,
Seed=123, Model="Full")
Assess surrogacy based on a full mixed-effect model
in the information-theoretic framework:
Sur2 <- MixedContContIT(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat,
Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Full")
Show a summary of the results:
summary(Sur2)
End(Not run)

model_fit_measures

Goodness of fit information for survival-survival model

Description

This function returns several goodness-of-fit measures for a model fitted by `fit_model_SurvSurv()`. These are primarily intended for model selection.

Usage

```r
model_fit_measures(fitted_model)
```

Arguments

- `fitted_model` returned value from `fit_model_SurvSurv()`.

Details

The following goodness-of-fit measures are returned in a named vector:

- `tau_0` and `tau_1`: (latent) value for Kendall’s tau in the estimated model.
- `log_lik`: the maximized log-likelihood value.
- `AIC`: the Akaike information criterion of the fitted model.

Value

a named vector containing the goodness-of-fit measures
Examples

```r
library(Surrogate)
data("Ovarian")
#For simplicity, data is not recoded to semi-competing risks format, but is
#left in the composite event format.
data = data.frame(
  Ovarian$Pfs,
  Ovarian$Surv,
  Ovarian$Treat,
  Ovarian$PfsInd,
  Ovarian$SurvInd
)

ovarian_fitted =
  fit_model_SurvSurv(data = data,
    copula_family = "clayton",
    n_knots = 1)

model_fit_measures(ovarian_fitted)
```

MufixedContCont.MultS
Fits a multivariate fixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case with multiple surrogates)

Description

The function `MufixedContCont.MultS` uses the multivariate fixed-effects approach to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available and multiple surrogates are considered for a single true endpoint. The user can specify whether a (weighted or unweighted) full or reduced model should be fitted. See the Details section below.

Usage

```r
MufixedContCont.MultS(Dataset, Endpoints=True~Surr.1+Surr.2, 
  Treat="Treat", Trial.ID="Trial.ID", Pat.ID="Pat.ID", 
  Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, 
  Number.Bootstraps=0, Seed=123)
```

Arguments

- **Dataset**
 A data.frame that should consist of one line per patient. Each line contains one or more surrogate value(s), a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

- **Endpoints**
 An equation in the form `True~Surr.1+Surr.2` that specifies the true endpoint followed by the surrogate endpoint(s).

- **Treat**
 The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should be coded as 1 for the experimental group and -1 for the control group.
Trial.ID The name of the variable in Dataset that contains the trial ID to which the patient belongs.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.

Model The type of model that should be fitted, i.e., Model=c("Full") or Model=c("Reduced"). For details, see below or Van der Elst et al. (2023). Default Model=c("Full").

Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2 of the two-stage approach. If FALSE, then an unweighted regression analysis is conducted at stage 2 of the two-stage approach. See the Details section below. Default TRUE.

Min.Trial.Size The minimum number of patients that a trial should contain in order to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha The \(\alpha \)-level that is used to determine the confidence intervals around \(R^2_{trial} \) and \(R^2_{indiv} \). Default 0.05.

Number.Bootstraps Lee’s (Lee, 1971) approach is done by default to obtain confidence intervals around \(R^2_{trial} \) and \(R^2_{indiv} \). Alternatively, a non-parametric bootstrap can be done. By default, Number.Bootstraps=0 and thus no bootstrap is conducted. If a bootstrap is desired, specify the number of bootstrap samples used this argument. For example, Number.Bootstraps=100 conducts a bootstrap with 100 bootstrap samples.

Seed The seed that is used in the bootstrap. Default Seed=123.

Details

When the full multivariate mixed-effects model is fitted to assess surrogate in the meta-analytic framework (for details, see Van der Elst et al., 2023), computational issues often occur. In that situation, the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al., 2005; Tibaldi et al., 2003).

The function MufixedContCont.MultS implements one such strategy, i.e., it uses a two-stage multivariate fixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, a multivariate linear regression model is fitted. When a full model is requested (by using the argument Model=c("Full") in the function call), the following model is fitted:

\[
\begin{align*}
S_1_{ij} &= \mu_1 + \alpha_1 Z_{ij} + \varepsilon_1_{ij}, \\
S_2_{ij} &= \mu_2 + \alpha_2 Z_{ij} + \varepsilon_2_{ij}, \\
S_K_{ij} &= \mu_K + \alpha_K Z_{ij} + \varepsilon_K_{ij}, \\
T_{ij} &= \mu_T + \beta T_{ij} + \varepsilon_T_{ij},
\end{align*}
\]

where \(Z_{ij} \) is the treatment indicator for subject \(j \) in trial \(i \), \(\mu_1, \mu_2, ..., \mu_K \) and \(\mu_T \) are the fixed trial-specific intercepts for \(S_1, S_2, ... S_K \) and \(T \), and \(\alpha_1, \alpha_2, ..., \alpha_K \) and \(\beta_T \) are the trial-specific treatment effects on the surrogates and the true endpoint, respectively. When a reduced model is requested (by using the argument Model=c("Reduced") in the function call), the following model is fitted:
where μ_{S1}, μ_{S2}, ..., μ_{SK} and μ_T are the common intercepts for the surrogates and the true endpoint (i.e., it is assumed that the intercepts for the surrogates and the true endpoints are identical in all trials). The other parameters are the same as defined above.

In the above models, the error terms ε_{S1ij}, ε_{S2ij}, ..., ε_{SKij} and ε_{Tij} are assumed to be mean-zero normally distributed with variance-covariance matrix Σ.

Next, the second stage of the analysis is conducted. When a full model is requested by the user (by using the argument `Model=c("Full")` in the function call), the following model is fitted:

$$\hat{\beta}_{T1} = \lambda_0 + \lambda_1 \hat{\mu}_{S1i} + \lambda_2 \hat{\alpha}_{S1i} + \lambda_3 \hat{\mu}_{S2i} + \lambda_4 \hat{\alpha}_{S2i} + ... + \lambda_{2K-1} \hat{\mu}_{SKi} + \lambda_{2K} \hat{\alpha}_{SKi} + \varepsilon_i,$$

where the parameter estimates are based on the full model that was fitted in stage 1.

When a reduced model is requested by the user (by using the argument `Model=c("Reduced")`), the $\lambda_1 \hat{\mu}_{S1i}$, $\lambda_3 \hat{\mu}_{S2i}$, ... and $\lambda_{2K} \hat{\mu}_{SKi}$ components are dropped from the above expression.

When the argument `Weighted=FALSE` is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument `Weighted=TRUE` in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.

The classical coefficient of determination of the fitted stage 2 model provides an estimate of R^2_{trial}.

Value

An object of class `MufixedContCont.MultS` with components,

Data.Analyze Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded. `Data.Analyze` is the dataset on which the surrogacy analysis was conducted.

Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in `Data.Analyze`).
The results of stage 1 of the two-stage model fitting approach: a data.frame that contains the trial-specific intercepts and treatment effects for the surrogate(s) and the true endpoints (when a full model is requested), or the trial-specific treatment effects for the surrogates and the true endpoints (when a reduced model is requested).

A data.frame that contains the residuals for the surrogate and true endpoints that are obtained in stage 1 of the analysis ($\varepsilon_{S_{ij}}$ and $\varepsilon_{T_{ij}}$).

An object of class lm (linear model) that contains the parameter estimates of the regression model that is fitted in stage 2 of the analysis.

A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval based on the approach of Lee (1971).

A data.frame that contains the adjusted trial-level coefficient of determination ($R^2_{\text{adj,trial}}$), its standard error and confidence interval based on the approach of Lee (1971).

A data.frame that contains the adjusted trial-level coefficient of determination ($R^2_{\text{adj,trial}}$), its standard error and confidence interval based on the non-parametric bootstrap.

A data.frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval based on the approach of Lee (1971).

A data.frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval based on the non-parametric bootstrap.

The fitted Stage 1 model.

A linear model that regresses the residuals of T on the residuals of the different surrogates.

The variance-covariance matrix of the trial-specific intercept and treatment effects for the surrogates and true endpoints (when a full model is fitted, i.e., when Model=c("Full") is used in the function call), or the variance-covariance matrix of the trial-specific treatment effects for the surrogates and true endpoints (when a reduced model is fitted, i.e., when Model=c("Reduced") is used in the function call). The variance-covariance matrix D.Equiv is equivalent to the D matrix that would be obtained when a (full or reduced) mixed-effect approach is used; see function MumixedContCont.MultS.

Author(s)

Wim Van der Elst
References

Van der Elst *et al.* (2024). Multivariate surrogate endpoints for normally distributed continuous endpoints in the meta-analytic setting.

See Also

MumixedContCont.MultS

Examples

```r
## Not run: # time consuming code part
data(PANSS)

# Do a surrogacy analysis with T=Total PANSS score, S1=Negative symptoms
# and S2=Positive symptoms
# Fit a full multivariate fixed-effects model with weighting according to the
# number of patients in stage 2 of the two stage approach to assess surrogacy:
Fit.Neg.Pos <- MufixedContCont.MultS(Dataset = PANSS,
Endpoints = Total ~ Neg+Pos, Model = "Full",
Treat = "Treat", Trial.ID = "Invest", Pat.ID = "Pat.ID")

# Obtain a summary of the results
summary(Fit.Neg.Pos)

## End(Not run)
```

MumixedContCont.MultS *Fits a multivariate mixed-effects model to assess surrogacy in the meta-analytic multiple-trial setting (Continuous-continuous case with multiple surrogates)*

Description

The function *MumixedContCont.MultS* uses the multivariate mixed-effects approach to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available and multiple surrogates are considered for a single true endpoint. See the *Details* section below.
Usage

`MumixedContCont.MultS(Dataset, Endpoints=True~Surr.1+Surr.2, Treat="Treat", Trial.ID="Trial.ID", Pat.ID="Pat.ID", Model=c("Full"), Min.Trial.Size=2, Alpha=.05, Opt="nlminb")`

Arguments

Dataset
A data.frame that should consist of one line per patient. Each line contains one or more surrogate value(s), a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

Endpoints
An equation in the form `True~Surr.1+Surr.2` that specifies the true endpoint followed by the surrogate endpoint(s).

Treat
The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should be coded as 1 for the experimental group and -1 for the control group.

Trial.ID
The name of the variable in Dataset that contains the trial ID to which the patient belongs.

Pat.ID
The name of the variable in Dataset that contains the patient’s ID.

Model
The type of model that should be fitted, i.e., `Model=c("Full")` or `Model=c("Reduced")`. For details, see below or Van der Elst et al. (2023). Default `Model=c("Full")`.

Min.Trial.Size
The minimum number of patients that a trial should contain in order to be included in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded from the analysis. Default 2.

Alpha
The \(\alpha \)-level that is used to determine the confidence intervals around \(R^2_{trial} \) and \(R^2_{indiv} \) (based on the approach of Lee, 1971). Default 0.05.

Opt
The optimizer to be used by the `lme` function (fits the mixed-effects model), with options `nlminb` or `optim`. For details, see `?lmeControl`. Default Opt="nlminb".

Details

When a full model is requested (by using the argument `Model=c("Full")` in the function call), the following mixed-effects model is fitted:

\[
\begin{align*}
S_{1ij} &= \mu_{S1} + m_{S1i}(\alpha_{S1} + a_{S1i})Z_{ij} + \varepsilon_{S1ij}, \\
S_{2ij} &= \mu_{S2} + m_{S2i}(\alpha_{S2} + a_{S2i})Z_{ij} + \varepsilon_{S2ij}, \\
SK_{ij} &= \mu_{SK} + m_{SKi}(\alpha_{SK} + a_{SKi})Z_{ij} + \varepsilon_{SKij}, \\
T_{ij} &= \mu_T + m_{Ti}(\beta_T + b_{Ti})Z_{ij} + \varepsilon_{Tij},
\end{align*}
\]

where \(Z_{ij} \) is the treatment indicator for subject \(j \) in trial \(i \), \(\mu_{S1}, \mu_{S2}, ... \mu_{SK} \) and \(\mu_T \) are the fixed intercepts for \(S1, S2, ... SK \) and \(T \), \(m_{S1i}, m_{S2i}, ... m_{SKi}, \) and \(m_{Ti} \) are the corresponding random intercepts, \(\alpha_{S1}, \alpha_{S2}, ..., \alpha_{SK} \) and \(\beta_T \) are the fixed treatment effects for \(S1, S2, ... SK \) and \(T \), \(a_{S1i}, a_{S2i}, ... a_{SKi} \) and \(b_{Ti} \) are the corresponding random treatment effects. The vector of the random effects \((m_{S1i}, m_{S2i}, ..., m_{SKi}, m_{Ti}, a_{S1i}, a_{S2i}, ..., a_{SKi}, b_{Ti}) \) is assumed to be mean-zero normally distributed with unstructured variance-covariance matrix \(D \). Similarly, the residuals
\(\varepsilon_{S1ij}, \varepsilon_{S2ij}, \ldots, \varepsilon_{SKij}, \varepsilon_{Tij}\) are assumed to be mean-zero normally distributed with unstructured variance-covariance matrix \(\Sigma\).

When a reduced model is requested (by using the argument \(\text{Model = c(“Reduced”)}\) in the function call), the trial-specific intercepts for the surrogate endpoints and the true endpoint in the above model are replaced by common intercepts.

For the full model, \(R^2\) trial and \(R^2\) indiv are estimated based on \(D\) and \(\Sigma\), respectively:

\[R^2_{\text{trial}} = R^2_{\text{b,T}}|m_{S1}, m_{S2}, \ldots, m_{SK}, a_{S1}, a_{S2}, \ldots a_{SK} = \frac{D_{ST}^T D_{SS}^{-1} D_{ST}}{D_{TT}} ,\]

\[R^2_{\text{indiv}} = R^2_{\varepsilon_{Tij}}|\varepsilon_{S1ij}, \varepsilon_{S2ij}, \ldots, \varepsilon_{SKij} = \frac{\Sigma_{ST}^T \Sigma_{SS}^{-1} \Sigma_{ST}}{\Sigma_{TT}} .\]

For the reduced model, the reduced \(D\) and \(\Sigma\) are used.

Value

An object of class `MumixedContCont.MultS` with components,

- **Data.Analyze**
 - Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by `Min.Trial.Size`, the data of the trial are excluded. **Data.Analyze** is the dataset on which the surrogacy analysis was conducted.

- **Obs.Per.Trial**
 - A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in **Data.Analyze**).

- **Fixed.Effects**
 - A data.frame that contains the fixed intercepts and treatment effects for the true and the surrogate endpoints.

- **Random.Effects**
 - A data.frame that contains the random intercepts and treatment effects for the true and the surrogate endpoints.

- **Trial.R2.Lee**
 - A data.frame that contains the trial-level coefficient of determination (\(R^2_{\text{trial}}\)), its standard error and confidence interval based on the approach of Lee (1971).

- **Indiv.R2.Lee**
 - A data.frame that contains the individual-level coefficient of determination (\(R^2_{\text{indiv}}\)), its standard error and confidence interval based on the approach of Lee (1971).

- **D**
 - The variance-covariance matrix of the trial-specific intercepts and treatment effects for the surrogates and true endpoints (when a full model is fitted, i.e., when `Model = c(“Full”)` is used in the function call), or the variance-covariance matrix of the trial-specific treatment effects for the surrogates and true endpoints (when a reduced model is fitted, i.e., when `Model = c(“Reduced”)` is used in the function call).
Cond.Number.D.Matrix
The condition number of the D matrix.

Cond.Number.Sigma.Matrix
The condition number of the Σ matrix.

Fitted.Model
The fitted mixed-effects model.

Author(s)
Wim Van der Elst

References

Van der Elst et al. (2024). Multivariate surrogate endpoints for normally distributed continuous endpoints in the meta-analytic setting.

See Also
MufixedContCont.MultS

Examples
```r
## Not run: # time consuming code part
data(PANSS)

# Do a surrogacy analysis with T=Total PANSS score,
# S1=Negative symptoms and S2=Positive symptoms
# Fit a full mixed-effects model:
Fit.Neg.Pos <- MumixedContCont.MultS(Dataset = PANSS,
  Endpoints = Total ~ Neg+Pos, Model = "Full",
  Treat = "Treat", Trial.ID = "Invest", Pat.ID = "Pat.ID")

# Model does not converge, as often happens with the
# mixed-effects approach. Instead, fit a full multivariate
# fixed-effects model with weighting according to the
# number of patients in stage 2 of the two stage approach to assess surrogacy:
Fit.Neg.Pos <- MufixedContCont.MultS(Dataset = PANSS,
  Endpoints = Total ~ Neg+Pos, Model = "Full",
  Treat = "Treat", Trial.ID = "Invest", Pat.ID = "Pat.ID")

# Obtain a summary of the results
summary(Fit.Neg.Pos)
#
## End(Not run)
```
Constructor for vine copula model

Description

Constructor for vine copula model

Usage

new_vine_copula_ss_fit(
 fit_0,
 fit_1,
 copula_family,
 knots0,
 knots1,
 knott0,
 knott1,
 copula_rotations,
 data
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit_0</td>
<td>Estimated parameters in the control group.</td>
</tr>
<tr>
<td>fit_1</td>
<td>Estimated parameters in the experimental group</td>
</tr>
<tr>
<td>copula_family</td>
<td>Parametric copula family</td>
</tr>
<tr>
<td>knots0</td>
<td>placement of knots for Royston-Parmar model</td>
</tr>
<tr>
<td>knots1</td>
<td>placement of knots for Royston-Parmar model</td>
</tr>
<tr>
<td>knott0</td>
<td>placement of knots for Royston-Parmar model</td>
</tr>
<tr>
<td>knott1</td>
<td>placement of knots for Royston-Parmar model</td>
</tr>
<tr>
<td>copula_rotations</td>
<td>vector of copula rotation parameters</td>
</tr>
<tr>
<td>data</td>
<td>Original data</td>
</tr>
</tbody>
</table>

Value

S3 object

Examples

#should not be used be the user
The Ovarian dataset

Description

This dataset combines the data that were collected in four double-blind randomized clinical trials in advanced ovarian cancer (Ovarian Cancer Meta-Analysis Project, 1991). In these trials, the objective was to examine the efficacy of cyclophosphamide plus cisplatin (CP) versus cyclophosphamide plus adriamycin plus cisplatin (CAP) to treat advanced ovarian cancer.

Usage

```r
data("Ovarian")
```

Format

A data frame with 1192 observations on the following 7 variables.

- **Patient** The ID number of a patient.
- **Center** The center in which a patient was treated.
- **Treat** The treatment indicator, coded as 0=CP (active control) and 1=CAP (experimental treatment).
- **Pfs** Progression-free survival (the candidate surrogate).
- **PfsInd** Censoring indicator for progression-free survival.
- **Surv** Survival time (the true endpoint).
- **SurvInd** Censoring indicator for survival time.

References

Examples

```r
data(Ovarian)
str(Ovarian)
head(Ovarian)
```
PANSS

PANSS subscales and total score based on the data of five clinical trials in schizophrenia

Description

These are the PANSS subscale and total scale scores of five clinical trial in schizophrenia. A total of 1941 patients were treated by 126 investigators (psychiatrists). There were two treatment conditions (risperidone and control). Patients’ schizophrenic symptoms were measured using the PANSS (Kay et al., 1988).

Usage
data(PANSS)

Format

A data.frame with 1941 observations on 9 variables.

- **Pat.Id** The patient ID.
- **Treat** The treatment indicator, coded as −1 = active control and 1 = Risperidone.
- **Invest** The ID of the investigator (psychiatrist) who treated the patient.
- **Neg** The Negative symptoms scale score.
- **Exc** The Excitement scale score.
- **Cog** The Cognition scale score.
- **Pos** The Positive symptoms scale score.
- **Dep** The Depression scale score.
- **Total** The Total PANSS score.

References

pdf_fun

Function factory for density functions

Description

Function factory for density functions

Usage

pdf_fun(para, family)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>para</td>
<td>Parameter vector.</td>
</tr>
<tr>
<td>family</td>
<td>Distributional family, one of the following:</td>
</tr>
<tr>
<td></td>
<td>• "normal": normal distribution where para[1] is the mean and para[2] is the standard deviation.</td>
</tr>
<tr>
<td></td>
<td>• "logistic": logistic distribution as parameterized in stats::plogis() where para[1] and para[2] correspond to location and scale, respectively.</td>
</tr>
<tr>
<td></td>
<td>• "t": t distribution as parameterized in stats::pt() where para[1] and para[2] correspond to ncp and df, respectively.</td>
</tr>
</tbody>
</table>

Value

A density function that has a single argument. This is the vector of values in which the density function is evaluated.

plot Causal-Inference BinBin

Plots the (Meta-Analytic) Individual Causal Association and related metrics when S and T are binary outcomes

Description

This function provides a plot that displays the frequencies, percentages, cumulative percentages or densities of the individual causal association (ICA; R^2_H or R_H), and/or the odds ratios for S and T (θ_S and θ_T).

Usage

```r
## S3 method for class 'ICA.BinBin'
plot(x, R2_H=TRUE, R_H=FALSE, Theta_T=FALSE, Theta_S=FALSE, Type="Density", Labels=FALSE, Xlab.R2_H,
col, Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ylim, ...)
```
Arguments

x
 An object of class ICA.BinBin. See ICA.BinBin.

R2_H
 Logical. When R2_H=TRUE, a plot of the R^2_H is provided. Default TRUE.

R_H
 Logical. When R_H=TRUE, a plot of the R_H is provided. Default FALSE.

Theta_T
 Logical. When Theta_T=TRUE, a plot of the θ_T is provided. Default FALSE.

Theta_S
 Logical. When Theta_S=TRUE, a plot of the θ_S is provided. Default FALSE.

Type
 The type of plot that is produced. When Type="Freq" or Type="Percent", the Y-axis shows frequencies or percentages of R^2_H, R_H, θ_T, or θ_S. When Type="CumPerc", the Y-axis shows cumulative percentages. When Type="Density", the density is shown. When the fitted object of class ICA.BinBin was obtained using a general analysis (i.e., using the Monotonicity=c("General") argument in the function call), separate plots are provided for the different monotonicity scenarios. Default "Density".

Labels
 Logical. When Labels=TRUE, the percentage of R^2_H, R_H, θ_T, or θ_S values that are equal to or larger than the midpoint value of each of the bins are displayed (on top of each bin). Default FALSE.

Xlab.R2_H
 The legend of the X-axis of the R^2_H plot.

Main.R2_H
 The title of the R^2_H plot.

Xlab.R_H
 The legend of the X-axis of the R_H plot.

Main.R_H
 The title of the R_H plot.

Xlab.Theta_S
 The legend of the X-axis of the θ_S plot.

Main.Theta_S
 The title of the θ_S plot.

Xlab.Theta_T
 The legend of the X-axis of the θ_T plot.

Main.Theta_T
 The title of the θ_T plot.

Cex.Legend
 The size of the legend when Type="All.Densities" is used. Default Cex.Legend=1.

Cex.Position
 The position of the legend, Cex.Position="topright" or Cex.Position="topleft". Default Cex.Position="topright".

col
 The color of the bins. Default col <- c(8).

Par
 Graphical parameters for the plot. Default par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)).

ylim
 The (min, max) values for the Y-axis

...
 Extra graphical parameters to be passed to hist().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

ICA.BinBin

Examples

```r
# Compute R2_H given the marginals,
# assuming monotonicity for S and T and grids
# pi_0111=seq(0, 1, by=.001) and
# pi_1100=seq(0, 1, by=.001)
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.261, pi1_0_=0.285,  
pi_1_1=0.637, pi_1_0=0.078, pi0_1_=0.134, pi_0_1=0.127,  
Monotonicity=c("General"), M=2500, Seed=1)

# Plot the results (density of R2_H):
plot(ICA, Type="Density", R2_H=TRUE, R_H=FALSE,  
Theta_T=FALSE, Theta_S=FALSE)
```

Description

This function provides a plot that displays the frequencies, percentages, cumulative percentages or densities of the individual causal association (ICA; R^2_H) in the setting where S is continuous and T is binary.

Usage

```r
## S3 method for class 'ICA.BinCont'
plot(x, Histogram.ICA=TRUE, Mixmean=TRUE,  
Mixvar=TRUE, Deviance=TRUE,  
Type="Percent", Labels=FALSE, ...)
```

Arguments

- `x`: An object of class `ICA.BinCont`. See `ICA.BinCont`.
- `Histogram.ICA`: Logical. Should a histogram of ICA be provided? Default `Histogram.ICA=TRUE`.
- `Mixmean`: Logical. Should a plot of the calculated means of the fitted mixtures for $S[0]$ and $S[1]$ across the different runs be provided? Default `Mixmean=TRUE`.
- `Mixvar`: Logical. Should a plot of the calculated variances of the fitted mixtures for $S[0]$ and $S[1]$ across the different runs be provided? Default `Mixvar=TRUE`.
- `Deviance`: Logical. Should a box plot of the deviances for the fitted mixtures of $S[0]$ and $S[1]$ be provided? Default `Deviance=TRUE`.
Type

The type of plot that is produced for the histogram of ICA. When Type="Freq" or Type="Percent", the Y-axis shows frequencies or percentages of R_H^2. When Type="CumPerc", the Y-axis shows cumulative percentages. When Type="Density", the density is shown.

Labels

Logical. When Labels=TRUE, the percentage of R_H^2 values that are equal to or larger than the midpoint value of each of the bins are added in the histogram of ICA (on top of each bin). Default FALSE.

Extra graphical parameters to be passed to hist().

Author(s)

Wim Van der Elst, Paul Meyvisch, & Ariel Alonso

References

See Also

ICA.BinCont

Examples

```r
# Not run: # Time consuming code part
Fit <- ICA.BinCont(Dataset = Schizo, Surr = BPRS, True = PANSS_Bin, Treat=Treat, M=50, Seed=1)

summary(Fit)
plot(Fit)

## End(Not run)
```

Description

This function provides a plot that displays the frequencies, percentages, or cumulative percentages of the individual causal association (ICA; ρ_Δ) and/or the meta-analytic individual causal association (MICA; ρ_M) values. These figures are useful to examine the sensitivity of the obtained results with respect to the assumptions regarding the correlations between the counterfactuals (for details, see Alonso et al., submitted; Van der Elst et al., submitted). Optionally, it is also possible to obtain plots that are useful in the examination of the plausibility of finding a good surrogate endpoint when an object of class ICA.ContCont is considered.
Usage

```r
## S3 method for class 'ICA.ContCont'
plot(x, Xlab.ICA, Main.ICA, Type="Percent",
Labels=FALSE, ICA=TRUE, Good.Surr=FALSE, Main.Good.Surr,
Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...)
```

```r
## S3 method for class 'MICA.ContCont'
plot(x, ICA=TRUE, MICA=TRUE, Type="Percent",
Labels=FALSE, Xlab.ICA, Main.ICA, Xlab.MICA, Main.MICA,
Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...)
```

Arguments

- `x`: An object of class `ICA.ContCont` or `MICA.ContCont`. See `ICA.ContCont` or `MICA.ContCont`.
- `ICA`: Logical. When `ICA=TRUE`, a plot of the ICA is provided. Default `TRUE`.
- `MICA`: Logical. This argument only has effect when the `plot()` function is applied to an object of class `MICA.ContCont`. When `MICA=TRUE`, a plot of the MICA is provided. Default `TRUE`.
- `Type`: The type of plot that is produced. When `Type=Freq` or `Type=Percent`, the Y-axis shows frequencies or percentages of ρ_Δ, ρ_M, and/or δ. When `Type=CumPerc`, the Y-axis shows cumulative percentages of ρ_Δ, ρ_M, and/or δ. Default "Percent".
- `Labels`: Logical. When `Labels=TRUE`, the percentage of ρ_Δ, ρ_M, and/or δ values that are equal to or larger than the midpoint value of each of the bins are displayed (on top of each bin). Default `FALSE`.
- `Xlab.ICA`: The legend of the X-axis of the ICA plot. Default "ρ_Δ".
- `Main.ICA`: The title of the ICA plot. Default "ICA".
- `Xlab.MICA`: The legend of the X-axis of the MICA plot. Default "ρ_M".
- `Main.MICA`: The title of the MICA plot. Default "MICA".
- `Good.Surr`: Logical. When `Good.Surr=TRUE`, a plot of δ is provided. This plot is useful in the context of examining the plausibility of finding a good surrogate endpoint. Only applies when an object of class `ICA.ContCont` is considered. For details, see Alonso et al. (submitted). Default `FALSE`.
- `Main.Good.Surr`: The title of the plot of δ. Only applies when an object of class `ICA.ContCont` is considered. For details, see Alonso et al. (submitted).
- `Par`: Graphical parameters for the plot. Default `par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`.
- `col`: The color of the bins. Default `col <- c(8)`.
- `...`: Extra graphical parameters to be passed to `hist()`.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
plot FixedDiscrDiscrIT

Provides plots of trial-level surrogacy in the Information-Theoretic framework

Description

Produces plots that provide a graphical representation of trial level surrogacy R_{hit}^2 based on the Information-Theoretic approach of Alonso & Molenberghs (2007).
Usage

S3 method for class 'FixedDiscrDiscrIT'
plot(x, Weighted=TRUE, Xlab.Trial, Ylab.Trial, Main.Trial,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

Arguments

x: An object of class FixedDiscrDiscrIT.

Weighted: Logical. This argument only has effect when the user requests a trial-level surrogacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE, the circles that depict the trial-specific treatment effects on the true endpoint against the surrogate endpoint are proportional to the number of patients in the trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Xlab.Trial: The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint (α_i)".

Ylab.Trial: The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint (β_i)".

Main.Trial: The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy".

Par: Graphical parameters for the plot. Default `par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`. ...

Extra graphical parameters to be passed to `plot()`.

Author(s)

Hannah M. Ensor & Christopher J. Weir

References

See Also

FixedDiscrDiscrIT

Examples

Not run: # Time consuming (>5sec) code part
Simulate the data:
Sim.Data.MTS(N.Total=2000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8, Seed=123, Model="Full")

create a binary true and ordinal surrogate outcome
Data.Observed.MTS$True<findInterval(Data.Observed.MTS$True, c(quantile(Data.Observed.MTS$True,0.5)))
Data.Observed.MTS$Surr<findInterval(Data.Observed.MTS$Surr, c(quantile(Data.Observed.MTS$Surr,0.333),quantile(Data.Observed.MTS$Surr,0.666)))
Assess surrogacy based on a full fixed-effect model
in the information-theoretic framework for a binary surrogate and ordinal true outcome:
SurEval <- FixedDiscrDiscrIT(Dataset=Data.Observed.MTS, Surr=Surr, True=TRUE, Treat=Treat,
Trial.ID=Trial.ID, Setting="ordbin")

Request trial-level surrogacy plot. In the trial-level plot,
make the size of the circles proportional to the number of patients in a trial:
plot(SurEval, Weighted=FALSE)

End(Not run)

plot ICA.ContCont.MultS

Plots the Individual Causal Association in the setting where there are
multiple continuous S and a continuous T

Description

This function provides a plot that displays the frequencies, percentages, or cumulative percentages
of the multivariate individual causal association (R^2_H). These figures are useful to examine the
sensitivity of the obtained results with respect to the assumptions regarding the correlations between
the counterfactuals.

Usage

```r
## S3 method for class 'ICA.ContCont.MultS'
plot(x, R2_H=FALSE, Corr.R2_H=TRUE,
Type="Percent", Labels=FALSE,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col,
Prediction.Error.Reduction=FALSE, ...)
```

Arguments

- `x` An object of class ICA.ContCont.MultS. See ICA.ContCont.MultS or ICA.ContCont.MultS_alt.
- `R2_H` Should a plot of the R^2_H be provided? Default FALSE.
- `Corr.R2_H` Should a plot of the corrected R^2_H be provided? Default TRUE.
- `Type` The type of plot that is produced. When Type=Freq or Type=Percent, the Y-axis shows frequencies or percentages of R^2_H. When Type=CumPerc, the Y-axis shows cumulative percentages of R^2_H. Default "Percent".
- `Labels` Logical. When Labels=TRUE, the percentage of R^2_H values that are equal to or larger than the midpoint value of each of the bins are displayed (on top of each bin). Default FALSE.
- `Par` Graphical parameters for the plot. Default par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)).
col The color of the bins. Default col <- c(8).

Prediction.Error.Reduction

Should a plot be shown that shows the prediction error (residual error) in predicting ΔT using an intercept only model, and that shows the prediction error (residual error) in predicting ΔT using ΔS_1, ΔS_2, ...? Default Prediction.Error.Reduction=FALSE.

... Extra graphical parameters to be passed to hist().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

ICA.ContCont, ICA.ContCont.MultS, ICA.ContCont.MultS_alt, MICA.ContCont, plot.MinSurContCont

Examples

Not run: # time-consuming code parts
Specify matrix Sigma (var-covar matrix T_0, T_1, S_1_0, S_1_1, ...)
here for 1 true endpoint and 3 surrogates

s<-matrix(rep(NA, times=64), 8)
s[1,1] <- 450; s[2,2] <- 413.5; s[3,3] <- 174.2; s[4,4] <- 157.5;
s[5,5] <- 244.0; s[6,6] <- 229.99; s[7,7] <- 294.2; s[8,8] <- 302.5
s[3,1] <- 160.8; s[5,1] <- 208.5; s[7,1] <- 268.4
s[4,2] <- 124.6; s[6,2] <- 212.3; s[8,2] <- 287.1
s[5,3] <- 160.3; s[7,3] <- 142.8
s[6,4] <- 134.3; s[8,4] <- 130.4
s[7,5] <- 209.3;
s[8,6] <- 214.7

s[upper.tri(s)] = t(s)[upper.tri(s)]

Matrix looks like:
T_0 T_1 S1_0 S1_1 S2_0 S2_1 S2_0 S2_1
[1,] 450.0 NA 160.8 NA 208.5 NA 294.2 NA
[2,] 413.5 NA 142.6 NA 212.3 NA 287.1 NA
[3,] 174.2 124.6 NA 157.5 NA 134.3 NA 130.4
[4,] 157.5 134.3 NA 244.0 NA 209.3 NA 142.8
[5,] 160.1 208.5 NA 124.6 NA 212.3 NA 229.99
[6,] 160.3 212.3 NA 134.3 NA 294.2 NA 214.7
[7,] 294.2 287.1 157.5 NA 134.3 NA 294.2 NA
[8,] 302.5 302.5 130.4 130.4 NA 130.4 214.7 NA

plot ICA.ContCont.MultS
Conduct analysis
ICA <- ICA.ContCont.MultS(M=100, N=200, Show.Progress = TRUE,
Sigma=s, G = seq(from=-1, to=1, by = .00001), Seed=c(123),
Model = "Delta_T ~ Delta_S1 + Delta_S2 + Delta_S3")

Explore results
summary(ICA)
plot(ICA)

End(Not run)

plot Information-Theoretic

Provides plots of trial- and individual-level surrogacy in the
Information-Theoretic framework

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy
(R2_ht and R2_h) based on the Information-Theoretic approach of Alonso & Molenberghs (2007).

Usage

S3 method for class 'FixedContContIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

S3 method for class 'MixedContContIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE,
Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

Arguments

x An object of class MixedContContIT or FixedContContIT.
Trial.Level Logical. If Trial.Level=TRUE, a plot of the trial-specific treatment effects on
the true endpoint against the trial-specific treatment effect on the surrogate endpoints
is provided (as a graphical representation of R_{ht}). Default TRUE.
Weighted Logical. This argument only has effect when the user requests a trial-level surrogacy
plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE,
the circles that depict the trial-specific treatment effects on the true endpoint
against the surrogate endpoint are proportional to the number of patients in the
trial. If Weighted=FALSE, all circles have the same size. Default TRUE.
Indiv.Level Logical. If Indiv.Level=TRUE, a plot of the trial- and treatment-corrected resid-
uals of the true and surrogate endpoints is provided. This plot provides a graph-
ical representation of R_{h}. Default TRUE.
Xlab.Indiv The legend of the X-axis of the plot that depicts individual-level surrogacy. Default "Residuals for the surrogate endpoint (\(\varepsilon_{SIj} \))".

Ylab.Indiv The legend of the Y-axis of the plot that depicts individual-level surrogacy. Default "Residuals for the true endpoint (\(\varepsilon_{TIj} \))".

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint (\(\alpha_i \))".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint (\(\beta_i \))".

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-level surrogacy".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy".

Par Graphical parameters for the plot. Default \texttt{par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))}.

... Extra graphical parameters to be passed to \texttt{plot()}.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
\texttt{MixedContContIT, FixedContContIT}

Examples
```r
## Not run:
## Load ARMD dataset
data(ARMD)

## Conduct a surrogacy analysis, using a weighted reduced univariate fixed effect model:
Sur <- MixedContContIT(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center, Pat.ID=Id, Model=c("Full"))

## Request both trial- and individual-level surrogacy plots. In the trial-level plot,
## make the size of the circles proportional to the number of patients in a trial:
plot(Sur, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE)

## Make a trial-level surrogacy plot using filled blue circles that
## are transparent (to make sure that the results of overlapping trials remain
## visible), and modify the title and the axes labels of the plot:
plot(Sur, pch=16, col=rgb(.3, .2, 1, 0.3), Indiv.Level=FALSE, Trial.Level=TRUE, Weighted=TRUE, Main.Trial=c("Trial-level surrogacy (ARM dataset)"), Xlab.Trial=c("Difference in vision after 6 months (Surrogate)"),
```
plot Information-Theoretic BinCombn

Provides plots of trial- and individual-level surrogacy in the Information-Theoretic framework when both S and T are binary, or when S is binary and T is continuous (or vice versa).

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy (R^2_{ht} and R^2_hInd per cluster) based on the Information-Theoretic approach of Alonso & Molenberghs (2007).

Usage

```r
## S3 method for class 'FixedBinBinIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
     Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
     Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1), ...)

## S3 method for class 'FixedBinContIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
     Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
     Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1), ...)

## S3 method for class 'FixedContBinIT'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE,
     Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv,
     Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1), ...)
```

Arguments

- `x` An object of class FixedBinBinIT, FixedBinContIT, or FixedContBinIT.
- `Trial.Level` Logical. If `Trial.Level=TRUE`, a plot of the trial-specific treatment effects on the true endpoint against the trial-specific treatment effect on the surrogate endpoints is provided (as a graphical representation of \(R^2_{ht} \)). Default TRUE.
Weighted Logical. This argument only has effect when the user requests a trial-level surrogacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE, the circles that depict the trial-specific treatment effects on the true endpoint against the surrogate endpoint are proportional to the number of patients in the trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Indiv.Level.By.Trial Logical. If Indiv.Level.By.Trial=TRUE, a plot that shows the estimated $R^2_{h.ind}$ for each trial (and confidence intervals) is provided. Default TRUE.

Xlab.Indiv The legend of the X-axis of the plot that depicts the estimated $R^2_{h.ind}$ per trial. Default "$R[\cdot.ind]^2$".

Ylab.Indiv The legend of the Y-axis of the plot that shows the estimated $R^2_{h.ind}$ per trial. Default "Trial".

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint (α_i)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint (β_i)".

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-level surrogacy".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy".

Par Graphical parameters for the plot. Default `par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`.

... Extra graphical parameters to be passed to `plot()`.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
FixedBinBinIT, FixedBinContIT, FixedContBinIT

Examples
```r
# Not run: # Time consuming (>5sec) code part
# Generate data with continuous Surr and True
Sim.Data.MTS(N.Total=5000, N.Trial=50, R.Trial.Target=.9, R.Indiv.Target=.9,
Fixed.Effects=c(0, 0, 0, 0), D.aa=10, D.bb=10, Seed=1,
Model=c("Full"))
# Dichotomize Surr and True
Surr_Bin <- Data.Observed.MTS$Surr
Surr_Bin[Data.Observed.MTS$Surr>.5] <- 1
```
plot ISTE.ContCont

```r
Surr_Bin[Data.Observed.MTS$Surr<=.5] <- 0
True_Bin <- Data.Observed.MTS$True
True_Bin[Data.Observed.MTS$True>.15] <- 1
True_Bin[Data.Observed.MTS$True<=.15] <- 0
Data.Observed.MTS$Surr <- Surr_Bin
Data.Observed.MTS$True <- True_Bin

# Assess surrogacy using info-theoretic framework
Fit <- FixedBinBinIT(Dataset = Data.Observed.MTS, Surr = Surr,
                      True = True, Treat = Treat, Trial.ID = Trial.ID,
                      Pat.ID = Pat.ID, Number.Bootstraps=100)

# Examine results
summary(Fit)
plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)

## End(Not run)
```

Description

This function plots the individual-level surrogate threshold effect (STE) values and related metrics, e.g., the expected ΔT values for a vector of ΔS values.

Usage

```r
## S3 method for class 'ISTE.ContCont'
plot(x, Outcome="ISTE", breaks=50, ...)
```

Arguments

- `x` An object of class ISTE.ContCont. See ISTE.ContCont.
- `Outcome` The outcome for which a histogram has to be produced. When Outcome="ISTE", a histogram of the ISTE is produced. When Outcome="MSE", a histogram of the MSE values (of regression models in which ΔT is regressed on ΔS) is given. When Outcome="gamma0", a histogram of $\gamma[0]$ values (of regression models in which ΔT is regressed on ΔS) is given. When Outcome="gamma1", a histogram of $\gamma[1]$ values (of regression models in which ΔT is regressed on ΔS) is given. When Outcome="Exp.DeltaT", a histogram of the expected ΔT values for a vector of ΔS values (specified in the call of the ISTE.ContCont function) values is given. When Outcome="Exp.DeltaT.Low.PI", a histogram of the lower prediction intervals of the expected ΔT values for a vector of ΔS values (specified in the call of the ISTE.ContCont function) values is given. When Outcome="Exp.DeltaT.Up.PI", a histogram of the upper prediction intervals
of the expected ΔT values for a vector of ΔS values (specified in the call of the ISTE.ContCont function) values is given. Default Outcome="ISTE". When Outcome="Delta_S_For_Which_Delta_T_equal_0", a histogram of ω is shown with $E(\Delta T|\Delta S > \omega) > 0$.

breaks

The number of breaks used in the histogram(s). Default breaks=50.

... Extra graphical parameters to be passed to hist().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

ISTE.ContCont

Examples

```r
# Define input for analysis using the Schizo dataset, # with S=BPRS and T = PANSS. # For each of the identifiable quantities, # uncertainty is accounted for by specifying a uniform # distribution with min, max values corresponding to # the 95% confidence interval of the quantity.
T0S0 <- runif(min = 0.9524, max = 0.9659, n = 1000)
T1S1 <- runif(min = 0.9608, max = 0.9677, n = 1000)
S0S0 <- runif(min=160.811, max=204.5009, n=1000)
S1S1 <- runif(min=168.989, max = 194.219, n=1000)
T0T0 <- runif(min=484.462, max = 616.082, n=1000)
T1T1 <- runif(min=514.279, max = 591.062, n=1000)
Mean_T0 <- runif(min=-13.455, max=-9.489, n=1000)
Mean_T1 <- runif(min=-17.17, max=-14.86, n=1000)
Mean_S0 <- runif(min=-7.789, max=-5.503, n=1000)
Mean_S1 <- runif(min=-9.600, max=-8.276, n=1000)

# Do the ISTE analysis
## Not run:
ISTE <- ISTE.ContCont(Mean_T1=Mean_T1, Mean_T0=Mean_T0,
Mean_S1=Mean_S1, Mean_S0=Mean_S0, N=2128, Delta_S=c(-50:50),
alpha.PI=0.05, PI.Bound=0, Show.Prediction.Plots=TRUE,
Save.Plots="No", T0S0=T0S0, T1S1=T1S1, T0T0=T0T0, T1T1=T1T1,
S0S0=S0S0, S1S1=S1S1)

# Examine results:
summary(ISTE)
```
Plots of results.
Plot main ISTE results
plot(ISTE)
Other plots
plot(ISTE, Outcome="MSE")
plot(ISTE, Outcome="gamma0")
plot(ISTE, Outcome="gamma1")
plot(ISTE, Outcome="Exp.DeltaT")
plot(ISTE, Outcome="Exp.DeltaT.Low.PI")
plot(ISTE, Outcome="Exp.DeltaT.Up.PI")

End(Not run)

plot MaxEnt ContCont
Plots the sensitivity-based and maximum entropy based Individual Causal Association when S and T are continuous outcomes in the single-trial setting

Description

This function provides a plot that displays the frequencies or densities of the individual causal association (ICA: ρ_{Δ}) as identified based on the sensitivity-based (using the functions `ICA.ContCont`) and maximum entropy-based (using the function `MaxEntContCont`) approaches.

Usage

```r
## S3 method for class 'MaxEntContCont'
plot(x, Type="Freq", Xlab, col,
     Main, Entropy.By.ICA=FALSE, ...)
```

Arguments

- `x`
 An object of class `MaxEntContCont`. See `MaxEntContCont`.

- `Type`
 The type of plot that is produced. When `Type="Freq"`, the Y-axis shows frequencies of ICA. When `Type="Density"`, the density is shown. Default `Type="Freq"`.

- `Xlab`
 The legend of the X-axis of the plot.

- `col`
 The color of the bins (frequency plot) or line (density plot). Default `col <- c(8)`.

- `Main`
 The title of the plot.

- `Entropy.By.ICA`
 Plot with ICA on Y-axis and entropy on X-axis.

- `...`
 Other arguments to be passed to `plot()`

Author(s)

Wim Van der Elst, Ariel Alonso, Paul Meyvisch, & Geert Molenberghs
Examples

```r
## Not run: #time-consuming code parts
# Compute ICA for ARMD dataset, using the grid
# G={-1, -.80, ..., 1} for the undentifiable correlations
ICA <- ICA.ContCont(T0S0 = 0.769, T1S1 = 0.712, S0S0 = 188.926,
                    S1S1 = 132.638, T0T0 = 264.797, T1T1 = 231.771,
                    T0T1 = seq(-1, 1, by = 0.2), T0S1 = seq(-1, 1, by = 0.2),
                    T1S0 = seq(-1, 1, by = 0.2), S0S1 = seq(-1, 1, by = 0.2))

# Identify the maximum entropy ICA
MaxEnt_ARMD <- MaxEntContCont(x = ICA, S0S0 = 188.926,
                              S1S1 = 132.638, T0T0 = 264.797, T1T1 = 231.771)

# Explore results using summary() and plot() functions
summary(MaxEnt_ARMD)
plot(MaxEnt_ARMD)
plot(MaxEnt_ARMD, Entropy.By.ICA = TRUE)

## End(Not run)
```

plot MaxEntICA BinBin

Plots the sensitivity-based and maximum entropy based Individual Causal Association when S and T are binary outcomes.

Description

This function provides a plot that displays the frequencies or densities of the individual causal association (ICA; R^2_H) as identified based on the sensitivity- (using the functions `ICA.BinBin`, `ICA.BinBin.Grid.Sample`, or `ICA.BinBin.Grid.Full`) and maximum entropy-based (using the function `MaxEntICABinBin`) approaches.

Usage

```r
## S3 method for class 'MaxEntICA.BinBin'
plot(x, ICA.Fit, Type="Density", Xlab, col, Main, ...)
```
plot MaxEntSPF BinBin

Arguments

- **x**: An object of class MaxEntICABinBin. See MaxEntICABinBin.
- **ICA.Fit**: An object of class ICA.BinBin. See ICA.BinBin.
- **Type**: The type of plot that is produced. When Type="Freq", the Y-axis shows frequencies of R^2_H. When Type="Density", the density is shown.
- **Xlab**: The legend of the X-axis of the plot.
- **col**: The color of the bins (frequency plot) or line (density plot). Default col <- c(8).
- **Main**: The title of the plot.
- **...**: Other arguments to be passed to plot()

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

ICA.BinBin, MaxEntICABinBin

Examples

```r
# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
                               pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
                               Monotonicity=c("No"), M=5000)

# Maximum-entropy based ICA
MaxEnt <- MaxEntICABinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
                          pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

# Plot results
plot(x=MaxEnt, ICA.Fit=ICA)
```

Description

Plots the sensitivity-based (Alonso et al., 2015a) and maximum entropy based (Alonso et al., 2015b) surrogate predictive function (SPF), i.e., $r(i,j) = P(\Delta T = i|\Delta S = j)$, in the setting where both S and T are binary endpoints. For example, $r(-1,1)$ quantifies the probability that the treatment has a negative effect on the true endpoint ($\Delta T = -1$) given that it has a positive effect on the surrogate ($\Delta S = 1$).
plot MaxEntSPF BinBin

Usage

```r
## S3 method for class 'MaxEntSPF.BinBin'
plot(x, SPF.Fit, Type="All.Histograms", Col="grey", ...)
```

Arguments

- `x` A fitted object of class MaxEntSPF.BinBin. See `MaxEntSPF.BinBin`.
- `SPF.Fit` A fitted object of class SPF.BinBin. See `SPF.BinBin`.
- `Type` The type of plot that is requested. Possible choices are: Type="All.Histograms", the histograms of all 9 \(r(i,j) = P(\Delta T = i | \Delta S = j) \) vectors arranged in a 3 by 3 grid; Type="All.Densities", plots of densities of all \(r(i,j) = P(\Delta T = i | \Delta S = j) \) vectors. Default Type="All.Densities".
- `Col` The color of the bins or lines when histograms or density plots are requested. Default "grey".
- `...` Other arguments to be passed to the `plot()` function.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`SPF.BinBin`

Examples

```r
# Sensitivity-based ICA results using ICA.BinBin.Grid.Sample
ICA <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
               pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1,
               Monotonicity=c("No"), M=5000)

# Sensitivity-based SPF
SPFSens <- SPF.BinBin(ICA)

# Maximum-entropy based SPF
SPFMaxEnt <- MaxEntSPF.BinBin(pi1_1_=0.341, pi0_1_=0.119, pi1_0_=0.254,
               pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078)

# Plot results
plot(x=SPFMaxEnt, SPF.Fit=SPFSens)
```
plot Meta-Analytic

Provides plots of trial- and individual-level surrogacy in the meta-analytic framework

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy based on the meta-analytic approach of Buyse & Molenberghs (2000) in the single- and multiple-trial settings.

Usage

```r
## S3 method for class 'BifixedContCont'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE, Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'BimixedContCont'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE, Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'UnifixedContCont'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE, Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

## S3 method for class 'UnimixedContCont'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE, ICA=TRUE, Entropy.By.ICA=FALSE, Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
```

Arguments

- `x` An object of class `UnifixedContCont`, `BifixedContCont`, `UnimixedContCont`, `BimixedContCont`, or `Single.Trial.RE.AA`.
- `Trial.Level` Logical. If `Trial.Level=TRUE` and an object of class `UnifixedContCont`, `BifixedContCont`, `UnimixedContCont`, or `BimixedContCont` is considered, a plot of the trial-specific treatment effects on the true endpoint against the trial-specific treatment effect on the surrogate endpoints is provided (as a graphical representation of...
If Trial.Level=TRUE and an object of class Single.Trial.RE.AA is considered, a plot of the treatment effect on the true endpoint against the treatment effect on the surrogate endpoint is provided, and a regression line that goes through the origin with slope RE is added to the plot (to depict the constant RE assumption, see Single.Trial.RE.AA for details). If Trial.Level=FALSE, this plot is not provided. Default TRUE.

Weighted Logical. This argument only has effect when the user requests a trial-level surrogacy plot (i.e., when Trial.Level=TRUE in the function call) and when an object of class UnfixedContCont, BifixedContCont, UnimixedContCont, or BimixedContCont is considered (not when an object of class Single.Trial.RE.AA is considered). If Weighted=TRUE, the circles that depict the trial-specific treatment effects on the true endpoint against the surrogate endpoint are proportional to the number of patients in the trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Indiv.Level Logical. If Indiv.Level=TRUE, a plot of the trial- and treatment-corrected residuals of the true and surrogate endpoints is provided (when an object of class UnfixedContCont, BifixedContCont, UnimixedContCont, or BimixedContCont is considered), or a plot of the treatment-corrected residuals (when an object of class Single.Trial.RE.AA is considered). This plot provides a graphical representation of R_{indiv}. If Indiv.Level=FALSE, this plot is not provided. Default TRUE.

ICA Logical. Should a plot of the individual level causal association be shown? Default ICA=TRUE.

Entropy.By.ICA Logical. Should a plot that shows ICA against the entropy be shown? Default Entropy.By.ICA=FALSE.

Xlab.Indiv The legend of the X-axis of the plot that depicts individual-level surrogacy. Default "Residuals for the surrogate endpoint (ε_{Sij})" (without the i subscript when an object of class Single.Trial.RE.AA is considered).

Ylab.Indiv The legend of the Y-axis of the plot that depicts individual-level surrogacy. Default "Residuals for the true endpoint (ε_{Tij})" (without the i subscript when an object of class Single.Trial.RE.AA is considered).

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint (α_i)" (without the i subscript when an object of class Single.Trial.RE.AA is considered).

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint (β_i)" (without the i subscript when an object of class Single.Trial.RE.AA is considered).

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-level surrogacy" when an object of class UnfixedContCont, BifixedContCont, UnimixedContCont, or BimixedContCont is considered, and "Adjusted Association (ρ_{Z})" when an object of class Single.Trial.RE.AA is considered.

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy" (when an object of class UnfixedContCont, BifixedContCont, UnimixedContCont, or BimixedContCont is considered) or "Relative Effect (RE)" (when an object of class Single.Trial.RE.AA is considered).
Par

Graphical parameters for the plot. Default `par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`.

Extra graphical parameters to be passed to `plot()`.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`UnifixedContCont`, `BifixedContCont`, `UnifixedContCont`, `BimixedContCont`, `Single.Trial.RE.AA`

Examples

```r
## Not run: # time consuming code part
##### Multiple-trial setting

## Load ARMD dataset
data(ARMD)

## Conduct a surrogacy analysis, using a weighted reduced univariate fixed effect model:
Sur <- UnifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center, Pat.ID=Id, Number.Bootstraps=100, Model=c("Reduced"), Weighted=TRUE)

## Request both trial- and individual-level surrogacy plots. In the trial-level plot,
## make the size of the circles proportional to the number of patients in a trial:
plot(Sur, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level=TRUE)

## Make a trial-level surrogacy plot using filled blue circles that
## are transparent (to make sure that the results of overlapping trials remain
## visible), and modify the title and the axes labels of the plot:
plot(Sur, pch=16, col=rgb(.3, .2, 1, 0.3), Indiv.Level=FALSE, Trial.Level=TRUE,
Weighted=TRUE, Main.Trial=c("Trial-level surrogacy (ARMD dataset)"),
Xlab.Trial=c("Difference in vision after 6 months (Surrogate)"),
Ylab.Trial=c("Difference in vision after 12 months (True endpoint)"))

## Add the estimated R2_trial value in the previous plot at position (X=-7, Y=11)
## (the previous plot should not have been closed):
R2trial <- format(round(as.numeric(Sur$Trial.R2[1]), 3))
text(x=-7, y=11, cex=1.4, labels=(bquote(R[trial]^2, "="~.(R2trial))))

## Make an Individual-level surrogacy plot with red squares to depict individuals
## (rather than black circles):
plot(Sur, pch=15, col="red", Indiv.Level=TRUE, Trial.Level=FALSE)

## Same plot as before, but now with smaller squares, a y-axis with range [-40; 40],
## and the estimated R2_indiv value in the title of the plot:
```
R2ind <- format(round(as.numeric(Sur$Indiv.R2[1]), 3))
plot(Sur, pch=15, col="red", Indiv.Level=TRUE, Trial.Level=FALSE, cex=.5,
ylim=c(-40, 40), Main.Indiv=bquote(R^{(indiv)}[2] "=" .(R2ind)))

Single-trial setting
Conduct a surrogacy analysis in the single-trial meta-analytic setting:
SurSTS <- Single.Trial.RE.AA(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Pat.ID=Id)
Request a plot of individual-level surrogacy and a plot that depicts the Relative effect
and the constant RE assumption:
plot(SurSTS, Trial.Level=TRUE, Indiv.Level=TRUE)
End(Not run)

plot MinSurrContCont
Graphically illustrates the theoretical plausibility of finding a good surrogate endpoint in the continuous-continuous case

Description
This function provides a plot that displays the frequencies, percentages, or cumulative percentages of ρ^2_{min} for a fixed value of δ (given the observed variances of the true endpoint in the control and experimental treatment conditions and a specified grid of values for the unidentified parameter ρ_{T_0,T_1}; see MinSurrContCont). For details, see the online appendix of Alonso et al., submitted.

Usage
S3 method for class 'MinSurrContCont'
plot(x, main, col, Type="Percent", Labels=FALSE,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

Arguments

x An object of class MinSurrContCont. See MinSurrContCont.

main The title of the plot.

col The color of the bins.

Type The type of plot that is produced. When Type=Freq or Type=Percent, the Y-axis shows frequencies or percentages of ρ^2_{min}. When Type=CumPerc, the Y-axis shows cumulative percentages of ρ^2_{min}. Default "Percent".

Labels Logical. When Labels=TRUE, the percentage of ρ^2_{min} values that are equal to or larger than the midpoint value of each of the bins are displayed (on top of each bin). Only applies when Type=Freq or Type=Percent. Default FALSE.

Par Graphical parameters for the plot. Default par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)).

... Extra graphical parameters to be passed to hist().
plot PredTrialTContCont

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
MinSurrContCont

Examples
compute rho^2_min in the setting where the variances of T in the control and experimental treatments equal 100 and 120, delta is fixed at 50, # and the grid G={0, .01, ..., 1} is considered for the counterfactual # correlation rho_T0T1:
MinSurr <- MinSurrContCont(T0T0 = 100, T1T1 = 120, Delta = 50, T0T1 = seq(0, 1, by = 0.01))

Plot the results (use percentages on Y-axis)
plot(MinSurr, Type="Percent")

Same plot, but add the percentages of ICA values that are equal to or larger than the midpoint values of the bins
plot(MinSurr, Labels=TRUE)

plot PredTrialTContCont
Plots the expected treatment effect on the true endpoint in a new trial (when both S and T are normally distributed continuous endpoints)

Description
The key motivation to evaluate a surrogate endpoint is to be able to predict the treatment effect on the true endpoint T based on the treatment effect on S in a new trial i = 0. The function Pred.Trial.T.ContCont allows for making such predictions. The present plot function shows the results graphically.

Usage
S3 method for class 'PredTrialTContCont'
plot(x, Size.New.Trial=5, CI.Segment=1, ...)

plot PredTrialTContCont
Plots the expected treatment effect on the true endpoint in a new trial (when both S and T are normally distributed continuous endpoints)
plot PredTrialTContCont

Arguments

x A fitted object of class Pred.TrialT.ContCont, for details see Pred.TrialT.ContCont.
CI.Segment The confidence interval around the expected treatment effect on T is depicted by a dashed horizontal line. By default, the width of the horizontal line of the horizontal section of the confidence interval indicator is 2 times the values specified by CI.Segment. Default $CI.Segment = 1$.
... Extra graphical parameters to be passed to plot().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

Pred.TrialT.ContCont

Examples

Not run: # time consuming code part
Generate dataset
Sim.Data.MTS(N.Total=2000, N.Trial=15, R.Trial.Target=.95,
R.Indiv.Target=.8, D.aa=10, D.bb=50,
Fixed.Effects=c(1, 2, 30, 90), Seed=1)

Evaluate surrogacy using a reduced bivariate mixed-effects model
BimixedFit <- BimixedContCont(Dataset = Data.Observed.MTS,
Surr = Surr, True = True, Treat = Treat, Trial.ID = Trial.ID,
Pat.ID = Pat.ID, Model="Reduced")

Suppose that in a new trial, it was estimated alpha_0 = 30
predict beta_0 in this trial
Pred_Beta <- Pred.TrialT.ContCont(Object = BimixedFit,
alpha_0 = 30)

Examine the results
summary(Pred_Beta)

Plot the results
plot(Pred_Beta)

End(Not run)
Description

Plots the surrogate predictive function (SPF), i.e., \(r(i, j) = P(\Delta T = i | \Delta S = j) \), in the setting where both \(S \) and \(T \) are binary endpoints. For example, \(r(-1, 1) \) quantifies the probability that the treatment has a negative effect on the true endpoint \((\Delta T = -1)\) given that it has a positive effect on the surrogate \((\Delta S = 1)\).

Usage

```r
## S3 method for class 'SPF.BinBin'
plot(x, Type="All.Histograms", Specific.Pi="r_0_0", Col="grey", Box.Plot.Outliers=FALSE, Legend.Pos="topleft", Legend.Cex=1, ...)
```

Arguments

- **x**: A fitted object of class SPF.BinBin. See `ICA.BinBin`.
- **Type**: The type of plot that is requested. Possible choices are: Type="All.Histograms", the histograms of all 9 \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors arranged in a 3 by 3 grid; Type="All.Densities", plots of densities of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="Histogram", the histogram of a particular \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vector (the Specific.Pi argument has to be used to specify the desired \(r(i, j) \)); Type="Density", the density of a particular \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vector (the Specific.Pi argument has to be used to specify the desired \(r(i, j) \)); Type="Box.Plot", a box plot of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="Lines.Mean", a line plot the depicts the means of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="Lines.Median", a line plot the depicts the medians of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="Lines.Mode", a line plot the depicts the modes of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="3D.Mean", a 3D bar plot the depicts the means of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="3D.Median", a 3D bar plot the depicts the medians of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors; Type="3D.Mode", a 3D bar plot the depicts the modes of all \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vectors.
- **Specific.Pi**: When Type="Histogram" or Type="Density", the histogram/density of a particular \(r(i, j) = P(\Delta T = i | \Delta S = j) \) vector is shown. The Specific.Pi argument is used to specify the desired \(r(i, j) \). Default \(r_0_0 \).
- **Col**: The color of the bins or lines when histograms or density plots are requested. Default "grey".
- **Box.Plot.Outliers**: Logical. Should outliers be depicted in the box plots?. Default FALSE.
- **Legend.Pos**: Position of the legend when a type="Box.Plot", type="Lines.Mean", type="Lines.Median", or type="Lines.Mode" is requested. Default "topleft".
plot SPF BinBin

Legend.Cex
Size of the legend when a type="Box.Plot", type="Lines.Mean", type="Lines.Median", or type="Lines.Mode" is requested. Default 1.

... Arguments to be passed to the plot, histogram, ... functions.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
SPF.BinBin

Examples
Not run:
Generate plausible values for Pi
ICA <- ICA.BinBin.Grid.Sample(p1l_1_=0.341, p10_1_=0.119,
p11_0_=0.254, p1_l_=0.686, p1_l_0=0.088, p0_l_1=0.078, Seed=1,
Monotonicity=c("General"), M=2500)

Compute the surrogate predictive function (SPF)
SPF <- SPF.BinBin(ICA)

Explore the results
summary(SPF)

Examples of plots
plot(SPF, Type="All.Histograms")
plot(SPF, Type="All.Densities")
plot(SPF, Type="Histogram", Specific.Pi="r_0_0")
plot(SPF, Type="Box.Plot", Legend.Pos="topleft", Legend.Cex=.7)
plot(SPF, Type="Lines.Mean")
plot(SPF, Type="Lines.Median")
plot(SPF, Type="3D.Mean")
plot(SPF, Type="3D.Median")
plot(SPF, Type="3D.Spinning.Mean")
plot(SPF, Type="3D.Spinning.Median")

End(Not run)
plot SPF BinCont

Plots the surrogate predictive function (SPF) in the binary-continuous setting.

Description

Plots the surrogate predictive function (SPF) based on sensitivity analysis, i.e., $P(\Delta T | \Delta S \in I[ab])$, in the setting where S is continuous and T is a binary endpoint.

Usage

```r
## S3 method for class 'SPF.BinCont'
plot(x, Type="Frequency", Col="grey", Main, Xlab=TRUE, ...)
```

Arguments

- **x**: A fitted object of class SPF.BinCont. See ICA.BinCont.
- **Type**: The type of plot that is requested. The argument Type="Frequency" requests histograms for $P(\Delta T | \Delta S \in I[ab])$. The argument Type="Percentage" requests relative frequencies for $P(\Delta T | \Delta S \in I[ab])$. The argument Type="Most.Likely.DeltaT" requests a histogram of the most likely ΔT values. For example, when in one run of the sensitivity analysis, $P(\Delta T = -1 | \Delta S \in I[ab]) = .6$, $P(\Delta T = 0 | \Delta S \in I[ab]) = .3$, and $P(\Delta T = -1 | \Delta S \in I[ab]) = .1$, the most likely outcome in this run would be $P(\Delta T = -1$. The argument Type="Most.Likely.DeltaT" generates a plot with percentages for the most likely $P(\Delta T)$ value across all obtained values in the sensitivity analysis.
- **Col**: The color of the bins or lines when histograms or density plots are requested. Default "grey".
- **Main**: The title of the plot.
- **Xlab**: Logical. Should labels on the X-axis be shown? Default Xlab=TRUE.
- **...**: Arguments to be passed to the plot, histogram, ... functions.

Author(s)

Wim Van der Elst & Ariel Alonso

References

See Also

SPF.BinCont
Examples

```r
## Not run: # time consuming code part
data(Schizo_BinCont)
# Use ICA.BinCont to examine surrogacy
Result_BinCont <- ICA.BinCont(M = 1000, Dataset = Schizo_BinCont,
Surr = PANSS, True = CGI_Bin, Treat=Treat, Diff.Sigma=TRUE)

# Obtain SPF
Fit <- SPF.BinCont(x=Result_BinCont, a = -30, b = -3)

# examine results
summary(Fit)
plot(Fit)
plot(Fit, Type="Most.Likely.DeltaT")
## End(Not run)
```

plot TrialLevelIT

Provides a plots of trial-level surrogacy in the information-theoretic framework based on the output of the TrialLevelIT() function

Description

Produces a plot that provides a graphical representation of trial-level surrogacy based on the output of the TrialLevelIT() function (information-theoretic framework).

Usage

```r
## S3 method for class 'TrialLevelIT'
plot(x, Xlab.Trial,
Ylab.Trial, Main.Trial, Par=par(oma=c(0, 0, 0, 0),
mar=c(5.1, 4.1, 4.1, 2.1)), ...)
```

Arguments

- **x**: An object of class TrialLevelIT.
- **Xlab.Trial**: The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint (α_i)".
- **Ylab.Trial**: The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint (β_i)".
- **Main.Trial**: The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy".
- **Par**: Graphical parameters for the plot. Default `par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`.
- **...**: Extra graphical parameters to be passed to `plot()`.
Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

UnifixedContCont, BifixedContCont, UnifixedContCont, BimixedContCont, TrialLevelIT

Examples

```r
# Generate vector treatment effects on S
set.seed(seed = 1)
Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)

# Generate vector treatment effects on T
set.seed(seed=2)
Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)

# Apply the function to estimate R^2_{h.t}
Fit <- TrialLevelIT(Alpha.Vector=Alpha.Vector, Beta.Vector=Beta.Vector, N.Trial=50, Model="Reduced")

# Plot the results
plot(Fit)
```

Description

Provides a plots of trial-level surrogacy in the meta-analytic framework based on the output of the TrialLevelMA() function.

Usage

```r
## S3 method for class 'TrialLevelMA'
plot(x, Weighted=TRUE, Xlab.Trial, Ylab.Trial, Main.Trial, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)
```
Arguments

x
An object of class TrialLevelMA.

Weighted
Logical. If Weighted=TRUE, the circles that depict the trial-specific treatment effects on the true endpoint against the surrogate endpoint are proportional to the number of patients in the trial. If Weighted=FALSE, all circles have the same size. Default TRUE.

Xlab.Trial
The legend of the X-axis of the plot that depicts trial-level surrogacy. Default “Treatment effect on the surrogate endpoint (α_i)”.

Ylab.Trial
The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default “Treatment effect on the true endpoint (β_i)”.

Main.Trial
The title of the plot that depicts trial-level surrogacy. Default “Trial-level surrogacy”.

Par
Graphical parameters for the plot. Default `par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`.

...
Extra graphical parameters to be passed to `plot()`.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

UnifixedContCont, BixedContCont, UnifixedContCont, BimixedContCont, TrialLevelMA

Examples

```r
# Generate vector treatment effects on S
set.seed(seed = 1)
Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)
# Generate vector treatment effects on T
set.seed(seed=2)
Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)
# Vector of sample sizes of the trials (here, all n_i=10)
N.Vector <- rep(10, times=51)

# Apply the function to estimate R^2_{trial}
Fit <- TrialLevelMA(Alpha.Vector=Alpha.Vector,
                    Beta.Vector=Beta.Vector, N.Vector=N.Vector)

# Plot the results and obtain summary
plot(Fit)
summary(Fit)
```
plot TwoStageSurvSurv

Plots trial-level surrogacy in the meta-analytic framework when two survival endpoints are considered.

Description

Produces a plot that graphically depicts trial-level surrogacy when the surrogate and true endpoints are survival endpoints.

Usage

S3 method for class 'TwoStageSurvSurv'
plot(x, Weighted=TRUE, xlab, ylab, main,
Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

Arguments

x An object of class TwoStageContCont.
Weighted Logical. If Weighted=TRUE, the circles that depict the trial-specific treatment effects on the true endpoint against the surrogate endpoint are proportional to the number of patients in the trial. If Weighted=FALSE, all circles have the same size. Default TRUE.
xlab The legend of the X-axis, default "Treatment effect on the surrogate endpoint (\(\alpha_i\))."
ylab The legend of the Y-axis, default "Treatment effect on the true endpoint (\(\beta_i\))."
main The title of the plot, default "Trial-level surrogacy".
Par Graphical parameters for the plot. Default par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)).
... Extra graphical parameters to be passed to plot().

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

TwoStageSurvSurv

Examples

Open Ovarian dataset
data(Ovarian)
Conduct analysis
Results <- TwoStageSurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd,
True = Surv, TrueCens = SurvInd, Treat = Treat, Trial.ID = Center)
Examine results of analysis
summary(Results)
plot(Results)
plot.comb27.BinBin
Plots the distribution of prediction error functions in decreasing order of appearance.

Description

The function plot.comb27.BinBin plots each of the selected prediction functions in decreasing order in the single-trial causal-inference framework when both the surrogate and the true endpoints are binary outcomes. The distribution of frequencies at which each of the 27 possible prediction functions are selected provides additional insights regarding the association between $S(\Delta_S)$ and $T(\Delta_T)$. See Details below.

Usage

```r
## S3 method for class 'comb27.BinBin'
plot(x, lab, ...)
```

Arguments

- `x`
 An object of class comb27.BinBin. See `comb27.BinBin`.
- `lab`
 A supplementary label to the graph.
- `...`
 Other arguments to be passed

Details

Each of the 27 prediction functions is coded as x/y/z with x, y and z taking values in $-1, 0, 1$. As an example, the combination 0/0/0 represents the prediction function that projects every value of Δ_S to 0. Similarly, the combination -1/0/1 is the identity function projecting every value of Δ_S to the same value for Δ_T.

Value

An object of class comb27.BinBin with components,

- `index`
 Count variable
- `Monotonicity`
 The vector of Monotonicity assumptions
- `Pe`
 The vector of the prediction error values.
- `combo`
 The vector containing the codes for each of the 27 prediction functions.
- `R2_H`
 The vector of the R^2_H values.
- `H_Delta_T`
 The vector of the entropies of Δ_T.
- `H_Delta_S`
 The vector of the entropies of Δ_S.
- `I_Delta_T_Delta_S`
 The vector of the mutual information of Δ_S and Δ_T.

plot.Fano.BinBin

Author(s)
Paul Meyvisch, Wim Van der Elst, Ariel Alonso

References

See Also
comb27.BinBin

Examples
Not run: # time consuming code part
CIGTS_27 <- comb27.BinBin(pi1_1_ = 0.3412, pi1_0_ = 0.2539, pi0_1_ = 0.119,
pi_1_1 = 0.6863, pi_1_0 = 0.0882, pi_0_1 = 0.0784,
Seed=1,Monotonicity=c("No"), M=500000)
plot.comb27.BinBin(CIGTS_27,lab="CIGTS")
End(Not run)

plot.Fano.BinBin

Plots the distribution of R^2_{HL} either as a density or as function of π_{10} in the setting where both S and T are binary endpoints

Description
The function plot.Fano.BinBin plots the distribution of R^2_{HL} which is fully identifiable for given values of π_{10}. See Details below.

Usage
S3 method for class 'Fano.BinBin'
plot(x,Type="Density",Xlab="R^2_{HL}",main="R^2_{HL}",ylab="density",Par=par(mfrow=c(1,1),oma=c(0,0,0,0),mar=c(5,1,4,1,4,1,2,1)),
Cex.Legend=1,Cex.Position="top", lwd=3,linety=c(5,6,7),color=c(8,9,3),...)

Arguments

Type The type of plot that is produced. When Type="Freq", a histogram of R^2_{HL} is produced. When Type="Density", the density of R^2_{HL} is produced. When Type="Scatter", a scatter plot of R^2_{HL} is produced as a function of π_{10}. Default Type="Scatter".
Xlab.R2_HL The label of the X-axis when density plots or histograms are produced.

class.R2_HL Title of the density plot or histogram.

ylab The label of the Y-axis when density plots or histograms are produced. Default ylab="density".

Par Graphical parameters for the plot. Default par(mfrow=c(1,1),oma=c(0,0,0,0),mar=c(5.1,4.1,4.1,2.1)).

Cex.Position The position of the legend. Default Cex.Position="top".

lwd The line width for the density plot. Default lwd=3.

linety The line types corresponding to each level of fano_delta. Default linety=c(5,6,7).

color The color corresponding to each level of fano_delta. Default color=c(8,9,3).

... Other arguments to be passed.

Details

Values for π_{10} have to be uniformly sampled from the interval $[0, \min(\pi_1, \pi_0)]$. Any sampled value for π_{10} will fully determine the bivariate distribution of potential outcomes for the true endpoint.

The vector π_{km} fully determines R^2_{HL}.

Value

An object of class Fano.BinBin with components,

- R2_HL The sampled values for R^2_{HL}.
- H_Delta_T The sampled values for $H \Delta T$.
- minpi10 The minimum value for π_{10}.
- maxpi10 The maximum value for π_{10}.
- samplepi10 The sampled value for π_{10}.
- delta The specified vector of upper bounds for the prediction errors.
- uncertainty Indexes the sampling of pi1_.
- pi_00 The sampled values for π_{00}.
- pi_11 The sampled values for π_{11}.
- pi_01 The sampled values for π_{01}.
- pi_10 The sampled values for π_{10}.

Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso

References

See Also

Fano.BinBin

Examples

Conduct the analysis assuming no monotonicity
for the true endpoint, using a range of
upper bounds for prediction errors
FANO<-Fano.BinBin(pi1_ = 0.5951 , pi_1 = 0.7745,
 fano_delta=c(0.05, 0.1, 0.2), M=1000)

plot(FANO, Type="Scatter",color=c(3,4,5),Cex.Position="bottom")

plot.PPE.BinBin

Plots the distribution of either PPE, RPE or \(R^2_H \) either as a
density or as a histogram in the setting where both \(S \) and \(T \) are binary
epipoints

Description

The function `plot.PPE.BinBin` plots the distribution of `PPE`, `RPE` or \(R^2_H \) in the setting where both surrogate and true endpoints are binary in the single-trial causal-inference framework. See Details below.

Usage

```r
## S3 method for class 'PPE.BinBin'
plot(x, Type="Density", Param="PPE", Xlab.PE, main.PE,
     ylab="density", Cex.Legend=1, Cex.Position="bottomright", lwd=3, linety=1,
     color=1, Breaks=0.05, xlimits=c(0,1), ...)`
```

Arguments

- **x** An object of class `PPE.BinBin`. See `PPE.BinBin`
- **Type** The type of plot that is produced. When Type="Freq", a histogram is produced. When Type="Density", a density is produced. Default Type="Density".
- **Param** Parameter to be plotted: is either "PPE", "RPE" or "ICA"
- **Xlab.PE** The label of the X-axis when density plots or histograms are produced.
- **main.PE** Title of the density plot or histogram.
- **ylab** The label of the Y-axis for the density plots. Default ylab="density".
- **Cex.Legend** The size of the legend. Default Cex.Legend=1.
- **Cex.Position** The position of the legend. Default Cex.Position="bottomright".
- **lwd** The line width for the density plot. Default lwd=3.
- **linety** The line types for the density. Default linety=1.
plot.PPE.BinBin

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>The color of the density or histogram. Default color=1.</td>
</tr>
<tr>
<td>Breaks</td>
<td>The breaks for the histogram. Default Breaks=0.05.</td>
</tr>
<tr>
<td>xlimits</td>
<td>The limits for the X-axis. Default xlimits=c(0,1).</td>
</tr>
<tr>
<td>...</td>
<td>Other arguments to be passed.</td>
</tr>
</tbody>
</table>

Details

In the continuous normal setting, surrogacy can be assessed by studying the association between the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed the individual causal association (ICA; R^2_H), which captures the association between the individual causal effects of the treatment on S (Δ_S) and T (Δ_T) using information-theoretic principles.

The function PPE.BinBin computes R^2_H using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed to vary freely are considered. It additionally computes the minimal probability of a prediction error (PPE) and the reduction on the PPE using information that S conveys on T. Both measures provide complementary information over the R^2_H and facilitate more straightforward clinical interpretation.

Value

An object of class PPE.BinBin with components,

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>count variable</td>
</tr>
<tr>
<td>PPE</td>
<td>The vector of the PPE values.</td>
</tr>
<tr>
<td>RPE</td>
<td>The vector of the RPE values.</td>
</tr>
<tr>
<td>PPE_T</td>
<td>The vector of the PPE_T values indicating the probability on a prediction error without using information on S.</td>
</tr>
<tr>
<td>R^2_H</td>
<td>The vector of the R^2_H values.</td>
</tr>
<tr>
<td>H_{Δ_T}</td>
<td>The vector of the entropies of Δ_T.</td>
</tr>
<tr>
<td>H_{Δ_S}</td>
<td>The vector of the entropies of Δ_S.</td>
</tr>
<tr>
<td>I_{Δ_T, Δ_S}</td>
<td>The vector of the mutual information of Δ_S and Δ_T.</td>
</tr>
<tr>
<td>Pi.Vectors</td>
<td>An object of class data.frame that contains the valid π vectors.</td>
</tr>
</tbody>
</table>

Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

plot.SurvSurv

Provides plots of trial- and individual-level surrogacy in the Information-Theoretic framework when both S and T are time-to-event endpoints

Description

Produces plots that provide a graphical representation of trial- and/or individual-level surrogacy (R^2_{ht} and R^2_{hInd} per cluster) based on the Information-Theoretic approach of Alonso & Molenberghs (2007).

Usage

S3 method for class 'SurvSurv'
plot(x, Trial.Level=TRUE, Weighted=TRUE, Indiv.Level.By.Trial=TRUE, Xlab.Indiv, Ylab.Indiv, Xlab.Trial, Ylab.Trial, Main.Trial, Main.Indiv, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), ...)

Arguments

x An object of class FixedBinBinIT.
Trial_Level Logical. If Trial.Level=TRUE, a plot of the trial-specific treatment effects on the true endpoint against the trial-specific treatment effect on the surrogate endpoints is provided (as a graphical representation of R_{ht}). Default TRUE.
Weighted Logical. This argument only has effect when the user requests a trial-level surrogacy plot (i.e., when Trial.Level=TRUE in the function call). If Weighted=TRUE, the circles that depict the trial-specific treatment effects on the true endpoint against the surrogate endpoint are proportional to the number of patients in the trial. If Weighted=FALSE, all circles have the same size. Default TRUE.
Indiv_Level_By_Trial Logical. If Indiv.Level.By.Trial=TRUE, a plot that shows the estimated R^2_{h,ind} for each trial (and confidence intervals) is provided. Default TRUE.
Xlab.Indiv The legend of the X-axis of the plot that depicts the estimated $R^2_{h, ind}$ per trial. Default "$R^2_{h, ind}$".

Ylab.Indiv The legend of the Y-axis of the plot that shows the estimated $R^2_{h, ind}$ per trial. Default "Trial".

Xlab.Trial The legend of the X-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the surrogate endpoint (α_i)".

Ylab.Trial The legend of the Y-axis of the plot that depicts trial-level surrogacy. Default "Treatment effect on the true endpoint (β_i)".

Main.Indiv The title of the plot that depicts individual-level surrogacy. Default "Individual-level surrogacy".

Main.Trial The title of the plot that depicts trial-level surrogacy. Default "Trial-level surrogacy".

Par Graphical parameters for the plot. Default `par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1))`.

... Extra graphical parameters to be passed to `plot()`.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also
SurvSurv

Examples

```r
# Open Ovarian dataset
data(Ovarian)

# Conduct analysis
Fit <- SurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd, True = Surv, TrueCens = SurvInd, Treat = Treat, Trial.ID = Center, Alpha=.05)

# Examine results
summary(Fit)
plot(Fit, Trial.Level = FALSE, Indiv.Level.By.Trial=TRUE)
plot(Fit, Trial.Level = TRUE, Indiv.Level.By.Trial=FALSE)
```

Pos.Def.Matrices

Generate 4 by 4 correlation matrices and flag the positive definite ones

Description

Based on vectors (or scalars) for the six off-diagonal correlations of a 4 by 4 matrix, the function Pos.Def.Matrices constructs all possible matrices that can be formed by combining the specified values, computes the minimum eigenvalues for each of these matrices, and flags the positive definite ones (i.e., valid correlation matrices).

Usage

Pos.Def.Matrices(T0T1=seq(0, 1, by=.2), T0S0=seq(0, 1, by=.2), T0S1=seq(0, 1, by=.2), T1S0=seq(0, 1, by=.2), T1S1=seq(0, 1, by=.2), S0S1=seq(0, 1, by=.2))

Arguments

T0T1 A vector or scalar that specifies the correlation(s) between T0 and T1 that should be considered to construct all possible 4 by 4 matrices. Default seq(0, 1, by=.2), i.e., the values 0, 0.2, ..., 1.

T0S0 A vector or scalar that specifies the correlation(s) between T0 and S0 that should be considered to construct all possible 4 by 4 matrices. Default seq(0, 1, by=.2).

T0S1 A vector or scalar that specifies the correlation(s) between T0 and S1 that should be considered to construct all possible 4 by 4 matrices. Default seq(0, 1, by=.2).

T1S0 A vector or scalar that specifies the correlation(s) between T1 and S0 that should be considered to construct all possible 4 by 4 matrices. Default seq(0, 1, by=.2).

T1S1 A vector or scalar that specifies the correlation(s) between T1 and S1 that should be considered to construct all possible 4 by 4 matrices. Default seq(0, 1, by=.2).

S0S1 A vector or scalar that specifies the correlation(s) between S0 and S1 that should be considered to construct all possible 4 by 4 matrices. Default seq(0, 1, by=.2).

Details

The generated object Generated.Matrices (of class data.frame) is placed in the workspace (for easy access).

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
See Also

Sim.Data.Counterfactuals

Examples

```r
## Generate all 4x4 matrices that can be formed using rho(T0,S0)=rho(T1,S1)=.5
## and the grid of values 0, .2, ..., 1 for the other off-diagonal correlations:
Pos.Def.Matrices(T0T1=seq(0, 1, by=.2), T0S0=.5, T0S1=seq(0, 1, by=.2),
                T1S0=seq(0, 1, by=.2), T1S1=.5, S0S1=seq(0, 1, by=.2))

## Examine the first 10 rows of the object Generated.Matrices:
Generated.Matrices[1:10,]

## Check how many of the generated matrices are positive definite
## (counts and percentages):
table(Generated.Matrices$Pos.Def.Status)
table(Generated.Matrices$Pos.Def.Status)/nrow(Generated.Matrices)

## Make an object PosDef which contains the positive definite matrices:

## Shows the 10 first matrices that are positive definite:
PosDef[1:10,]
```

Description

The function `PPE.BinBin` assesses a surrogate predictive value using the probability of a prediction error in the single-trial causal-inference framework when both the surrogate and the true endpoints are binary outcomes. It additionally assesses the individual causal association (ICA). See Details below.

Usage

```r
PPE.BinBin(pi1_1_, pi1_0_, pi_1_1, pi_1_0,
            pi0_1_, pi_0_1, M=10000, Seed=1)
```

Arguments

- `pi1_1_` A scalar that contains values for \(P(T = 1, S = 1|Z = 0) \), i.e., the probability that \(S = T = 1 \) when under treatment \(Z = 0 \).
- `pi1_0_` A scalar that contains values for \(P(T = 1, S = 0|Z = 0) \).
- `pi_1_1` A scalar that contains values for \(P(T = 1, S = 1|Z = 1) \).
pi_1_0 A scalar that contains values for $P(T = 1, S = 0|Z = 1)$.
pi0_1_ A scalar that contains values for $P(T = 0, S = 1|Z = 0)$.
pi_0_1 A scalar that contains values for $P(T = 0, S = 1|Z = 1)$.
M The number of valid vectors that have to be obtained. Default $M=10000$.
Seed The seed to be used to generate π_r. Default Seed=1.

Details

In the continuous normal setting, surroagacy can be assessed by studying the association between the individual causal effects on S and T (see ICA.ContCont). In that setting, the Pearson correlation is the obvious measure of association.

When S and T are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed the individual causal association (ICA; R^2_H), which captures the association between the individual causal effects of the treatment on S (ΔS) and T (ΔT) using information-theoretic principles.

The function PPE.BinBin computes R^2_H using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed to vary freely are considered. It additionally computes the minimal probability of a prediction error (PPE) and the reduction on the PPE using information that S conveys on T. Both measures provide complementary information over the R^2_H and facilitate more straightforward clinical interpretation. No assumption about monotonicity can be made.

Value

An object of class PPE.BinBin with components,

index count variable
PPE The vector of the PPE values.
RPE The vector of the RPE values.
PPE_T The vector of the PPE_T values indicating the probability on a prediction error without using information on S.
R2_H The vector of the R^2_H values.
H_Delta_T The vector of the entropies of ΔT.
H_Delta_S The vector of the entropies of ΔS.
I_Delta_T_Delta_S The vector of the mutual information of ΔS and ΔT.

Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

Compute the expected treatment effect on the true endpoint in a new trial (when both S and T are normally distributed continuous endpoints)

Description

The key motivation to evaluate a surrogate endpoint is to be able to predict the treatment effect on the true endpoint T based on the treatment effect on S in a new trial $i = 0$. The function Pred.TrialT.ContCont allows for making such predictions based on fitted models of class BimixedContCont, BifixedContCont, UnimixedContCont and UnifixedContCont.

Usage

Pred.TrialT.ContCont(Object, mu_S0, alpha_0, alpha.CI=0.05)

Arguments

Object A fitted object of class BimixedContCont, BifixedContCont, UnimixedContCont and UnifixedContCont. Some of the components in these fitted objects are needed to estimate $E(\beta + b_0)$ and its variance.

mu_S0 The intercept of a regression model in the new trial $i = 0$ where the surrogate endpoint is regressed on the true endpoint, i.e., $S_{0j} = \mu_{S0} + \alpha_0 Z_{0j} + \varepsilon_{S0j}$, where S is the surrogate endpoint, j is the patient indicator, and Z is the treatment. This argument only needs to be specified when a full model was used to examine surroacy.

alpha_0 The regression weight of the treatment in the regression model specified under argument mu_S0.

alpha.CI The α-level to be used to determine the confidence interval around $E(\beta + b_0)$. Default alpha.CI=0.05.
Details

The key motivation to evaluate a surrogate endpoint is to be able to predict the treatment effect on the true endpoint \(T \) based on the treatment effect on \(S \) in a new trial \(i = 0 \).

When a so-called full (fixed or mixed) bi- or univariate model was fitted in the surrogate evaluation phase (for details, see `BimixedContCont`, `BifixedContCont`, `UnimixedContCont` and `UnifixedContCont`), this prediction is made as:

\[
E(\beta + b_0|m_{S0}, a_0) = \beta + \left(\begin{array}{c} d_{Sb} \\ d_{ab} \end{array} \right)^T \left(\begin{array}{cc} d_{SS} & D_{Sa} \\ d_{Sa} & d_{aa} \end{array} \right)^{-1} \left(\begin{array}{c} \mu_{S0} - \mu_S \\ \alpha_0 - \alpha \end{array} \right),
\]

\[
Var(\beta + b_0|m_{S0}, a_0) = d_{bb} + \left(\begin{array}{c} d_{Sb} \\ d_{ab} \end{array} \right)^T \left(\begin{array}{cc} d_{SS} & D_{Sa} \\ d_{Sa} & d_{aa} \end{array} \right)^{-1} \left(\begin{array}{c} d_{Sb} \\ d_{ab} \end{array} \right),
\]

where all components are defined as in `BimixedContCont`. When the univariate mixed-effects models are used or the (univariate or bivariate) fixed effects models, the fitted components contained in \(D.Equiv \) are used instead of those in \(D \).

When a reduced-model approach was used in the surrogate evaluation phase, the prediction is made as:

\[
E(\beta + b_0|a_0) = \beta + \frac{d_{ab}}{d_{aa}} + (\alpha_0 - \alpha),
\]

\[
Var(\beta + b_0|a_0) = d_{bb} - \frac{d_{ab}^2}{d_{aa}},
\]

where all components are defined as in `BimixedContCont`. When the univariate mixed-effects models are used or the (univariate or bivariate) fixed effects models, the fitted components contained in \(D.Equiv \) are used instead of those in \(D \).

A \((1 - \gamma)100\%\) prediction interval for \(E(\beta + b_0|m_{S0}, a_0) \) can be obtained as \(E(\beta + b_0|m_{S0}, a_0) \pm z_{1-\gamma/2} \sqrt{Var(\beta + b_0|m_{S0}, a_0)} \) (and similarly for \(E(\beta + b_0|a_0) \)).

Value

<table>
<thead>
<tr>
<th>Beta_0</th>
<th>The predicted (\beta_0).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance</td>
<td>The variance of the prediction.</td>
</tr>
<tr>
<td>Lower</td>
<td>The lower bound of the confidence interval around the expected (\beta_0), see Details above.</td>
</tr>
<tr>
<td>Upper</td>
<td>The upper bound of the confidence interval around the expected (\beta_0).</td>
</tr>
<tr>
<td>alpha.CI</td>
<td>The (\alpha)-level used to establish the confidence interval.</td>
</tr>
<tr>
<td>Surr.Model</td>
<td>The model that was used to compute (\beta_0).</td>
</tr>
<tr>
<td>alpha_0</td>
<td>The slope of the regression model specified in the Arguments section.</td>
</tr>
</tbody>
</table>

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References

See Also

UnifixedContCont, BifixedContCont, UnimixedContCont

Examples

Not run: #time-consuming code parts
Generate dataset
Sim.Data.MTS(N.Total=2000, N.Trial=15, R.Trial.Target=.8,
R.Indiv.Target=.8, D.aa=10, D.bb=50, FixedEffects=c(1, 2, 30, 90),
Seed=1)

Evaluate surrogacy using a reduced bivariate mixed-effects model
BimixedFit <- BimixedContCont(Dataset = Data.Observed.MTS, Surr = Surr,
True = True, Treat = Treat, Trial.ID = Trial.ID, Pat.ID = Pat.ID,
Model="Reduced")

Suppose that in a new trial, it was estimated alpha_0 = 30
predict beta_0 in this trial
Pred_Beta <- Pred.TrialT.ContCont(Object = BimixedFit,
alpha_0 = 30)

Examine the results
summary(Pred_Beta)

Plot the results
plot(Pred_Beta)

End(Not run)

Prentice Evaluates surrogacy based on the Prentice criteria for continuous endpoints (single-trial setting)

Description

The function Prentice evaluates the validity of a potential surrogate based on the Prentice criteria (Prentice, 1989) in the setting where the candidate surrogate and the true endpoint are normally distributed endpoints.

Warning The Prentice approach is included in the Surrogate package for illustrative purposes (as it was the first formal approach to assess surrogacy), but this method has some severe problems that renders its use problematic (see Details below). It is recommended to replace the Prentice approach by a more statistically-sound approach to evaluate a surrogate (e.g., the meta-analytic methods; see the functions UnifixedContCont, BifixedContCont, UnimixedContCont, BimixedContCont).
Usage

Prentice(Dataset, Surr, True, Treat, Pat.ID, Alpha=.05)

Arguments

Dataset: A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.

Surr: The name of the variable in Dataset that contains the surrogate values.

True: The name of the variable in Dataset that contains the true endpoint values.

Treat: The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and \(-1\) for the control group, or as 1 for the experimental group and 0 for the control group.

Pat.ID: The name of the variable in Dataset that contains the patient’s ID.

Alpha: The \(\alpha\)-level that is used to examine whether the Prentice criteria are fulfilled. Default 0.05.

Details

The Prentice criteria are examined by fitting the following regression models (when the surrogate and true endpoints are continuous variables):

\[
S_j = \mu_S + \alpha Z_j + \epsilon_{Sj}, \quad (1)
\]
\[
T_j = \mu_T + \beta Z_j + \epsilon_{Tj}, \quad (2)
\]
\[
T_j = \mu + \gamma Z_j + \epsilon_j, \quad (3)
\]
\[
T_j = \tilde{\mu}_T + \beta_S Z_j + \gamma S_j + \tilde{\epsilon}_{Tj}, \quad (4)
\]

where the error terms of (1) and (2) have a joint zero-mean normal distribution with variance-covariance matrix

\[
\Sigma = \begin{pmatrix}
\sigma_{SS} & \sigma_{ST} \\
\sigma_{TS} & \sigma_{TT}
\end{pmatrix}
\]

and where \(j\) is the subject indicator, \(S_j\) and \(T_j\) are the surrogate and true endpoint values of subject \(j\), and \(Z_j\) is the treatment indicator for subject \(j\).

To be in line with the Prentice criteria, \(Z\) should have a significant effect on \(S\) in model 1 (Prentice criterion 1), \(Z\) should have a significant effect on \(T\) in model 2 (Prentice criterion 2), \(S\) should have a significant effect on \(T\) in model 3 (Prentice criterion criterion 3), and the effect of \(Z\) on \(T\) should be fully captured by \(S\) in model 4 (Prentice criterion 4).

The Prentice approach to assess surrogacy has some fundamental limitations. For example, the fourth Prentice criterion requires that the statistical test for the \(\beta_S\) in model 4 is non-significant. This criterion is useful to reject a poor surrogate, but it is not suitable to validate a good surrogate (i.e., a non-significant result may always be attributable to a lack of statistical power). Even when
lack of power would not be an issue, the result of the statistical test to evaluate the fourth Prentice
criterion cannot prove that the effect of the treatment on the true endpoint is fully captured by the
surrogate.

The use of the Prentice approach to evaluate a surrogate is not recommended. Instead, consider
using the single-trial meta-analytic method (if no multiple clinical trials are available or if there is
no other clustering unit in the data; see function `Single.Trial.RE.AA`) or the multiple-trial meta-
analytic methods (see `UnifixedContCont`, `BifixedContCont`, `UnimixedContCont`, and `BimixedContCont`).

Value

Prentice.Model.1
An object of class `lm` that contains the fitted model 1 (using the Prentice approach).

Prentice.Model.2
An object of class `lm` that contains the fitted model 2 (using the Prentice approach).

Prentice.Model.3
An object of class `lm` that contains the fitted model 3 (using the Prentice approach).

Prentice.Model.4
An object of class `lm` that contains the fitted model 4 (using the Prentice approach).

Prentice.Passed
Logical. If all four Prentice criteria are fulfilled, `Prentice.Passed=TRUE`. If at
least one criterion is not fulfilled, `Prentice.Passed=FALSE`.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

New York: Springer-Verlag.

Examples

```R
## Load the ARMD dataset
data(ARMD)

## Evaluate the Prentice criteria in the ARMD dataset
Prent <- Prentice(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Pat.ID=Id)

# Summary of results
summary(Prent)
```
Description

The function `PROC.BinBin` assesses the ICA and RPE in the single-trial causal-inference framework when both the surrogate and the true endpoints are binary outcomes. It additionally allows to account for sampling variability by means of bootstrap. See Details below.

Usage

```r
PROC.BinBin(Dataset=Dataset, Surr=Surr, True=True, Treat=Treat,
            BS=FALSE, seqs=250, MC_samples=1000, Seed=1)
```

Arguments

- **Dataset**: A data.frame that should consist of one line per patient. Each line contains (at least) a binary surrogate value, a binary true endpoint value, and a treatment indicator.
- **Surr**: The name of the variable in Dataset that contains the binary surrogate endpoint values. Should be coded as 0 and 1.
- **True**: The name of the variable in Dataset that contains the binary true endpoint values. Should be coded as 0 and 1.
- **Treat**: The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should be coded as 1 for the experimental group and −1 for the control group.
- **BS**: Logical. If TRUE, then Dataset will be bootstrapped to account for sampling variability. If FALSE, then no bootstrap is performed. See the Details section below. Default FALSE.
- **seqs**: The number of copies of the dataset that are produced or alternatively the number of bootstrap datasets that are produced. Default seqs=250.
- **MC_samples**: The number of Monte Carlo samples that need to be obtained per copy of the data set. Default MC_samples=1000.
- **Seed**: The seed to be used. Default Seed=1.

Details

In the continuous normal setting, surrogacy can be assessed by studying the association between the individual causal effects on \(S \) and \(T \) (see `ICA.ContCont`). In that setting, the Pearson correlation is the obvious measure of association.

When \(S \) and \(T \) are binary endpoints, multiple alternatives exist. Alonso et al. (2016) proposed the individual causal association (ICA; \(R^2_H \)), which captures the association between the individual causal effects of the treatment on \(S \) (\(\Delta_S \)) and \(T \) (\(\Delta_T \)) using information-theoretic principles.
The function `PPE.BinBin` computes R^2_H using a grid-based approach where all possible combinations of the specified grids for the parameters that are allowed to vary freely are considered. It additionally computes the minimal probability of a prediction error (PPE) and the reduction on the PPE using information that S conveys on T (RPE). Both measures provide complementary information over the R^2_H and facilitate more straightforward clinical interpretation. No assumption about monotonicity can be made. The function `PROC.BinBin` makes direct use of the function `PPE.BinBin`. However, it is computationally much faster thanks to equally dividing the number of Monte Carlo samples over copies of the input data. In addition, it allows to account for sampling variability using a bootstrap procedure. Finally, the function `PROC.BinBin` computes the marginal probabilities directly from the input data set.

Value

An object of class `PPE.BinBin` with components,

- **PPE** The vector of the PPE values.
- **RPE** The vector of the RPE values.
- **PPE_T** The vector of the PPE_T values indicating the probability on a prediction error without using information on S.
- **R2_H** The vector of the R^2_H values.

Author(s)

Paul Meyvisch, Wim Van der Elst, Ariel Alonso, Geert Molenberghs

References

See Also

`PPE.BinBin`

Examples

```r
# Conduct the analysis
## Not run: # time consuming code part
library(Surrogate)
# load the CIGTS data
data(CIGTS)
CIGTS_25000<-PROC.BinBin(Dataset=CIGTS, Surr=IOP_12, True=IOP_96, Treat=Treat, BS=FALSE, seqs=250, MC_samples=100, Seed=1)
## End(Not run)
```
RandVec

Generate random vectors with a fixed sum

Description

This function generates an \(n \times m \) array \(x \), each of whose \(m \) columns contains \(n \) random values lying in the interval \([a,b]\), subject to the condition that their sum be equal to \(s \). The distribution of values is uniform in the sense that it has the conditional probability distribution of a uniform distribution over the whole \(n \)-cube, given that the sum of the \(x \)'s is \(s \). The function uses the \texttt{randfixedsum} algorithm, written by Roger Stafford and implemented in MatLab. For details, see http://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum/content/randfixedsum.m

Usage

\[
\text{RandVec}(a=0, \ b=1, \ s=1, \ n=9, \ m=1, \ Seed=\text{sample}(1:1000, \ size = 1))
\]

Arguments

- \(a \) The function \texttt{RandVec} generates an \(n \times m \) matrix \(x \). Each of the \(m \) columns contain \(n \) random values lying in the interval \([a,b]\). The argument \(a \) specifies the lower limit of the interval. Default \(0 \).
- \(b \) The argument \(b \) specifies the upper limit of the interval. Default \(1 \).
- \(s \) The argument \(s \) specifies the value to which each of the \(m \) generated columns should sum to. Default \(1 \).
- \(n \) The number of requested elements per column. Default \(9 \).
- \(m \) The number of requested columns. Default \(1 \).
- \(Seed \) The seed that is used. Default \(\text{sample}(1:1000, \ size = 1) \).

Value

An object of class \texttt{RandVec} with components,

- \texttt{RandVecOutput} The randomly generated vectors.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

The function is an R adaptation of a matlab program written by Roger Stafford. For details on the original Matlab algorithm, see: http://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-with-fixed-sum/content/randfixedsum.m
Examples

```r
# generate two vectors with 10 values ranging between 0 and 1
# where each vector sums to 1
# (uniform distribution over the whole n-cube)
Vectors <- RandVec(a=0, b=1, s=1, n=10, m=2)
sum(Vectors$RandVecOutput[,1])
sum(Vectors$RandVecOutput[,2])
```

Restrictions.BinBin

Examine restrictions in \(\pi_f \) under different montonicity assumptions for binary \(S \) and \(T \)

Description

The function `Restrictions.BinBin` gives an overview of the restrictions in \(\pi_f \) under different assumptions regarding montonicity when both \(S \) and \(T \) are binary.

Usage

`Restrictions.BinBin(pi1_1_, pi1_0_, pi_1_1, pi_1_0, pi0_1_, pi_0_1)`

Arguments

- `pi1_1_`: A scalar that contains \(P(T = 1, S = 1|Z = 0) \), i.e., the probability that \(S = T = 1 \) when under treatment \(Z = 0 \).
- `pi1_0_`: A scalar that contains \(P(T = 1, S = 0|Z = 0) \).
- `pi_1_1`: A scalar that contains \(P(T = 1, S = 1|Z = 1) \).
- `pi_1_0`: A scalar that contains \(P(T = 1, S = 0|Z = 1) \).
- `pi0_1_`: A scalar that contains \(P(T = 0, S = 1|Z = 0) \).
- `pi_0_1`: A scalar that contains \(P(T = 0, S = 1|Z = 1) \).

Value

An overview of the restrictions for the freely varying parameters imposed by the data is provided.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`MarginalProbs`
Examples

Restrictions.BinBin(pi1_1_ = 0.262, pi0_1_ = 0.135, pi1_0_ = 0.286,
pi_1_1 = 0.637, pi_1_0 = 0.078, pi_0_1 = 0.127)

Description

The sample_copula_parameters() function samples the unidentifiable copula parameters for
the partly identifiable D-vine copula model, see for example fit_copula_model_BinCont() and
fit_model_SurvSurv() for more information regarding the D-vine copula model.

Usage

sample_copula_parameters(
 copula_family2,
 n_sim,
 eq_cond_association = FALSE,
 lower = c(-1, -1, -1, -1),
 upper = c(1, 1, 1, 1)
)

Arguments

copula_family2 Copula family of the other bivariate copulas. For the possible options, see
loglik_copula_scale(). The elements of copula_family2 correspond to
(c23, c13;2, c24;3, c14;23).

n_sim Number of copula parameter vectors to be sampled.

eq_cond_association (boolean) Indicates whether \rho_{13;2} and \rho_{24;3} are set equal.

lower (numeric) Vector of length 4 that provides the lower limit, \alpha = (a_{23}, a_{13;2}, a_{24;3}, a_{14;23})'.
Defaults to c(-1, -1, -1, -1). If the provided lower limit is smaller than what
is allowed for a particular copula family, then the copula family’s lowest possible
value is used instead.

upper (numeric) Vector of length 4 that provides the upper limit, \beta = (b_{23}, b_{13;2}, b_{24;3}, b_{14;23})'.
Defaults to c(1, 1, 1, 1).

Value

A \text{ n_sim } by 4 numeric matrix where each row corresponds to a sample for \theta_{unid}.

Sampling

In the D-vine copula model in the Information-Theoretic Causal Inference (ITCI) framework, the following copulas are not identifiable: $c_{23}, c_{13;2}, c_{24;3}, c_{14;23}$. Let the corresponding copula parameters be

$$\theta_{\text{unid}} = (\theta_{23}, \theta_{13;2}, \theta_{24;3}, \theta_{14;23})'$$

The allowable range for this parameter vector depends on the corresponding copula families. For parsimony and comparability across different copula families, the sampling procedure consists of two steps:

1. Sample Spearman’s rho parameters from a uniform distribution,

$$\rho_{\text{unid}} = (\rho_{23}, \rho_{13;2}, \rho_{24;3}, \rho_{14;23})' \sim U(a, b).$$

2. Transform the sampled Spearman’s rho parameters to the copula parameter scale, θ_{unid}.

These two steps are repeated n_{sim} times.

Conditional Independence

In addition to range restrictions through the lower and upper arguments, we allow for so-called conditional independence assumptions. These assumptions entail that $\rho_{13;2} = 0$ and $\rho_{24;3} = 0$. Or in other words, $U_1 \perp U_3 \mid U_2$ and $U_2 \perp U_4 \mid U_3$. In the context of a surrogate evaluation trial (where $(U_1, U_2, U_3, U_4)'$ corresponds to the probability integral transformation of $(T_0, S_0, S_1, T_1)'$) this assumption could be justified by subject-matter knowledge.

sample_deltas_BinCont
Sample individual casual treatment effects from given D-vine copula model in binary continuous setting

Description

Sample individual casual treatment effects from given D-vine copula model in binary continuous setting

Usage

```r
sample_deltas_BinCont(
  copula_par,
  rotation_par,
  copula_family1,
  copula_family2 = copula_family1,
  n,
  q_S0 = NULL,
  q_S1 = NULL,
  q_T0 = NULL,
  q_T1 = NULL,
  marginal_sp_rho = TRUE,
)```
setting = "BinCont",  
composite = FALSE,  
plot_deltas = FALSE,  
restr_time = +Inf  
)  

Arguments  

- **copula_par**: Parameter vector for the sequence of bivariate copulas that define the D-vine copula. The elements of `copula_par` correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).  
- **rotation_par**: Vector of rotation parameters for the sequence of bivariate copulas that define the D-vine copula. The elements of `rotation_par` correspond to \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).  
- **copula_family1**: Copula family of \(c_{12}\) and \(c_{34}\). For the possible options, see `loglik_copula_scale()`. The elements of `copula_family1` correspond to \((c_{12}, c_{34})\).  
- **copula_family2**: Copula family of the other bivariate copulas. For the possible options, see `loglik_copula_scale()`. The elements of `copula_family2` correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).  
- **n**: Number of samples to be taken from the D-vine copula.  
- **q_S0**: Quantile function for the distribution of \(S_0\).  
- **q_S1**: Quantile function for the distribution of \(S_1\).  
- **q_T0**: Quantile function for the distribution of \(T_0\). This should be `NULL` if \(T_0\) is binary.  
- **q_T1**: Quantile function for the distribution of \(T_1\). This should be `NULL` if \(T_1\) is binary.  
- **marginal_sp_rho**: (boolean) Compute the sample Spearman correlation matrix? Defaults to `TRUE`.  
- **setting**: Should be one of the following two:  
  - "BinCont": for when \(S\) is continuous and \(T\) is binary.  
  - "SurvSurv": for when both \(S\) and \(T\) are time-to-event variables.  
- **composite**: (boolean) If composite is `TRUE`, then the surrogate endpoint is a composite of both a "pure" surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.  
- **plot_deltas**: Plot the sampled individual causal effects? Defaults to `FALSE`.  
- **restr_time**: Restriction time for the potential outcomes. Defaults to `+Inf` which means no restriction. Otherwise, the sampled potential outcomes are replace by `pmin(S0, restr_time)` (and similarly for the other potential outcomes).  
  
Value  

A list with two elements:  

- **Delta_dataframe**: a dataframe containing the sampled individual causal treatment effects  
- **marginal_sp_rho_matrix**: a matrix containing the marginal pairwise Spearman’s rho parameters estimated from the sample. If `marginal_sp_rho = FALSE`, this matrix is not computed and `NULL` is returned for this element of the list.
sample_dvine

Sample copula data from a given four-dimensional D-vine copula

Description

sample_dvine() is a helper function that samples copula data from a given D-vine copula. See details for more information on the parameterization of the D-vine copula.

Usage

```r
sample_dvine(
 copula_par,
 rotation_par,
 copula_family1,
 copula_family2 = copula_family1,
 n
)
```

Arguments

- `copula_par`: Parameter vector for the sequence of bivariate copulas that define the D-vine copula. The elements of `copula_par` correspond to 
  \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).
- `rotation_par`: Vector of rotation parameters for the sequence of bivariate copulas that define the D-vine copula. The elements of `rotation_par` correspond to 
  \((c_{12}, c_{23}, c_{34}, c_{13;2}, c_{24;3}, c_{14;23})\).
- `copula_family1`: Copula family of \(c_{12}\) and \(c_{34}\). For the possible options, see `loglik_copula_scale()`.
  The elements of `copula_family1` correspond to \((c_{12}, c_{34})\).
- `copula_family2`: Copula family of the other bivariate copulas. For the possible options, see `loglik_copula_scale()`.
  The elements of `copula_family2` correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).
- `n`: Number of samples to be taken from the D-vine copula.

Value

A \(n \times 4\) matrix where each row corresponds to one sampled vector and the columns correspond to \(U_1, U_2, U_3,\) and \(U_4\).

D-vine Copula

Let \(U = (U_1, U_2, U_3, U_4)'\) be a random vector with uniform margins. The corresponding distribution function is then a 4-dimensional copula. A D-vine copula as a family of \(k\)-dimensional copulas. Indeed, a D-vine copula is a \(k\)-dimensional copula that is constructed from a particular product of bivariate copula densities. In this function, only 4-dimensional copula densities are considered. Under the simplifying assumption, the 4-dimensional D-vine copula density is the product of the following bivariate copula densities:

- \(c_{12}, c_{23},\) and \(c_{34}\)
Data of five clinical trials in schizophrenia

Description

These are the data of five clinical trials in schizophrenia. A total of 2128 patients were treated by 198 investigators (psychiatrists). Patients' schizophrenic symptoms were measured using the PANSS, BPRS, and CGI. There were two treatment conditions (risperidone and control).

Usage

data(Schizo)

Format

A data.frame with 2128 observations on 9 variables.

- **Id** The patient ID.
- **InvestID** The ID of the investigator (psychiatrist) who treated the patient.
- **Treat** The treatment indicator, coded as \(-1 = \text{control}\) and \(1 = \text{Risperidone}\). 
- **CGI** The change in the CGI score (= score at the start of the treatment - score at the end of the treatment).
- **PANSS** The change in the PANSS score.
- **BPRS** The change in the PANSS score.
- **PANSS_Bin** The dichotomized PANSS change score, coded as \(1 = \text{a reduction of 20\% or more in the PANSS score (score at the end of the treatment relative to score at the beginning of the treatment)}\), \(0 = \text{otherwise}\).
- **BPRS_Bin** The dichotomized BPRS change score, coded as \(1 = \text{a reduction of 20\% or more in the BPRS score (score at the end of the treatment relative to score at the beginning of the treatment)}\), \(0 = \text{otherwise}\).
- **CGI_Bin** The dichotomized change in the CGI score, coded as \(1 = \text{a change of more than 3 points on the original scale (score at the end of the treatment relative to score at the beginning of the treatment)}\), \(0 = \text{otherwise}\).
Schizo_Bin

Data of a clinical trial in Schizophrenia (with binary outcomes).

Description

These are the data of a clinical trial in Schizophrenia (a subset of the dataset Schizo_Bin, study 1 where the patients were administered 10 mg. of haloperidol or 8 mg. of risperidone). A total of 454 patients were treated by 117 investigators (psychiatrists). Patients’ schizophrenia symptoms at baseline and at the end of the study (after 8 weeks) were measured using the PANSS and BPRS. The variables BPRS_Bin and PANSS_Bin are binary outcomes that indicate whether clinically meaningful change had occurred (1 = a reduction of 20% or higher in the PANSS/BPRS scores at the last measurement compared to baseline; 0 = no such reduction; Leucht et al., 2005; Kay et al., 1988).

Usage

data(Schizo_Bin)

Format

A data.frame with 454 observations on 5 variables.

Id  The patient ID.
InvestI  The ID of the investigator (psychiatrist) who treated the patient.
Treat  The treatment indicator, coded as −1 = control treatment (10 mg. haloperidol) and 1 = experimental treatment (8 mg. risperidone).
PANSS_Bin  The dichotomized change in the PANSS score (1 = a reduction of 20% or more in the PANSS score, 0=otherwise)
BPRS_Bin  The dichotomized change in the BPRS score (1 = a reduction of 20% or more in the BPRS score, 0=otherwise)
CGI_Bin  The dichotomized change in the CGI score, coded as 1 = a change of more than 3 points on the original scale (score at the end of the treatment relative to score at the beginning of the treatment), 0 = otherwise.

References

Description

These are the data of a clinical trial in schizophrenia. Patients’ schizophrenic symptoms were measured using the PANSS, BPRS, and CGI. There were two treatment conditions (risperidone and control).

Usage

data(Schizo)

Format

A data.frame with 446 observations on 9 variables.

Id  The patient ID.

InvestID  The ID of the investigator (psychiatrist) who treated the patient.

Treat  The treatment indicator, coded as $-1 = \text{control}$ and $1 = \text{Risperidone}$.

CGI  The change in the CGI score ($= \text{score at the start of the treatment} - \text{score at the end of the treatment}$).

PANSS  The change in the PANSS score.

BPRS  The change in the PANSS score.

PANSS_Bin  The dichotomized PANSS change score, coded as $1 = \text{a reduction of 20\% or more in the PANSS score (score at the end of the treatment relative to score at the beginning of the treatment)}$, $0 = \text{otherwise}$.

BPRS_Bin  The dichotomized BPRS change score, coded as $1 = \text{a reduction of 20\% or more in the BPRS score (score at the end of the treatment relative to score at the beginning of the treatment)}$, $0 = \text{otherwise}$.

CGI_Bin  The dichotomized change in the CGI score, coded as $1 = \text{a change of more than 3 points on the original scale (score at the end of the treatment relative to score at the beginning of the treatment)}$, $0 = \text{otherwise}$.
Schizo_PANSS}

Longitudinal PANSS data of five clinical trials in schizophrenia

Description

These are the longitudinal PANSS data of five clinical trials in schizophrenia. A total of 2151 patients were treated by 198 investigators (psychiatrists). There were two treatment conditions (risperidone and control). Patients’ schizophrenic symptoms were measured using the PANSS at different time moments following start of the treatment. The variables Week1-Week8 express the change scores over time using the raw (semi-continuous) PANSS scores. The variables Week1_bin - Week8_bin are binary indicators of a 20% or higher reduction in PANSS score versus baseline. The latter corresponds to a commonly accepted criterion for defining a clinically meaningful response (Kay et al., 1988).

Usage

data(Schizo_PANSS)

Format

A data.frame with 2151 observations on 6 variables.

- **Id** The patient ID.
- **InvestID** The ID of the investigator (psychiatrist) who treated the patient.
- **Treat** The treatment indicator, coded as -1 = placebo and 1 = Risperidone.
- **Week1** The change in the PANSS score 1 week after starting the treatment (= score at the end of the treatment - score at 1 week after starting the treatment).
- **Week2** The change in the PANSS score 2 weeks after starting the treatment.
- **Week4** The change in the PANSS score 4 weeks after starting the treatment.
- **Week6** The change in the PANSS score 6 weeks after starting the treatment.
- **Week8** The change in the PANSS score 8 weeks after starting the treatment.
- **Week1_bin** The dichotomized change in the PANSS score 1 week after starting the treatment (1=a 20% or higher reduction in PANSS score versus baseline, 0=otherwise).
- **Week2_bin** The dichotomized change in the PANSS score 2 weeks after starting the treatment.
- **Week4_bin** The dichotomized change in the PANSS score 4 weeks after starting the treatment.
- **Week6_bin** The dichotomized change in the PANSS score 6 weeks after starting the treatment.
- **Week8_bin** The dichotomized change in the PANSS score 8 weeks after starting the treatment.

References

Perform Sensitivity Analysis for the Individual Causal Association with a Continuous Surrogate and Binary True Endpoint

Usage

sensitivity_analysis_BinCont_copula(
  fitted_model,  
  n_sim,  
  eq_cond_association = TRUE,  
  lower = c(-1, -1, -1, -1),  
  upper = c(1, 1, 1, 1),  
  marg_association = TRUE,  
  n_prec = 10000,  
  ncores = 1
)

Arguments

fitted_model Returned value from fit_copula_model_BinCont(). This object contains the estimated identifiable part of the joint distribution for the potential outcomes.
n_sim Number of replications in the sensitivity analysis. This value should be large enough to sufficiently explore all possible values of the ICA. The minimally sufficient number depends to a large extent on which inequality assumptions are subsequently imposed (see Additional Assumptions).
eq_cond_association Boolean.
  • TRUE (default): Assume that the association in \((\tilde{S}_1, T_0)'|\tilde{S}_0\) and \((\tilde{S}_0, T_1)'|\tilde{S}_1\) are the same.
  • FALSE: There is not specific a priori relationship between the above two associations.
lower (numeric) Vector of length 4 that provides the lower limit, \(a = (a_{23}, a_{13;2}, a_{24;3}, a_{14;23})'\). Defaults to \((-1, -1, -1, -1)\). If the provided lower limit is smaller than what is allowed for a particular copula family, then the copula family’s lowest possible value is used instead.
upper (numeric) Vector of length 4 that provides the upper limit, \(b = (b_{23}, b_{13;2}, b_{24;3}, b_{14;23})'\). Defaults to \((1, 1, 1, 1)\).
marg_association Boolean.
• TRUE: Return marginal association measures in each replication in terms of Spearman’s rho. The proportion of harmed, protected, never diseased, and always diseased is also returned. See also Value.

• FALSE (default): No additional measures are returned.

n_prec
Number of Monte-Carlo samples for the numerical approximation of the ICA in each replication of the sensitivity analysis.

ncores
Number of cores used in the sensitivity analysis. The computations are computationally heavy, and this option can speed things up considerably.

Value
A data frame is returned. Each row represents one replication in the sensitivity analysis. The returned data frame always contains the following columns:

• R2H, sp_rho, minfo: ICA as quantified by $R^2_H$, Spearman’s rho, and Kendall’s tau, respectively.
• c12, c34: estimated copula parameters.
• c23, c13_2, c24_3, c14_23: sampled copula parameters of the unidentifiable copulas in the D-vine copula. The parameters correspond to the parameterization of the copula_family2 copula as in the copula R-package.
• r12, r34: Fixed rotation parameters for the two identifiable copulas.
• r23, r13_2, r24_3, r14_23: Sampled rotation parameters of the unidentifiable copulas in the D-vine copula. These values are constant for the Gaussian copula family since that copula is invariant to rotations.

The returned data frame also contains the following columns when marg_association is TRUE:

• sp_s0s1, sp_s0t0, sp_s0t1, sp_s1t0, sp_s1t1, sp_t0t1: Spearman’s rho between the corresponding potential outcomes. Note that these associations refer to the observable potential outcomes. In contrary, the estimated association parameters from fit_copula_model_BinCont() refer to associations on a latent scale.

Information-Theoretic Causal Inference Framework
The information-theoretic causal inference (ITCI) is a general framework to evaluate surrogate endpoints in the single-trial setting (Alonso et al., 2015). In this framework, we focus on the individual causal effects, $\Delta S = S_1 - S_0$ and $\Delta T = T_1 - T_0$ where $S_z$ and $T_z$ are the potential surrogate end true endpoint under treatment $Z = z$.

In the ITCI framework, we say that $S$ is a good surrogate for $T$ if $\Delta S$ conveys a substantial amount of information on $\Delta T$ (Alonso, 2018). This amount of shared information can generally be quantified by the mutual information between $\Delta S$ and $\Delta T$, denoted by $I(\Delta S; \Delta T)$. However, the mutual information lies in $[0, +\infty]$ which complicates the interpretation. In addition, the mutual information may not be defined in specific scenarios where absolute continuity of certain probability measures fails. Therefore, the mutual information is transformed, and possibly modified, to enable a simple interpretation in light of the definition of surrogacy. The resulting measure is termed the individual causal association (ICA). This is explained in the next sections.

While the definition of surrogacy in the ITCI framework rests on information theory, shared information is closely related to statistical association. Hence, we can also define the ICA in terms of
statistical association measures, like Spearman’s rho and Kendall’s tau. The advantage of the latter are that they are well-known, simple and rank-based measures of association.

Quantifying Surrogacy

Alonso et al. (na) proposed to the following measure for the ICA:

\[ R^2_H = \frac{I(\Delta S; \Delta T)}{H(\Delta T)} \]

where \( H(\Delta T) \) is the entropy of \( \Delta T \). By token of that transformation of the mutual information, \( R^2_H \) is restricted to the unit interval where 0 indicates independence, and 1 a functional relationship between \( \Delta S \) and \( \Delta T \).

The association between \( \Delta S \) and \( \Delta T \) can also be quantified by Spearman’s \( \rho \) (or Kendall’s \( \tau \)). This quantity requires appreciably less computing time than the mutual information. This quantity is therefore always returned for every replication of the sensitivity analysis.

Sensitivity Analysis

Monte Carlo Approach:

Because \( S_0 \) and \( S_1 \) are never simultaneously observed in the same patient, \( \Delta S \) is not observable, and analogously for \( \Delta T \). Consequently, the ICA is unidentifiable. This is solved by considering a (partly identifiable) model for the full vector of potential outcomes, \((T_0, S_0, S_1, T_1)'\).

The identifiable parameters are estimated. The unidentifiable parameters are sampled from their parameters space in each replication of a sensitivity analysis. If the number of replications (\( n_{sim} \)) is sufficiently large, the entire parameter space for the unidentifiable parameters will be explored/sampled. In each replication, all model parameters are "known" (either estimated or sampled). Consequently, the ICA can be computed in each replication of the sensitivity analysis.

The sensitivity analysis thus results in a set of values for the ICA. This set can be interpreted as all values for the ICA that are compatible with the observed data. However, the range of this set is often quite broad; this means there remains too much uncertainty to make judgements regarding the worth of the surrogate. To address this unwieldy uncertainty, additional assumptions can be used that restrict the parameter space of the unidentifiable parameters. This in turn reduces the uncertainty regarding the ICA.

Intervals of Ignorance and Uncertainty:

The results of the sensitivity analysis can be formalized (and summarized) in intervals of ignorance and uncertainty using \texttt{sensitivity_intervals_Dvine()}. 

Additional Assumptions

There are two possible types of assumptions that restrict the parameter space of the unidentifiable parameters: (i) equality type of assumptions, and (ii) inequality type of assumptions. These are discussed in turn in the next two paragraphs.

The equality assumptions have to be incorporated into the sensitivity analysis itself. Only one type of equality assumption has been implemented; this is the conditional independence assumption:

\[ \tilde{S}_0 \perp T_1 | \tilde{S}_1 \text{ and } \tilde{S}_1 \perp T_0 | \tilde{S}_0. \]
This can informally be interpreted as “what the control treatment does to the surrogate does not provide information on the true endpoint under experimental treatment if we already know what the experimental treatment does to the surrogate”, and analogously when control and experimental treatment are interchanged. Note that \(\tilde{S}_z\) refers to either the actual potential surrogate outcome, or a latent version. This depends on the content of fitted_model.

The inequality type of assumptions have to be imposed on the data frame that is returned by the current function; those assumptions are thus imposed after running the sensitivity analysis. If marginal_association is set to TRUE, the returned data frame contains additional unverifiable quantities that differ across replications of the sensitivity analysis: (i) the unconditional Spearman’s \(\rho\) for all pairs of (observable/non-latent) potential outcomes, and (ii) the proportions of the population strata as defined by Nevo and Gorfine (2022) if semi-competing risks are present. More details on the interpretation and use of these assumptions can be found in Stijven et al. (2024).

Examples

```r
Load Schizophrenia data set.
data("Schizo_BinCont")
Perform listwise deletion.
na = is.na(Schizo_BinCont$CGI_Bin) | is.na(Schizo_BinCont$PANSS)
X = Schizo_BinCont$PANSS[!na]
Y = Schizo_BinCont$CGI_Bin[!na]
Treat = Schizo_BinCont$Treat[!na]
Ensure that the treatment variable is binary.
Treat = ifelse(Treat == 1, 1, 0)
data = data.frame(X, Y, Treat)
Fit copula model.
fitted_model = fit_copula_model_BinCont(data, "clayton", "normal", twostep = FALSE)
Perform sensitivity analysis with a very low number of replications.
sens_results = sensitivity_analysis_BinCont_copula(
fitted_model,
10,
lower = c(-1,-1,-1,-1),
upper = c(1, 1, 1, 1),
n_prec = 1e3
)
```

Description

The `sensitivity_analysis_SurvSurv_copula()` function performs the sensitivity analysis for the individual causal association (ICA) as described by Stijven et al. (2024).
sensitivity_analysis_SurvSurv_copula

Usage

sensitivity_analysis_SurvSurv_copula(
  fitted_model,
  composite = TRUE,
  n_sim,
  eq_cond_association = TRUE,
  lower = c(-1, -1, -1, -1),
  upper = c(1, 1, 1, 1),
  degrees = c(0, 90, 180, 270),
  marg_association = TRUE,
  copula_family2 = fitted_model$copula_family[1],
  n_prec = 5000,
  ncores = 1,
  sample_plots = NULL,
  mutinfo_estimator = NULL,
  restr_time = +Inf
)

Arguments

fitted_model
  Returned value from fit_model_SurvSurv(). This object contains the estimated identifiable part of the joint distribution for the potential outcomes.

composite
  (boolean) If composite is TRUE, then the surrogate endpoint is a composite of both a “pure” surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.

n_sim
  Number of replications in the sensitivity analysis. This value should be large enough to sufficiently explore all possible values of the ICA. The minimally sufficient number depends to a large extent on which inequality assumptions are subsequently imposed (see Additional Assumptions).

eq_cond_association
  Boolean.
    • TRUE (default): Assume that the association in $(\tilde{S}_1, T_0)'|\tilde{S}_0$ and $(\tilde{S}_0, T_1)'|\tilde{S}_1$ are the same.
    • FALSE: There is not specific a priori relationship between the above two associations.

lower
  (numeric) Vector of length 4 that provides the lower limit, $a = (a_{23}, a_{13;2}, a_{24;3}, a_{14;23})'$. Defaults to $c(-1, -1, -1, -1)$. If the provided lower limit is smaller than what is allowed for a particular copula family, then the copula family’s lowest possible value is used instead.

upper
  (numeric) Vector of length 4 that provides the upper limit, $b = (b_{23}, b_{13;2}, b_{24;3}, b_{14;23})'$. Defaults to $c(1, 1, 1, 1)$.

degrees
  (numeric) vector with copula rotation degrees. Defaults to $c(0, 90, 180, 270)$. This argument is not used for the Gaussian and Frank copulas since they already allow for positive and negative associations.

marg_association
  Boolean.
• TRUE: Return marginal association measures in each replication in terms of Spearman’s rho. The proportion of harmed, protected, never diseased, and always diseased is also returned. See also Value.

• FALSE (default): No additional measures are returned.

copula_family2 Copula family of the other bivariate copulas. For the possible options, see \texttt{loglik\_copula\_scale()}. The elements of \texttt{copula\_family2} correspond to \((c_{23}, c_{13}; 2, c_{24}; 3, c_{14}; 23)\).

n_prec Number of Monte-Carlo samples for the \textit{numerical approximation} of the ICA in each replication of the sensitivity analysis.

ncores Number of cores used in the sensitivity analysis. The computations are computationally heavy, and this option can speed things up considerably.

sample_plots Indices for replicates in the sensitivity analysis for which the sampled individual treatment effects are plotted. Defaults to \texttt{NULL}: no plots are displayed.

mutinfo_estimator Function that estimates the mutual information between the first two arguments which are numeric vectors. Defaults to \texttt{FNN::mutinfo()} with default arguments. @param plot_deltas (logical) Plot the sampled individual treatment effects?

restr_time Restriction time for the potential outcomes. Defaults to \(+\infty\) which means no restriction. Otherwise, the sampled potential outcomes are replace by \(\text{pmin}(S_0, \text{restr}\_\text{time})\) (and similarly for the other potential outcomes).

\textbf{Value}

A data frame is returned. Each row represents one replication in the sensitivity analysis. The returned data frame always contains the following columns:

• ICA, sp\_rho: ICA as quantified by \(R^2_h(\Delta S^*, \Delta T^*)\) and \(\rho_s(\Delta S, \Delta T)\).

• \(c_{23}, c_{13}; 2, c_{24}; 3, c_{14}; 23\): sampled copula parameters of the unidentifiable copulas in the D-vine copula. The parameters correspond to the parameterization of the \texttt{copula\_family2} copula as in the \texttt{copula} R-package.

• \(r_{23}, r_{13}; 2, r_{24}; 3, r_{14}; 23\): sampled rotation parameters of the unidentifiable copulas in the D-vine copula. These values are constant for the Gaussian copula family since that copula is invariant to rotations.

The returned data frame also contains the following columns when \texttt{get\_marg\_tau} is \texttt{TRUE}:

• \(sp\_s0s1, sp\_s0t0, sp\_s0t1, sp\_s1t0, sp\_s1t1, sp\_t0t1\): Spearman’s \(\rho\) between the corresponding potential outcomes. Note that these associations refer to the potential time-to-composite events and/or time-to-true endpoint event. In contrary, the estimated association parameters from \texttt{fit\_model\_SurvSurv()} refer to associations between the time-to-surrogate event and time-to true endpoint event. Also note that \(sp\_s1t1\) is constant whereas \(sp\_s0t0\) is not. This is a particularity of the MC procedure to calculate both measures and thus not a bug.

• prop\_harmed, prop\_protected, prop\_always, prop\_never: proportions of the corresponding population strata in each replication. These are defined in Nevo and Gorfine (2022).
Information-Theoretic Causal Inference Framework

The information-theoretic causal inference (ITCI) is a general framework to evaluate surrogate endpoints in the single-trial setting (Alonso et al., 2015). In this framework, we focus on the individual causal effects, $\Delta S = S_1 - S_0$ and $\Delta T = T_1 - T_0$ where $S_z$ and $T_z$ are the potential surrogate end true endpoint under treatment $Z = z$.

In the ITCI framework, we say that $S$ is a good surrogate for $T$ if $\Delta S$ conveys a substantial amount of information on $\Delta T$ (Alonso, 2018). This amount of shared information can generally be quantified by the mutual information between $\Delta S$ and $\Delta T$, denoted by $I(\Delta S; \Delta T)$. However, the mutual information lies in $[0, +\infty]$ which complicates the interpretation. In addition, the mutual information may not be defined in specific scenarios where absolute continuity of certain probability measures fails. Therefore, the mutual information is transformed, and possibly modified, to enable a simple interpretation in light of the definition of surrogacy. The resulting measure is termed the individual causal association (ICA). This is explained in the next sections.

While the definition of surrogacy in the ITCI framework rests on information theory, shared information is closely related to statistical association. Hence, we can also define the ICA in terms of statistical association measures, like Spearman’s rho and Kendall’s tau. The advantage of the latter are that they are well-known, simple and rank-based measures of association.

Surrogacy in The Survival-Survival Setting

General Introduction:
Stijven et al. (2024) proposed to quantify the ICA through the squared informational coefficient of correlation (SICC or $R_H^2$), which is a transformation of the mutual information to the unit interval:

$$R_H^2 = 1 - e^{-2 \cdot I(\Delta S; \Delta T)}$$

where 0 indicates independence, and 1 a functional relationship between $\Delta S$ and $\Delta T$. The ICA (or a modified version, see next) is returned by `sensitivity_analysis_SurvSurv_copula()`. Concurrently, the Spearman’s correlation between $\Delta S$ and $\Delta T$ is also returned.

Issues with Composite Endpoints:
In the survival-survival setting where the surrogate is a composite endpoint, care should be taken when defining the mutual information. Indeed, when $S_z$ is progression-free survival and $T_z$ is overall survival, there is a probability atom in the joint distribution of $(S_z, T_z)$ because $P(S_z = T_z) > 0$. In other words, there are patient that die before progressing. While this probability atom is correctly taken into account in the models fitted by `fit_model_SurvSurv()`, this probability atom reappears when considering the distribution of $(\Delta S, \Delta T)'$ because $P(\Delta S = \Delta T) > 0$ if we are considering PFS and OS.

Because of the atom in the distribution of $(\Delta S, \Delta T)'$, the corresponding mutual information is not defined. To solve this, the mutual information is computed excluding the patients for which $\Delta S = \Delta T$ when composite = TRUE. The proportion of excluded patients is, among other things, returned when `marginal_association = TRUE`. This is the proportion of “never” patients following the classification of Nevo and Gorfine (2022). See also Additional Assumptions.

This modified version of the ICA quantifies the surrogacy of $S$ when “adjusted for the composite nature of $S$”. Indeed, we exclude patients where $\Delta S$ perfectly predicts $\Delta T$ just because $S$ is a composite of $T$ (and other variables).

Other (rank-based) statistical measures of association, however, remain well-defined and are thus computed without excluding any patients.
Sensitivity Analysis

Monte Carlo Approach:
Because $S_0$ and $S_1$ are never simultaneously observed in the same patient, $\Delta S$ is not observable, and analogously for $\Delta T$. Consequently, the ICA is unidentifiable. This is solved by considering a (partly identifiable) model for the full vector of potential outcomes, $(T_0, S_0, S_1, T_1)'$. The identifiable parameters are estimated. The unidentifiable parameters are sampled from their parameters space in each replication of a sensitivity analysis. If the number of replications ($n_{\text{sim}}$) is sufficiently large, the entire parameter space for the unidentifiable parameters will be explored/sampled. In each replication, all model parameters are "known" (either estimated or sampled). Consequently, the ICA can be computed in each replication of the sensitivity analysis.

The sensitivity analysis thus results in a set of values for the ICA. This set can be interpreted as all values for the ICA that are compatible with the observed data. However, the range of this set is often quite broad; this means there remains too much uncertainty to make judgements regarding the worth of the surrogate. To address this unwieldy uncertainty, additional assumptions can be used that restrict the parameter space of the unidentifiable parameters. This in turn reduces the uncertainty regarding the ICA.

Intervals of Ignorance and Uncertainty:
The results of the sensitivity analysis can be formalized (and summarized) in intervals of ignorance and uncertainty using sensitivity_intervals_Dvine().

Additional Assumptions
There are two possible types of assumptions that restrict the parameter space of the unidentifiable parameters: (i) equality type of assumptions, and (ii) inequality type of assumptions. These are discussed in turn in the next two paragraphs.

The equality assumptions have to be incorporated into the sensitivity analysis itself. Only one type of equality assumption has been implemented; this is the conditional independence assumption:

$$\tilde{S}_0 \perp T_1|\tilde{S}_1 \text{ and } \tilde{S}_1 \perp T_0|\tilde{S}_0.$$ 

This can informally be interpreted as “what the control treatment does to the surrogate does not provide information on the true endpoint under experimental treatment if we already know what the experimental treatment does to the surrogate”, and analogously when control and experimental treatment are interchanged. Note that $\tilde{S}_z$ refers to either the actual potential surrogate outcome, or a latent version. This depends on the content of fitted_model.

The inequality type of assumptions have to be imposed on the data frame that is returned by the current function; those assumptions are thus imposed after running the sensitivity analysis. If marginal_association is set to TRUE, the returned data frame contains additional unverifiable quantities that differ across replications of the sensitivity analysis: (i) the unconditional Spearman’s $\rho$ for all pairs of (observable/non-latent) potential outcomes, and (ii) the proportions of the population strata as defined by Nevo and Gorfin (2022) if semi-competing risks are present. More details on the interpretation and use of these assumptions can be found in Stijven et al. (2024).

References

Examples

# Load Ovarian data
data("Ovarian")
# Recode the Ovarian data in the semi-competing risks format.
data_scr = data.frame(
  ttp = Ovarian$Pfs,
  os = Ovarian$Surv,
  treat = Ovarian$Treat,
  ttp_ind = ifelse(
    Ovarian$Pfs == Ovarian$Surv &
    Ovarian$SurvInd == 1,
    0,
    Ovarian$PfsInd
  ),
  os_ind = Ovarian$SurvInd
)
# Fit copula model.
fitted_model = fit_model_SurvSurv(data = data_scr,
  copula_family = "clayton",
  n_knots = 1)
# Illustration with small number of replications and low precision
sens_results = sensitivity_analysis_SurvSurv_copula(fitted_model,
  n_sim = 5,
  n_prec = 2000,
  copula_family2 = "clayton",
  eq_cond_association = TRUE)
# Compute intervals of ignorance and uncertainty. Again, the number of
# bootstrap replications should be larger in practice.
sensitivity_intervals_Dvine(fitted_model, sens_results, B = 10)
Description

`sensitivity_intervals_Dvine()` computes the estimated intervals of ignorance and uncertainty within the information-theoretic causal inference framework when the data are modeled with a D-vine copula model.

Usage

```r
sensitivity_intervals_Dvine(
 fitted_model,
 sens_results,
 measure = "ICA",
 B = 200,
 alpha = 0.05,
 n_prec = 5000,
 mutinfo_estimator = NULL,
 restr_time = +Inf,
 ncores = 1
)
```

Arguments

- **fitted_model**: Returned value from `fit_model_SurvSurv()`. This object contains the estimated identifiable part of the joint distribution for the potential outcomes.
- **sens_results**: Dataframe returned by `sensitivity_analysis_SurvSurv_copula()`. If additional assumptions need to be incorporated, this dataframe can first be filtered.
- **measure**: Compute intervals for which measure of surrogacy? Defaults to "ICA". See first column names of `sens_results` for other possibilities.
- **B**: Number of bootstrap replications
- **alpha**: (numeric) `1 - alpha` is the level of the confidence interval
- **n_prec**: Number of Monte-Carlo samples for the numerical approximation of the ICA in each replication of the sensitivity analysis.
- **mutinfo_estimator**: Function that estimates the mutual information between the first two arguments which are numeric vectors. Defaults to `FNN::mutinfo()` with default arguments. @param plot_deltas (logical) Plot the sampled individual treatment effects?
- **restr_time**: Restriction time for the potential outcomes. Defaults to `+Inf` which means no restriction. Otherwise, the sampled potential outcomes are replace by `pmin(S0, restr_time)` (and similarly for the other potential outcomes).
- **ncores**: Number of cores used in the sensitivity analysis. The computations are computationally heavy, and this option can speed things up considerably.

Value

An S3 object of the class `sensitivity_intervals_Dvine` which can be printed.
Intervals of Ignorance and Uncertainty

Vansteelandt et al. (2006) formalized sensitivity analysis for partly identifiable parameters in the context of missing data and MNAR. These concepts can be applied to the estimation of the ICA. Indeed, the ICA is also partly identifiable because 50% if the potential outcomes are missing.

Vansteelandt et al. (2006) replace a point estimate with a interval estimate: the estimated interval of ignorance. In addition, they proposed several extension of the classic confidence interval together with appropriate definitions of coverage; these are termed intervals of uncertainty.

`sensitivity_intervals_Dvine()` implements the estimated interval of ignorance and the point-wise and strong intervals of uncertainty. Let $\nu_l$ and $\nu_u$ be the values for the sensitivity parameter that lead to the lowest and largest ICA, respectively, while fixing the identifiable parameter at its estimated value $\hat{\beta}$. See also `summary_level_bootstrap_ICA()`.

The following intervals are implemented:

1. **Estimated interval of ignorance.** This interval is defined as $[ICA(\hat{\beta}, \nu_l), ICA(\hat{\beta}, \nu_u)]$.
2. **Pointwise interval of uncertainty.** Let $C_l$ (and $C_u$) be the lower (and upper) limit of a one-sided $1 - \alpha$ CI for $ICA(\beta_0, \nu_l)$ (and $ICA(\beta_0, \nu_l)$). This interval is then defined as $[C_l, C_u]$ when the ignorance is much larger than the statistical imprecision.
3. **Strong interval of uncertainty.** Let $C_l$ (and $C_u$) be the lower (and upper) limit of a two-sided $1 - \alpha$ CI for $ICA(\beta_0, \nu_l)$ (and $ICA(\beta_0, \nu_l)$). This interval is then defined as $[C_l, C_u]$.

The CIs, which are need for the intervals of uncertainty, are based on percentile bootstrap confidence intervals, as documented in `summary_level_bootstrap_ICA()`.

The sensitivities, which are need for the intervals of uncertainty, are based on percentile bootstrap confidence intervals, as documented in `summary_level_bootstrap_ICA()`.

References


Examples

```r
Load Ovarian data
data("Ovarian")
Recode the Ovarian data in the semi-competing risks format.
data_scr = data.frame(
 ttp = Ovarian$Pfs,
 os = Ovarian$Surv,
 treat = Ovarian$Treat,
 ttp_ind = ifelse(
 Ovarian$Pfs == Ovarian$Surv &
 Ovarian$SurvInd == 1,
 0,
 Ovarian$PfsInd
),
 os_ind = Ovarian$SurvInd
)```
Sim.Data.Counterfactuals

Simulate a dataset that contains counterfactuals

Description

The function Sim.Data.Counterfactuals simulates a dataset that contains four (continuous) counterfactuals (i.e., potential outcomes) and a (binary) treatment indicator. The counterfactuals T_0 and T_1 denote the true endpoints of a patient under the control and the experimental treatments, respectively, and the counterfactuals S_0 and S_1 denote the surrogate endpoints of the patient under the control and the experimental treatments, respectively. The user can specify the number of patients, the desired mean values for the counterfactuals (i.e., μ_c), and the desired correlations between the counterfactuals (i.e., the off-diagonal values in the standardized Σ_c matrix). For details, see the papers of Alonso et al. (submitted) and Van der Elst et al. (submitted).

Usage

Sim.Data.Counterfactuals(N.Total=2000,
mu_c=c(0, 0, 0, 0), T0S0=0, T1S1=0, T0T1=0, T0S1=0,
T1S0=0, S0S1=0, Seed=sample(1:1000, size=1))

Arguments

N.Total The total number of patients in the simulated dataset. Default 2000.
mu_c A vector that specifies the desired means for the counterfactuals S_0, S_1, T_0, and T_1, respectively. Default c(0, 0, 0, 0).
T0S0 A scalar that specifies the desired correlation between the counterfactuals T_0 and S_0 that should be used in the generation of the data. Default 0.
T1S1 A scalar that specifies the desired correlation between the counterfactuals T_1 and S_1 that should be used in the generation of the data. Default 0.
Sim.Data.Counterfactuals

T0T1 A scalar that specifies the desired correlation between the counterfactuals T0 and T1 that should be used in the generation of the data. Default 0.

T0S1 A scalar that specifies the desired correlation between the counterfactuals T0 and S1 that should be used in the generation of the data. Default 0.

T1S0 A scalar that specifies the desired correlation between the counterfactuals T1 and S0 that should be used in the generation of the data. Default 0.

S0S1 A scalar that specifies the desired correlation between the counterfactuals T0 and T1 that should be used in the generation of the data. Default 0.

Seed A seed that is used to generate the dataset. Default sample(x=1:1000, size=1), i.e., a random number between 1 and 1000.

Details

The generated object Data.Counterfactuals (of class data.frame) is placed in the workspace.

The specified values for T0S0, T1S1, T0T1, T0S1, T1S0, and S0S1 in the function call should form a matrix that is positive definite (i.e., they should form a valid correlation matrix). When the user specifies values that form a matrix that is not positive definite, an error message is given and the object Data.Counterfactuals is not generated. The function Pos.Def.Matrices can be used to examine beforehand whether a 4 by 4 matrix is positive definite.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

Sim.Data.MTS, Sim.Data.STS

Examples

```r
## Generate a dataset with 2000 patients, cor(S0,T0)=cor(S1,T1)=.5,
## cor(T0,T1)=cor(T0,S1)=cor(T1,S0)=cor(S0,S1)=0, with means
## 5, 9, 12, and 15 for S0, S1, T0, and T1, respectively:
Sim.Data.Counterfactuals(N=2000, T0S0=.5, T1S1=.5, T0T1=0, T0S1=0, T1S0=0, S0S1=0,
mu_c=c(5, 9, 12, 15), Seed=1)
```
Simulate a dataset that contains counterfactuals for binary endpoints

Description

The function `Sim.Data.CounterfactualsBinBin` simulates a dataset that contains four (binary) counterfactuals (i.e., potential outcomes) and a (binary) treatment indicator. The counterfactuals T_0 and T_1 denote the true endpoints of a patient under the control and the experimental treatments, respectively, and the counterfactuals S_0 and S_1 denote the surrogate endpoints of the patient under the control and the experimental treatments, respectively. The user can specify the number of patients and the desired probabilities of the vector of potential outcomes (i.e., $Y'_e=(T_0, T_1, S_0, S_1)$).

Usage

```r
Sim.Data.CounterfactualsBinBin(Pi_s=rep(1/16, 16),
N.Total=2000, Seed=sample(1:1000, size=1))
```

Arguments

- `Pi_s` The vector of probabilities of the potential outcomes, i.e., $p_{0000}, p_{0100}, p_{0010}, p_{0001}, p_{0101}, p_{1000}, p_{1010}, p_{1100}, p_{1110}, p_{1011}, p_{1111}, p_{0011}, p_{0111}, p_{1101}, p_{1110}$. Default `rep(1/16, 16)`.
- `N.Total` The desired number of patients in the simulated dataset. Default `2000`.
- `Seed` A seed that is used to generate the dataset. Default `sample(x=1:1000, size=1)`, i.e., a random number between 1 and 1000.

Details

The generated object `Data.STSBinBin.Counter` (which contains the counterfactuals) and `Data.STSBinBin.Obs` (the "observable data") (of class `data.frame`) is placed in the workspace.

Value

An object of class `Sim.Data.CounterfactualsBinBin` with components,

- `Data.STSBinBin.Obs` The generated dataset that contains the "observed" surrogate endpoint, true endpoint, and assigned treatment.
- `Data.STSBinBin.Counter` The generated dataset that contains the counterfactuals.
- `Vector_Pi` The vector of probabilities of the potential outcomes, i.e., $p_{0000}, p_{0100}, p_{0010}, p_{0001}, p_{0101}, p_{1000}, p_{1010}, p_{1100}, p_{1110}, p_{1011}, p_{1111}, p_{0011}, p_{0111}, p_{1101}, p_{1110}$.
- `Pi_Marginals` The vector of marginal probabilities $\pi_{1,1}, \pi_{0,1}, \pi_{1,0}, \pi_{0,0}, \pi_{1,1}, \pi_{1,0}, \pi_{0,1}, \pi_{0,0}$.
Sim.Data.MTS

True.R2_H The true R^2_H value.
True.Theta_T The true odds ratio for T.
True.Theta_S The true odds ratio for S.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

Examples

```r
## Generate a dataset with 2000 patients, and values 1/16
## for all probabilities between the counterfactuals:
Sim.Data.CounterfactualsBinBin(N.Total=2000)
```

Sim.Data.MTS Simulates a dataset that can be used to assess surrogacy in the multiple-trial setting

Description

The function Sim.Data.MTS simulates a dataset that contains the variables Treat, Trial.ID, Surr, True, and Pat.ID. The user can specify the number of patients and the number of trials that should be included in the simulated dataset, the desired R_{trial} and R_{indiv} values, the desired variability of the trial-specific treatment effects for the surrogate and the true endpoints (i.e., d_{aa} and d_{bb}, respectively), and the desired fixed-effect parameters of the intercepts and treatment effects for the surrogate and the true endpoints.

Usage

```r
Sim.Data.MTS(N.Total=2000, N.Trial=50, R.Trial.Target=.8, R.Indiv.Target=.8, Fixed.Effects=c(0, 0, 0, 0), D.aa=10, D.bb=10, Seed=sample(1:1000, size=1), Model=c("Full"))
```

Arguments

- **N.Total**: The total number of patients in the simulated dataset. Default 2000.
- **N.Trial**: The number of trials. Default 50.
- **R.Trial.Target**: The desired R_{trial} value in the simulated dataset. Default 0.80.
- **R.Indiv.Target**: The desired R_{indiv} value in the simulated dataset. Default 0.80.
- **Fixed.Effects**: A vector that specifies the desired fixed-effect intercept for the surrogate, fixed-effect intercept for the true endpoint, fixed treatment effect for the surrogate, and fixed treatment effect for the true endpoint, respectively. Default c(0, 0, 0, 0).
- **D.aa**: The desired variability of the trial-specific treatment effects on the surrogate endpoint. Default 10.
- **D.bb**: The desired variability of the trial-specific treatment effects on the true endpoint. Default 10.
Model The type of model that will be fitted on the data when surrogacy is assessed, i.e., a full, semireduced, or reduced model (for details, see `UnifixedContCont`, `UnimixedContCont`, `BifixedContCont`, `BimixedContCont`).

Seed The seed that is used to generate the dataset. Default `sample(x=1:1000, size=1)`, i.e., a random number between 1 and 1000.

Details The generated object `Data.Observed.MTS` (of class `data.frame`) is placed in the workspace (for easy access).

The number of patients per trial in the simulated dataset is identical in each trial, and equals the requested total number of patients divided by the requested number of trials (= `N.Total/N.Trial`). If this is not a whole number, a warning is given and the number of patients per trial is automatically rounded up to the nearest whole number. See Examples below.

Treatment allocation is balanced when the number of patients per trial is an odd number. If this is not the case, treatment allocation is balanced up to one patient (the remaining patient is randomly allocated to the experimental or the control treatment groups in each of the trials).

Author(s) Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also `UnifixedContCont`, `BifixedContCont`, `UnimixedContCont`, `BimixedContCont`, `Sim.Data.STS`

Examples

```r
# Simulate a dataset with 2000 patients, 50 trials, R.indiv=R.trial=.8, D.aa=10, # D.bb=50, and fixed effect values 1, 2, 30, and 90:
Sim.Data.MTS(N.Total=2000, N.Trial=50, R.Trial.Target=.8, R.Indiv.Target=.8, D.aa=10, D.bb=50, Fixed.Effects=c(1, 2, 30, 90), Seed=1)

# Sample output, the first 10 rows of Data.Observed.MTS:
Data.Observed.MTS[1:10,]

# Note: When the following code is used to generate a dataset:
Sim.Data.MTS(N.Total=2000, N.Trial=99, R.Trial.Target=.5, R.Indiv.Target=.8, D.aa=10, D.bb=50, Fixed.Effects=c(1, 2, 30, 90), Seed=1)

# R gives the following warning:

# > NOTE: The number of patients per trial requested in the function call # > equals 20.20202 (=N.Total/N.Trial), which is not a whole number. # > To obtain a dataset where the number of patients per trial is balanced for # > all trials, the number of patients per trial was rounded to 21 to generate # > the dataset. Data.Observed.MTS thus contains a total of 2079 patients rather # > than the requested 2000 in the function call.
```
Sim.Data.STS

Simulates a dataset that can be used to assess surrogacy in the single-trial setting

Description

The function Sim.Data.STS simulates a dataset that contains the variables Treat, Surr, True, and Pat.ID. The user can specify the total number of patients, the desired R_{indiv} value (also referred to as the adjusted association (γ) in the single-trial meta-analytic setting), and the desired means of the surrogate and the true endpoints in the experimental and control treatment groups.

Usage

Sim.Data.STS(N.Total=2000, R.Indiv.Target=.8, Means=c(0, 0, 0, 0), Seed=sample(1:1000, size=1))

Arguments

- **N.Total**: The total number of patients in the simulated dataset. Default 2000.
- **R.Indiv.Target**: The desired R_{indiv} (or γ) value in the simulated dataset. Default 0.80.
- **Means**: A vector that specifies the desired mean for the surrogate in the control treatment group, mean for the surrogate in the experimental treatment group, mean for the true endpoint in the control treatment group, and mean for the true endpoint in the experimental treatment group, respectively. Default c(0, 0, 0, 0).
- **Seed**: The seed that is used to generate the dataset. Default sample(x=1:1000, size=1), i.e., a random number between 1 and 1000.

Details

The generated object Data.Observed.STS (of class data.frame) is placed in the workspace (for easy access).

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

See Also

Sim.Data.MTS, Single.Trial.RE.AA

Examples

Simulate a dataset:
Sim.Data.STS(N.Total=2000, R.Indiv.Target=.8, Means=c(1, 5, 20, 37), Seed=1)
Sim.Data.STSBinBin

Simulates a dataset that can be used to assess surrogacy in the single trial setting when S and T are binary endpoints

Description

The function Sim.Data.STSBinBin simulates a dataset that contains four (binary) counterfactuals (i.e., potential outcomes) and a (binary) treatment indicator. The counterfactuals T_0 and T_1 denote the true endpoints of a patient under the control and the experimental treatments, respectively, and the counterfactuals S_0 and S_1 denote the surrogate endpoints of the patient under the control and the experimental treatments, respectively. In addition, the function provides the "observable" data based on the dataset of the counterfactuals, i.e., the S and T endpoints given the treatment that was allocated to a patient. The user can specify the assumption regarding monotonicity that should be made to generate the data (no monotonicity, monotonicity for S alone, monotonicity for T alone, or monotonicity for both S and T).

Usage

Sim.Data.STSBinBin(Monotonicity=c("No"), N.Total=2000, Seed)

Arguments

- Monotonicity: The assumption regarding monotonicity that should be made when the data are generated, i.e., Monotonicity="No" (no monotonicity assumed), Monotonicity="True.Endp" (monotonicity assumed for the true endpoint alone), Monotonicity="Surr.Endp" (monotonicity assumed for the surrogate endpoint alone), and Monotonicity="Surr.True.Endp" (monotonicity assumed for both endpoints). Default Monotonicity="No".
- N.Total: The desired number of patients in the simulated dataset. Default 2000.
- Seed: A seed that is used to generate the dataset. Default sample(x=1:1000, size=1), i.e., a random number between 1 and 1000.

Details

The generated objects Data.STSBinBin.Counterfactuals (which contains the counterfactuals) and Data.STSBinBin.Obs (which contains the observable data) of class data.frame are placed in the workspace. Other relevant output can be accessed based on the fitted object (see Value below).

Value

An object of class Sim.Data.STSBinBin with components,

- Data.STSBinBin.Obs: The generated dataset that contains the "observed" surrogate endpoint, true endpoint, and assigned treatment.
- Data.STSBinBin.Counter: The generated dataset that contains the counterfactuals.
Vector_Pi The vector of probabilities of the potential outcomes, i.e., $p_{i000}, p_{i010}, p_{i001}, p_{i011}, p_{i100}, p_{i101}, p_{i110}, p_{i111}, p_{i011}, p_{i010}, p_{i101}, p_{i110}, p_{i111}, p_{i011}, p_{i100}$.

Pi_Marginals The vector of marginal probabilities $\pi_{1:1}, \pi_{0:1}, \pi_{1:0}, \pi_{0:0}, \pi_{1:1}, \pi_{1:0}, \pi_{0:1}, \pi_{0:0}$.

True.R2_H The true R^2_H value.

True.Theta_T The true odds ratio for T.

True.Theta_S The true odds ratio for S.

Author(s) Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

Examples
```r  
## Generate a dataset with 2000 patients,  
## assuming no monotonicity:  
Sim.Data.STSBinBin(Monotonicity=c("No"), N.Total=200)  
```

Single.Trial.RE.AA Conducts a surrogacy analysis based on the single-trial meta-analytic framework

Description

Usage

```
Single.Trial.RE.AA(Dataset, Surr, True, Treat, Pat.ID, Alpha=.05,  
Number.Bootstraps=500, Seed=sample(1:1000, size=1))  
```

Arguments

Dataset A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, and a patient ID.

Surr The name of the variable in Dataset that contains the surrogate values.

True The name of the variable in Dataset that contains the true endpoint values.

Treat The name of the variable in Dataset that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and -1 for the control group, or as 1 for the experimental group and 0 for the control group. The $-1/1$ coding is recommended.

Pat.ID The name of the variable in Dataset that contains the patient’s ID.
Alpha

The \(\alpha \)-level that is used to determine the confidence intervals around Alpha (which is a parameter estimate of a model where the surrogate is regressed on the treatment indicator, see **Details** below), Beta, RE, and \(\gamma \). Default 0.05.

Number.Bootstraps

The number of bootstrap samples that are used to obtain the bootstrap-based confidence intervals for RE and the adjusted association (\(\gamma \)). Default 500.

Seed

The seed that is used to generate the bootstrap samples. Default \texttt{sample(x=1:1000, size=1)}, i.e., a random number between 1 and 1000.

Details

The Relative Effect (RE) and the adjusted association (\(\gamma \)) are based on the following bivariate regression model (when the surrogate and the true endpoints are continuous variables):

\[
S_j = \mu_S + \alpha Z_j + \varepsilon_S, \\
T_j = \mu_T + \beta Z_j + \varepsilon_T,
\]

where the error terms have a joint zero-mean normal distribution with variance-covariance matrix:

\[
\Sigma = \begin{pmatrix}
\sigma_{SS} & \sigma_{ST} \\
\sigma_{ST} & \sigma_{TT}
\end{pmatrix},
\]

and where \(j \) is the subject indicator, \(S_j \) and \(T_j \) are the surrogate and true endpoint values of patient \(j \), and \(Z_j \) is the treatment indicator for patient \(j \).

The parameter estimates of the fitted regression model and the variance-covariance matrix of the residuals are used to compute RE and the adjusted association (\(\gamma \)), respectively:

\[
RE = \frac{\beta}{\alpha}, \\
\gamma = \frac{\sigma_{ST}}{\sqrt{\sigma_{SS}\sigma_{TT}}},
\]

Note

The single-trial meta-analytic framework is hampered by a number of issues (Burzykowski et al., 2005). For example, a key motivation to validate a surrogate endpoint is to be able to predict the effect of \(Z \) on \(T \) as based on the effect of \(Z \) on \(S \) in a new clinical trial where \(T \) is not (yet) observed. The RE allows for such a prediction, but this requires the assumption that the relation between \(\alpha \) and \(\beta \) can be described by a linear regression model that goes through the origin. In other words, it has to be assumed that the RE remains constant across clinical trials. The constant RE assumption is unverifiable in a single-trial setting, but a way out of this problem is to combine the information of multiple clinical trials and generalize the RE concept to a multiple-trial setting (as is done in the multiple-trial meta-analytic approach, see UnifixedContCont, BifixedContCont, UnimixedContCont, and BimixedContCont).
Value

An object of class `Single.Trial.RE.AA` with components,

- **Data.Analyze**
 Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. `Data.Analyze` is the dataset on which the surrogacy analysis was conducted.

- **Alpha**
 An object of class `data.frame` that contains the parameter estimate for α, its standard error, and its confidence interval. Note that Alpha is not to be confused with the Alpha argument in the function call, which specifies the α-level of the confidence intervals of the parameters.

- **Beta**
 An object of class `data.frame` that contains the parameter estimate for β, its standard error, and its confidence interval.

- **RE.Delta**
 An object of class `data.frame` that contains the estimated RE, its standard error, and its confidence interval (based on the Delta method).

- **RE.Fieller**
 An object of class `data.frame` that contains the estimated RE, its standard error, and its confidence interval (based on Fieller’s theorem).

- **RE.Boot**
 An object of class `data.frame` that contains the estimated RE, its standard error, and its confidence interval (based on bootstrapping). Note that the occurrence of outliers in the sample of bootstrapped RE values may lead to standard errors and/or confidence intervals that are not trustworthy. Such problems mainly occur when the parameter estimate for α is close to 0 (taking its standard error into account). To detect possible outliers, studentized deleted residuals are computed (by fitting an intercept-only model with the bootstrapped RE values as the outcome variable). Bootstrapped RE values with an absolute studentized residual larger than $t(1 - \alpha/2n; n - 2)$ are marked as outliers (where n is the number of bootstrapped RE values; Kutner et al., 2005). A warning is given when outliers are found, and the position of the outlier(s) in the bootstrap sample is identified. Inspection of the vector of bootstrapped RE values (see `RE.Boot.Samples` below) is recommended in this situation, and/or the use of the confidence intervals that are based on the Delta method or Fieller’s theorem (rather than the bootstrap-based confidence interval).

- **AA**
 An object of class `data.frame` that contains the adjusted association (i.e., γ), its standard error, and its confidence interval (based on the Fisher-Z transformation procedure).

- **AA.Boot**
 An object of class `data.frame` that contains the adjusted association (i.e., γ), its standard error, and its confidence interval (based on a bootstrap procedure).

- **RE.Boot.Samples**
 A vector that contains the RE values that were generated during the bootstrap procedure.

- **AA.Boot.Samples**
 A vector that contains the adjusted association (i.e., γ) values that were generated during the bootstrap procedure.

- **Cor.Endpoints**
 A `data.frame` that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., $\rho_{T_{0}T}$) and in the experimental treatment group (i.e., $\rho_{T_{1}S}$), their standard errors and their confidence intervals.
Residuals A data frame that contains the residuals for the surrogate and true endpoints that are obtained when the surrogate and the true endpoint are regressed on the treatment indicator.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

UnifixedContCont, BifixedContCont, UnimixedContCont, BimixedContCont, ICA.ContCont

Examples

```r
# Example 1, based on the ARMD data:
data(ARMD)

# Assess surrogacy based on the single-trial meta-analytic approach:
Sur <- Single.Trial.RE.AA(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Pat.ID=Id)

# Obtain a summary and plot of the results
summary(Sur)
plot(Sur)

# Example 2
# Conduct an analysis based on a simulated dataset with 2000 patients
# and RIndiv=.8
# Simulate the data:
Sim.Data.STS(N.Total=2000, R.Indiv.Target=.8, Seed=123)

# Assess surrogacy:
Sur2 <- Single.Trial.RE.AA(Dataset=Data.Observed.STS, Surr=Surr, True=True, Treat=Treat, Pat.ID=Pat.ID)

# Show a summary and plots of results
summary(Sur2)
plot(Sur2)
```
Endpoints: Evaluate the surrogate predictive function (SPF) in the binary-binary setting (sensitivity-analysis based approach)

Description

Computes the surrogate predictive function (SPF) based on sensitivity-analysis, i.e., \(r(i, j) = P(\Delta T = i | \Delta S = j) \), in the setting where both \(S \) and \(T \) are binary endpoints. For example, \(r(-1, 1) \) quantifies the probability that the treatment has a negative effect on the true endpoint (\(\Delta T = -1 \)) given that it has a positive effect on the surrogate (\(\Delta S = 1 \)). All quantities of interest are derived from the vectors of 'plausible values' for \(\pi \) (i.e., vectors \(\pi \) that are compatible with the observable data at hand). See Details below.

Usage

```r
SPF.BinBin(x)
```

Arguments

- `x` A fitted object of class ICA.BinBin, ICA.BinBin.Grid.Full, or ICA.BinBin.Grid.Sample.

Details

All \(r(i, j) = P(\Delta T = i | \Delta S = j) \) are derived from \(\pi \) (vector of potential outcomes). Denote by \(Y' = (T_0, T_1, S_0, S_1) \) the vector of potential outcomes. The vector \(Y \) can take 16 values and the set of parameters \(\pi_{ijpq} = P(T_0 = i, T_1 = j, S_0 = p, S_1 = q) \) (with \(i, j, p, q = 0/1 \)) fully characterizes its distribution.

Based on the data and assuming SUTVA, the marginal probabilities \(\pi_{1.1}, \pi_{1.0}, \pi_{1.1}, \pi_{1.0}, \pi_{0.1}, \pi_{0.0} \) and \(\pi_{0.1} \) can be computed (by hand or using the function MarginalProbs). Define the vector

\[
b' = (1, \pi_{1.1}, \pi_{1.0}, \pi_{1.1}, \pi_{1.0}, \pi_{0.1}, \pi_{0.1}, \pi_{0.1}, \pi_{0.1})
\]

and \(A \) is a contrast matrix such that the identified restrictions can be written as a system of linear equation

\[
A\pi = b.
\]

The matrix \(A \) has rank 7 and can be partitioned as \(A = (A_r|A_f) \), and similarly the vector \(\pi \) can be partitioned as \(\pi' = (\pi'_r|\pi'_f) \) (where \(f \) refers to the submatrix/vector given by the 9 last columns/components of \(A/\pi \)). Using these partitions the previous system of linear equations can be rewritten as

\[
A_r\pi_r + A_f\pi_f = b.
\]

The functions ICA.BinBin, ICA.BinBin.Grid.Sample, and ICA.BinBin.Grid.Full contain algorithms that generate plausible distributions for \(Y \) (for details, see the documentation of these functions). Based on the output of these functions, SPF.BinBin computes the surrogate predictive function.
Value

- \(r_{-1,1} \): The vector of values for \(r(1,1) \), i.e., \(P(\Delta T = 1 | \Delta S = 1) \).
- \(r_{-1,-1} \): The vector of values for \(r(-1,1) \).
- \(r_{0,1} \): The vector of values for \(r(0,1) \).
- \(r_{1,0} \): The vector of values for \(r(1,0) \).
- \(r_{-1,0} \): The vector of values for \(r(-1,0) \).
- \(r_{0,0} \): The vector of values for \(r(0,0) \).
- \(r_{1,-1} \): The vector of values for \(r(1,-1) \).
- \(r_{-1,-1} \): The vector of values for \(r(-1,-1) \).
- \(r_{0,-1} \): The vector of values for \(r(0,-1) \).

Monotonicity: The assumption regarding monotonicity under which the result was obtained.

Author(s)

Wim Van der Elst, Paul Meyvisch, Ariel Alonso, & Geert Molenberghs

References

See Also

ICA.BinBin, ICA.BinBin.Grid.Sample, ICA.BinBin.Grid.Full, plot.SPF.BinBin

Examples

```r
# Use ICA.BinBin.Grid.Sample to obtain plausible values for pi
ICA_BINBIN_Grid_Sample <- ICA.BinBin.Grid.Sample(pi1_1_=0.341, pi0_1_=0.119, 
pi1_0_=0.254, pi_1_1=0.686, pi_1_0=0.088, pi_0_1=0.078, Seed=1, 
Monotonicity=c("General"), M=2500)

# Obtain SPF
SPF <- SPF.BinBin(ICA_BINBIN_Grid_Sample)

# examine results
summary(SPF)
plot(SPF)
```
SPF.BinCont

Description

Evaluates the surrogate predictive function (SPF) in the binary-continuous setting (sensitivity-analysis based approach).

Usage

```r
SPF.BinCont(x, a, b)
```

Arguments

- `x`: A fitted object of class `ICA.BinCont`.
- `a`: The lower interval in \(P(\Delta T | \Delta S \in I[ab]) \).
- `b`: The upper interval in \(P(\Delta T | \Delta S \in I[ab]) \).

Value

- `a`: The lower interval in \(P(\Delta T | \Delta S \in I[ab]) \).
- `b`: The upper interval in \(P(\Delta T | \Delta S \in I[ab]) \).
- `P_Delta_T_min1`: The vector of values for \(P(\Delta T = -1 | \Delta S \in I[ab]) \).
- `P_Delta_T_0`: The vector of values for \(P(\Delta T = 0 | \Delta S \in I[ab]) \).
- `P_Delta_T_1`: The vector of values for \(P(\Delta T = 1 | \Delta S \in I[ab]) \).

Author(s)

Wim Van der Elst & Ariel Alonso

References

See Also

`ICA.BinBin`, `plot.SPF.BinCont`
Examples

```
## Not run:  # time consuming code part
# Use ICA.BinCont to examine surrogacy
data(Schizo_BinCont)
Result_BinCont <- ICA.BinCont(M = 1000, Dataset = Schizo_BinCont,
Surr = PANSS, True = CGI_Bin, Treat=Treat, Diff.Sigma=TRUE)

# Obtain SPF
Fit <- SPF.BinCont(x=Result_BinCont, a = -30, b = -3)

# examine results
summary(Fit1)
plot(Fit1)

## End(Not run)
```

summary_level_bootstrap_ICA

Bootstrap based on the multivariate normal sampling distribution

Description

`summary_level_bootstrap_ICA()` performs a parametric type of bootstrap based on the estimated multivariate normal sampling distribution of the maximum likelihood estimator for the (observable) D-vine copula model parameters.

Usage

```r
summary_level_bootstrap_ICA(
  fitted_model,
  copula_par_unid,
  copula_family2,
  rotation_par_unid,
  n_prec,
  B,
  measure = "ICA",
  mutinfo_estimator = NULL,
  composite,
  seed,
  restr_time = +Inf,
  ncores = 1
)
```

Arguments

- `fitted_model` : Returned value from `fit_model_SurvSurv()`. This object contains the estimated identifiable part of the joint distribution for the potential outcomes.
copula_par_unid
Parameter vector for the sequence of *unidentifiable* bivariate copulas that define the D-vine copula. The elements of copula_par correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).

copula_family2
Copula family of the other bivariate copulas. For the possible options, see `loglik_copula_scale()`. The elements of copula_family2 correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).

rotation_par_unid
Vector of rotation parameters for the sequence of *unidentifiable* bivariate copulas that define the D-vine copula. The elements of rotation_par correspond to \((c_{23}, c_{13;2}, c_{24;3}, c_{14;23})\).

n_prec
Number of Monte Carlo samples for the computation of the mutual information.

B
Number of bootstrap replications

measure
Compute intervals for which measure of surrogacy? Defaults to "ICA". See first column names of sens_results for other possibilities.

mutinfo_estimator
Function that estimates the mutual information between the first two arguments which are numeric vectors. Defaults to `FNN::mutinfo()` with default arguments. @param plot_deltas (logical) Plot the sampled individual treatment effects?

composite
(boolean) If composite is TRUE, then the surrogate endpoint is a composite of both a "pure" surrogate endpoint and the true endpoint, e.g., progression-free survival is the minimum of time-to-progression and time-to-death.

seed
Seed for Monte Carlo sampling. This seed does not affect the global environment.

restr_time
Restriction time for the potential outcomes. Defaults to +Inf which means no restriction. Otherwise, the sampled potential outcomes are replace by \(\min(S_0, \text{restr_time})\) (and similarly for the other potential outcomes).

ncores
Number of cores used in the sensitivity analysis. The computations are computationally heavy, and this option can speed things up considerably.

Details

Let \(\hat{\beta}\) be the estimated identifiable parameter vector, \(\hat{\Sigma}\) the corresponding estimated covariance matrix, and \(\nu\) a fixed value for the sensitivity parameter. The bootstrap is then performed in the following steps

1. Resample the identifiable parameters from the estimated sampling distribution,
 \[
 \hat{\beta}^{(b)} \sim N(\hat{\beta}, \hat{\Sigma}).
 \]

2. For each resampled parameter vector and the fixed sensitivity parameter, compute the ICA as
 \[
 ICA(\hat{\beta}^{(b)}, \nu).
 \]

Value

(numeric) Vector of bootstrap replications for the estimated ICA.
Assess surrogacy for two survival endpoints based on information theory and a two-stage approach

Description

The function SurvSurv implements the information-theoretic approach to estimate individual-level surrogacy (i.e., $R^2_{h.ind}$) and the two-stage approach to estimate trial-level surrogacy (R^2_{trial}, R^2_{ht}) when both endpoints are time-to-event variables (Alonso & Molenberghs, 2008). See the Details section below.

Usage

SurvSurv(Dataset, Surr, SurrCens, True, TrueCens, Treat, Trial.ID, Weighted=TRUE, Alpha=.05)

Arguments

- **Dataset**: A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value and censoring indicator, a true endpoint value and censoring indicator, a treatment indicator, and a trial ID.
- **Surr**: The name of the variable in Dataset that contains the surrogate endpoint values.
- **SurrCens**: The name of the variable in Dataset that contains the censoring indicator for the surrogate endpoint values (1 = event, 0 = censored).
- **True**: The name of the variable in Dataset that contains the true endpoint values.
- **TrueCens**: The name of the variable in Dataset that contains the censoring indicator for the true endpoint values (1 = event, 0 = censored).
- **Treat**: The name of the variable in Dataset that contains the treatment indicators.
- **Trial.ID**: The name of the variable in Dataset that contains the trial ID to which the patient belongs.
- **Weighted**: Logical. If TRUE, then a weighted regression analysis is conducted at stage 2 of the two-stage approach. If FALSE, then an unweighted regression analysis is conducted at stage 2 of the two-stage approach. Default TRUE.
- **Alpha**: The α-level that is used to determine the confidence intervals around R^2_{trial} and R^2_{ht}. Default 0.05.

Details

Individual-level surrogacy

Alonso & Molenberghs (2008) proposed to redefine the surrogate endpoint S as a time-dependent covariate $S(t)$, taking value 0 until the surrogate endpoint occurs and 1 thereafter. Furthermore, these author considered the models
\[
\lambda[t \mid x_{ij}, \beta] = K_{ij}(t)\lambda_0(t)\exp(\beta x_{ij}),
\]
\[
\lambda[t \mid x_{ij}, s_{ij}, \beta, \phi] = K_{ij}(t)\lambda_0(t)\exp(\beta x_{ij} + \phi s_{ij}),
\]
where \(K_{ij}(t)\) is the risk function for patient \(j\) in trial \(i\), \(x_{ij}\) is a \(p\)-dimensional vector of (possibly) time-dependent covariates, \(\beta\) is a \(p\)-dimensional vector of unknown coefficients, \(\lambda_0(t)\) is a trial-specific baseline hazard function, \(s_{ij}\) is a time-dependent covariate version of the surrogate endpoint, and \(\phi\) its associated effect.

The mutual information between \(S\) and \(T\) is estimated as
\[
I(T, S) = -\frac{1}{n} G^2,
\]
where \(n\) is the number of patients and \(G^2\) is the log likelihood test comparing the previous two models. Individual-level surrogacy can then be estimated as
\[
R_{h.ind}^2 = 1 - \exp\left(-\frac{1}{n} G^2\right).
\]
O’Quigley and Flandre (2006) pointed out that the previous estimator depends upon the censoring mechanism, even when the censoring mechanism is non-informative. For low levels of censoring this may not be an issue of much concern but for high levels it could lead to biased results. To properly cope with the censoring mechanism in time-to-event outcomes, these authors proposed to estimate the mutual information as
\[
I(T, S) = -\frac{1}{k} G^2,
\]
where \(k\) is the total number of events experienced. Individual-level surrogacy is then estimated as
\[
R_{h.ind}^2 = 1 - \exp\left(-\frac{1}{k} G^2\right).
\]

Trial-level surrogacy

A two-stage approach is used to estimate trial-level surrogacy, following a procedure proposed by Buyse et al. (2011). In stage 1, the following trial-specific Cox proportional hazard models are fitted:

\[
S_{ij}(t) = S_{i0}(t)\exp(\alpha_i Z_{ij}),
\]
\[
T_{ij}(t) = T_{i0}(t)\exp(\beta_i Z_{ij}),
\]
where \(S_{i0}(t)\) and \(T_{i0}(t)\) are the trial-specific baseline hazard functions, \(Z_{ij}\) is the treatment indicator for subject \(j\) in trial \(i\), and \(\alpha_i\), \(\beta_i\) are the trial-specific treatment effects on \(S\) and \(T\), respectively.

Next, the second stage of the analysis is conducted:

\[
\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \hat{\epsilon}_i,
\]
where the parameter estimates for \(\beta_i\) and \(\alpha_i\) are based on the full model that was fitted in stage 1.

When the argument `Weighted=FALSE` is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument `Weighted=TRUE` in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.

The classical coefficient of determination of the fitted stage 2 model provides an estimate of \(R_{trial}^2\).
Value

An object of class `SurvSurv` with components,

- **Results.Stage.1**
 The results of stage 1 of the two-stage model fitting approach: a `data.frame` that contains the trial-specific log hazard ratio estimates of the treatment effects for the surrogate and the true endpoints.

- **Results.Stage.2**
 An object of class `lm` (linear model) that contains the parameter estimates of the regression model that is fitted in stage 2 of the analysis.

- **R2.ht**
 A `data.frame` that contains the trial-level coefficient of determination (R^2_{ht}), its standard error and confidence interval.

- **R2.hind**
 A `data.frame` that contains the individual-level coefficient of determination (R^2_{hind}), its standard error and confidence interval.

- **R2h.ind.QF**
 A `data.frame` that contains the individual-level coefficient of determination using the correction proposed by O'Quigley and Flandre (2006), its standard error and confidence interval.

- **R2.hInd.By.Trial.QF**
 A `data.frame` that contains individual-level surrogacy estimates using the correction proposed by O'Quigley and Flandre (2006), (cluster-based estimates) and their confidence interval for each of the trials separately.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

- `plot.SurvSurv`

Examples

```r
# Open Ovarian dataset
data(Ovarian)

# Conduct analysis
```
Test.Mono

Test whether the data are compatible with monotonicity for S and/or T (binary endpoints)

Description

For some situations, the observable marginal probabilities contain sufficient information to exclude a particular monotonicity scenario. For example, under monotonicity for S and T, one of the restrictions that the data impose is $\pi_{0111} < \min(\pi_{01}, \pi_{11})$. If the latter condition does not hold in the dataset at hand, monotonicity for S and T can be excluded.

Usage

Test.Mono(pi1_1_, pi0_1_, pi1_0_, pi_1_1, pi_1_0, pi_0_1)

Arguments

- `pi1_1_` A scalar that contains $P(T = 1, S = 1 | Z = 0)$.
- `pi0_1_` A scalar that contains $P(T = 0, S = 1 | Z = 0)$.
- `pi1_0_` A scalar that contains $P(T = 1, S = 0 | Z = 0)$.
- `pi_1_1` A scalar that contains $P(T = 1, S = 1 | Z = 1)$.
- `pi_1_0` A scalar that contains $P(T = 1, S = 0 | Z = 1)$.
- `pi_0_1` A scalar that contains $P(T = 0, S = 1 | Z = 1)$.

Author(s)

Wim Van der Elst, Ariel Alonso, Marc Buyse, & Geert Molenberghs

References

Examples

Test.Mono(pi1_1_=0.2619048, pi0_1_=0.2857143, pi1_0_=0.07843137, pi_1_1=0.6372549, pi_1_0=0.1349206, pi_0_1=0.127451)
TrialLevelIT estimates trial-level surrogacy in the information-theoretic framework

Description

The function TrialLevelIT estimates trial-level surrogacy based on the vectors of treatment effects on S (i.e., α_i), intercepts on S (i.e., μ_i) and T (i.e., β_i) in the different trials. See the Details section below.

Usage

TrialLevelIT(Alpha.Vector, Mu_S.Vector=NULL, Beta.Vector, N.Trial, Model="Reduced", Alpha=.05)

Arguments

- **Alpha.Vector**: The vector of treatment effects on S in the different trials, i.e., α_i.
- **Mu_S.Vector**: The vector of intercepts for S in the different trials, i.e., μ_{Si}. Only required when a full model is requested.
- **Beta.Vector**: The vector of treatment effects on T in the different trials, i.e., β_i.
- **N.Trial**: The total number of available trials.
- **Model**: The type of model that should be fitted, i.e., `Model=c("Full")` or `Model=c("Reduced")`. See the Details section below. Default `Model=c("Reduced")`.
- **Alpha**: The α-level that is used to determine the confidence intervals around R^2_{ht} and R_{trial}. Default 0.05.

Details

When a full model is requested (by using the argument `Model=c("Full")` in the function call), trial-level surrogacy is assessed by fitting the following univariate model:

$$
\beta_i = \lambda_0 + \lambda_1 \mu_{Si} + \lambda_2 \alpha_i + \varepsilon_i, (1)
$$

where β_i = the trial-specific treatment effects on T, μ_{Si} = the trial-specific intercepts for S, and α_i = the trial-specific treatment effects on S. The $-2 \log$ likelihood value of model (1) (L_1) is subsequently compared to the $-2 \log$ likelihood value of an intercept-only model ($\beta_i = \lambda_3$; L_0), and R^2_{ht} is computed based on the Variance Reduction Factor (for details, see Alonso & Molenberghs, 2007):

$$
R^2_{ht} = 1 - \exp \left(-\frac{L_1 - L_0}{N} \right),
$$

where N is the number of trials.

When a reduced model is requested (by using the argument `Model=c("Reduced")` in the function call), the following model is fitted:
\[\beta_i = \lambda_0 + \lambda_1 \alpha_i + \varepsilon_i. \]

The \(-2\log\) likelihood value of this model \((L_1\text{ for the reduced model})\) is subsequently compared to the \(-2\log\) likelihood value of an intercept-only model \((\beta_i = \lambda_3; L_0)\), and \(R^2_{h,t}\) is computed based on the reduction in the likelihood (as described above).

Value

An object of class `TrialLevelIT` with components,

- `Alpha.Vector`: The vector of treatment effects on \(S\) in the different trials.
- `Beta.Vector`: The vector of treatment effects on \(T\) in the different trials.
- `N.Trial`: The total number of trials.
- `R2.ht`: A data.frame that contains the trial-level coefficient of determination \((R^2_{h,t})\), its standard error and confidence interval.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`UnimixedContCont, UnifixedContCont, BifixedContCont, BimixedContCont, plot.TrialLevelIT`

Examples

```r
# Generate vector treatment effects on S
set.seed(seed = 1)
Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)

# Generate vector treatment effects on T
set.seed(seed=2)
Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)

# Apply the function to estimate \(R^2_{h,t}\)
Fit <- TrialLevelIT(Alpha.Vector=Alpha.Vector, Beta.Vector=Beta.Vector, N.Trial=50, Model="Reduced")

summary(Fit)
plot(Fit)
```
TrialLevelMA Estimates trial-level surrogacy in the meta-analytic framework

Description

The function TrialLevelMA estimates trial-level surrogacy based on the vectors of treatment effects on S (i.e., α_i) and T (i.e., β_i) in the different trials. In particular, β_i is regressed on α_i and the classical coefficient of determination of the fitted model provides an estimate of R^2_{trial}. In addition, the standard error and CI are provided.

Usage

TrialLevelMA(Alpha.Vector, Beta.Vector, N.Vector, Weighted=TRUE, Alpha=.05)

Arguments

Alpha.Vector The vector of treatment effects on S in the different trials, i.e., α_i.
Beta.Vector The vector of treatment effects on T in the different trials, i.e., β_i.
N.Vector The vector of trial sizes N_i.
Weighted Logical. If TRUE, then a weighted regression analysis is conducted. If FALSE, then an unweighted regression analysis is conducted. Default TRUE.
Alpha The α-level that is used to determine the confidence intervals around R^2_{trial} and R_{trial}. Default 0.05.

Value

An object of class TrialLevelMA with components,

Alpha.Vector The vector of treatment effects on S in the different trials.
Beta.Vector The vector of treatment effects on T in the different trials.
N.Vector The vector of trial sizes N_i.
Trial.R2 A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.
Trial.R A data.frame that contains the trial-level correlation coefficient (R_{trial}), its standard error and confidence interval.
Model.2.Fit The fitted stage 2 model.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References

See Also

UnimixedContCont, UnifixedContCont, BifixedContCont, BimixedContCont, plot Meta-Analytic

Examples

```r
# Generate vector treatment effects on S
set.seed(seed = 1)
Alpha.Vector <- seq(from = 5, to = 10, by=.1) + runif(min = -.5, max = .5, n = 51)
# Generate vector treatment effects on T
set.seed(seed=2)
Beta.Vector <- (Alpha.Vector * 3) + runif(min = -5, max = 5, n = 51)
# Vector of sample sizes of the trials (here, all n_i=10)
N.Vector <- rep(10, times=51)

# Apply the function to estimate R^2_{trial}
Fit <- TrialLevelMA(Alpha.Vector=Alpha.Vector,
                    Beta.Vector=Beta.Vector, N.Vector=N.Vector)

# Plot the results and obtain summary
plot(Fit)
summary(Fit)
```

TwoStageSurvSurv

Assess trial-level surrogacy for two survival endpoints using a two-stage approach

Description

The function `TwoStageSurvSurv` uses a two-stage approach to estimate R^2_{trial}. In stage 1, trial-specific Cox proportional hazard models are fitted and in stage 2 the trial-specific estimated treatment effects on T are regressed on the trial-specific estimated treatment effects on S (measured on the log hazard ratio scale). The user can specify whether a weighted or unweighted model should be fitted at stage 2. See the *Details* section below.

Usage

`TwoStageSurvSurv(Dataset, Surr, SurrCens, True, TrueCens, Treat, Trial.ID, Weighted=TRUE, Alpha=.05)`
Arguments

- **Dataset**: A data.frame that should consist of one line per patient. Each line contains (at least) a surrogate value and censoring indicator, a true endpoint value and censoring indicator, a treatment indicator, and a trial ID.

- **Surr**: The name of the variable in Dataset that contains the surrogate endpoint values.

- **SurrCens**: The name of the variable in Dataset that contains the censoring indicator for the surrogate endpoint values (1 = event, 0 = censored).

- **True**: The name of the variable in Dataset that contains the true endpoint values.

- **TrueCens**: The name of the variable in Dataset that contains the censoring indicator for the true endpoint values (1 = event, 0 = censored).

- **Treat**: The name of the variable in Dataset that contains the treatment indicators.

- **Trial.ID**: The name of the variable in Dataset that contains the trial ID to which the patient belongs.

- **Weighted**: Logical. If TRUE, then a weighted regression analysis is conducted at stage 2 of the two-stage approach. If FALSE, then an unweighted regression analysis is conducted at stage 2 of the two-stage approach. Default TRUE.

- **Alpha**: The α-level that is used to determine the confidence intervals around R^2_{trial} and R_{trial}. Default 0.05.

Details

A two-stage approach is used to estimate trial-level surrogacy, following a procedure proposed by Buyse et al. (2011). In stage 1, the following trial-specific Cox proportional hazard models are fitted:

\[
S_{ij}(t) = S_{i0}(t)\exp(\alpha_i Z_{ij}),
\]

\[
T_{ij}(t) = T_{i0}(t)\exp(\beta_i Z_{ij}),
\]

where $S_{i0}(t)$ and $T_{i0}(t)$ are the trial-specific baseline hazard functions, Z_{ij} is the treatment indicator for subject j in trial i, μ_{Si}, and α_i and β_i are the trial-specific treatment effects on S and T, respectively.

Next, the second stage of the analysis is conducted:

\[
\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \varepsilon_i,
\]

where the parameter estimates for β_i, μ_{Si}, and α_i are based on the full model that was fitted in stage 1.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.

The classical coefficient of determination of the fitted stage 2 model provides an estimate of R^2_{trial}.
Value

An object of class `TwoStageSurvSurv` with components,

Data.Analyze

Prior to conducting the surrogacy analysis, data of trials that do not have at least three patients per treatment arm are excluded due to estimation constraints (Burzykowski et al., 2001). `Data.Analyze` is the dataset on which the surrogacy analysis was conducted.

Results.Stage.1

The results of stage 1 of the two-stage model fitting approach: a data.frame that contains the trial-specific log hazard ratio estimates of the treatment effects for the surrogate and the true endpoints.

Results.Stage.2

An object of class `lm` (linear model) that contains the parameter estimates of the regression model that is fitted in stage 2 of the analysis.

Trial.R2

A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.

Trial.R

A data.frame that contains the trial-level correlation coefficient (R_{trial}), its standard error and confidence interval.

Author(s)

Wim Van der Elst, Ariel Alonso, & Geert Molenberghs

References

See Also

`plot.TwoStageSurvSurv`

Examples

```r
# Open Ovarian dataset
data(Ovarian)

# Conduct analysis
Results <- TwoStageSurvSurv(Dataset = Ovarian, Surr = Pfs, SurrCens = PfsInd,
                           True = Surv, TrueCens = SurvInd, Treat = Treat, Trial.ID = Center)

# Examine results of analysis
summary(Results)
plot(Results)
```
The `twostep_BinCont()` function fits the copula (sub)model for a continuous surrogate and binary true endpoint with a two-step estimator. In the first step, the marginal distribution parameters are estimated through maximum likelihood. In the second step, the copula parameter is estimated while holding the marginal distribution parameters fixed.

Usage

```r
twostep_BinCont(
    X,
    Y,
    copula_family,
    marginal_surrogate,
    marginal_surrogate_estimator = NULL,
    method = "BFGS"
)
```

Arguments

- `X` (numeric): Continuous surrogate variable
- `Y` (integer): Binary true endpoint variable ($T_k \in \{0, 1\}$)
- `copula_family`: Copula family, one of the following:
 - "clayton"
 - "frank"
 - "gumbel"
 - "gaussian"
- `marginal_surrogate`: Marginal distribution for the surrogate. For all available options, see `?Surrogate::cdf_fun`.
- `marginal_surrogate_estimator`: Not yet implemented
- `method`: Optimization algorithm for maximizing the objective function. For all options, see `?maxLik::maxLik`. Defaults to "BFGS".

Value

A list with three elements:

- `ml_fit`: object of class `maxLik::maxLik` that contains the estimated copula model.
- `marginal_S_dist`: object of class `fitdistrplus::fitdist` that represents the marginal surrogate distribution.
- `copula_family`: string that indicates the copula family
twostep_SurvSurv

Fit survival-survival copula submodel with two-step estimator

Description

The `twostep_SurvSurv()` function fits the copula (sub)model for a time-to-event surrogate and true endpoint with a two-step estimator. In the first step, the marginal distribution parameters are estimated through maximum likelihood. In the second step, the copula parameter is estimate while holding the marginal distribution parameters fixed.

Usage

```r
twostep_SurvSurv(
  X,
  delta_X,
  Y,
  delta_Y,
  copula_family,
  n_knots,
  method = "BFGS"
)
```

Arguments

- `X` (numeric) Possibly right-censored time-to-surrogate event
- `delta_X` (integer) Surrogate event indicator:
 - 1L if surrogate event occurred.
 - 0L if censored.
- `Y` (numeric) Possibly right-censored time-to-true endpoint event
- `delta_Y` (integer) True endpoint event indicator:
 - 1L if true endpoint event occurred.
 - 0L if censored.
- `copula_family` Copula family, one of the following:
 - "clayton"
 - "frank"
 - "gumbel"
 - "gaussian"
- `n_knots` Number of internal knots for the Royston-Parmar survival models for \(\hat{S}_0 \), \(T_0 \), \(\hat{S}_1 \), and \(T_1 \). If `length(n_knots) == 1`, the same number of knots are assumed for the four marginal distributions.
- `method` Optimization algorithm for maximizing the objective function. For all options, see `?maxLik::maxLik`. Defaults to "BFGS".
Value

A list with three elements:

- `ml_fit`: object of class `maxLik::maxLik` that contains the estimated copula model.
- `marginal_S_dist`: object of class `fitdistrplus::fitdist` that represents the marginal surrogate distribution.
- `copula_family`: string that indicates the copula family.

Description

The function `UnifixedContCont` uses the univariate fixed-effects approach to estimate trial- and individual-level surrogacy when the data of multiple clinical trials are available. The user can specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted. See the Details section below. Further, the Individual Causal Association (ICA) is computed.

Usage

```r
UnifixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"), Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, Number.Bootstraps=500, Seed=sample(1:1000, size=1), T0T1=seq(-1, 1, by=.2), T0S1=seq(-1, 1, by=.2), T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2))
```

Arguments

- **Dataset**: A `data.frame` that should consist of one line per patient. Each line contains (at least) a surrogate value, a true endpoint value, a treatment indicator, a patient ID, and a trial ID.
- **Surr**: The name of the variable in `Dataset` that contains the surrogate endpoint values.
- **True**: The name of the variable in `Dataset` that contains the true endpoint values.
- **Treat**: The name of the variable in `Dataset` that contains the treatment indicators. The treatment indicator should either be coded as 1 for the experimental group and -1 for the control group, or as 1 for the experimental group and 0 for the control group.
- **Trial.ID**: The name of the variable in `Dataset` that contains the trial ID to which the patient belongs.
- **Pat.ID**: The name of the variable in `Dataset` that contains the patient’s ID.
- **Model**: The type of model that should be fitted, i.e., `Model=c("Full"), Model=c("Reduced"), or Model=c("SemiReduced")`. See the Details section below. Default `Model=c("Full")`.

UnifixedContCont

Fits univariate fixed-effect models to assess surrogacy in the meta-analytic multiple-trial setting (continuous-continuous case)
Weighted

Logical. If TRUE, then a weighted regression analysis is conducted at stage 2 of the two-stage approach. If FALSE, then an unweighted regression analysis is conducted at stage 2 of the two-stage approach. See the Details section below. Default TRUE.

Min.Trial.Size

The minimum number of patients that a trial should contain to be included in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.

Alpha

The α-level that is used to determine the confidence intervals around R_{trial}^2, R_{trial}^2, R_{indiv}^2, and R_{indiv}^2. Default 0.05.

Number.Bootstraps

The standard errors and confidence intervals for R_{indiv}^2 and R_{indiv}^2 are determined as based on a bootstrap procedure. Number.Bootstraps specifies the number of bootstrap samples that are used. Default 500.

Seed

The seed to be used in the bootstrap procedure. Default sample(1:1000, size = 1).

T0T1

A scalar or vector that contains the correlation(s) between the counterfactuals T0 and T1 that should be considered in the computation of ρ_{Δ} (ICA). For details, see function ICA.ContCont. Default seq(-1, 1, by=.2).

T0S1

A scalar or vector that contains the correlation(s) between the counterfactuals T0 and S1 that should be considered in the computation of ρ_{Δ}. Default seq(-1, 1, by=.2).

T1S0

A scalar or vector that contains the correlation(s) between the counterfactuals T1 and S0 that should be considered in the computation of ρ_{Δ}. Default seq(-1, 1, by=.2).

S0S1

A scalar or vector that contains the correlation(s) between the counterfactuals S0 and S1 that should be considered in the computation of ρ_{Δ}. Default seq(-1, 1, by=.2).

Details

When the full bivariate mixed-effects model is fitted to assess surrogacy in the meta-analytic framework (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation, the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al., 2005; Tibaldi et al., 2003).

The function `UnifixedContCont` implements one such strategy, i.e., it uses a two-stage univariate fixed-effects modelling approach to assess surrogacy. In the first stage of the analysis, two univariate linear regression models are fitted to the data of each of the i trials. When a full or semi-reduced model is requested (by using the argument Model=c("Full") or Model=c("SemiReduced") in the function call), the following univariate models are fitted:

$$S_{ij} = \mu_{Si} + \alpha_{i}Z_{ij} + \varepsilon_{S_{ij}},$$

$$T_{ij} = \mu_{Ti} + \beta_{i}Z_{ij} + \varepsilon_{T_{ij}},$$

where i and j are the trial and subject indicators, S_{ij} and T_{ij} are the surrogate and true endpoint values of subject j in trial i, Z_{ij} is the treatment indicator for subject j in trial i, μ_{Si} and μ_{Ti} are the
fixed trial-specific intercepts for S and T, and α_i and β_i are the fixed trial-specific treatment effects on S and T, respectively. The error terms ε_{Sij} and ε_{Tij} are assumed to be independent.

When a reduced model is requested by the user (by using the argument \texttt{Model=c("Reduced")} in the function call), the following univariate models are fitted:

$$S_{ij} = \mu_S + \alpha_i Z_{ij} + \varepsilon_{Sij},$$
$$T_{ij} = \mu_T + \beta_i Z_{ij} + \varepsilon_{Tij},$$

where μ_S and μ_T are the common intercepts for S and T (i.e., it is assumed that the intercepts for the surrogate and the true endpoints are identical in each of the trials). The other parameters are the same as defined above, and ε_{Sij} and ε_{Tij} are again assumed to be independent.

An estimate of R^2_{indiv} is provided by $r(\varepsilon_{Sij}, \varepsilon_{Tij})^2$.

Next, the second stage of the analysis is conducted. When a full model is requested (by using the argument \texttt{Model=c("Full")} in the function call), the following model is fitted:

$$\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu_{Si}} + \lambda_2 \hat{\alpha_i} + \varepsilon_i,$$

where the parameter estimates for β_i, μ_{Si}, and α_i are based on the full models that were fitted in stage 1.

When a semi-reduced or reduced model is requested (by using the argument \texttt{Model=c("SemiReduced")} or \texttt{Model=c("Reduced")} in the function call), the following model is fitted:

$$\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha_i} + \varepsilon_i,$$

where the parameter estimates for β_i and α_i are based on the semi-reduced or reduced models that were fitted in stage 1.

When the argument \texttt{Weighted=FALSE} is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument \texttt{Weighted=TRUE} in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.

The classical coefficient of determination of the fitted stage 2 model provides an estimate of R^2_{trial}.

Value

An object of class \texttt{UnifixedContCont} with components,

\textbf{Data.Analyze} Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by \texttt{Min.Trial.Size}, the data of the trial are excluded. \texttt{Data.Analyze} is the dataset on which the surrogacy analysis was conducted.
Obs.Per.Trial A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in Data.Analyze).

Results.Stage.1
The results of stage 1 of the two-stage model fitting approach: a data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).

Residuals.Stage.1
A data.frame that contains the residuals for the surrogate and true endpoints that are obtained in stage 1 of the analysis (ε_{Sij} and ε_{Tij}).

Results.Stage.2
An object of class lm (linear model) that contains the parameter estimates of the regression model that is fitted in stage 2 of the analysis.

Trial.R2 A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.

Indiv.R2 A data.frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval.

Trial.R A data.frame that contains the trial-level correlation coefficient (R_{trial}), its standard error and confidence interval.

Indiv.R A data.frame that contains the individual-level correlation coefficient (R_{indiv}), its standard error and confidence interval.

Cor.Endpoints A data.frame that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., ρ_{T0S0}) and in the experimental treatment group (i.e., ρ_{T1S1}), their standard errors and their confidence intervals.

D.Equiv The variance-covariance matrix of the trial-specific intercept and treatment effects for the surrogate and true endpoints (when a full or semi-reduced model is fitted, i.e., when Model=c("Full") or Model=c("SemiReduced") is used in the function call), or the variance-covariance matrix of the trial-specific treatment effects for the surrogate and true endpoints (when a reduced model is fitted, i.e., when Model=c("Reduced") is used in the function call). The variance-covariance matrix D.Equiv is equivalent to the D matrix that would be obtained when a (full or reduced) bivariate mixed-effect approach is used; see function BimixedContCont).

ICA A fitted object of class ICA.ContCont.

T0 The variance of the true endpoint in the control treatment condition.

T1 The variance of the true endpoint in the experimental treatment condition.

S0 The variance of the surrogate endpoint in the control treatment condition.

S1 The variance of the surrogate endpoint in the experimental treatment condition.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
References

See Also

UnimixedContCont, BifixedContCont, BimixedContCont, plot Meta-Analytic

Examples

```r
## Not run: #Time consuming (>5 sec) code parts
# Example 1, based on the ARMD data
data(ARMD)

# Fit a full univariate fixed-effects model with weighting according to the
# number of patients in stage 2 of the two stage approach to assess surrogacy:
Sur <- UnifixedContCont(Dataset=ARMD, Surr=Diff24, True=Diff52, Treat=Treat, Trial.ID=Center, Pat.ID=Id, Model="Full", Weighted=TRUE)

# Obtain a summary and plot of the results
summary(Sur)
plot(Sur)

# Example 2
# Conduct an analysis based on a simulated dataset with 2000 patients, 100 trials,
# and Rindiv=Rtrial=.8
# Simulate the data:
Sim.Data.MTS(N.Total=20000, N.Trial=100, R.Trial.Target=.8, R.Indiv.Target=.8, Seed=123, Model="Reduced")

# Fit a reduced univariate fixed-effects model without weighting to assess
# surrogacy:
Sur2 <- UnifixedContCont(Dataset=Data.Observed.MTS, Surr=Surr, True=True, Treat=Treat, Trial.ID=Trial.ID, Pat.ID=Pat.ID, Model="Reduced", Weighted=FALSE)

# Show a summary and plots of results:
summary(Sur2)
plot(Sur2, Weighted=FALSE)
## End(Not run)
```
UnimixedContCont

Fits univariate mixed-effect models to assess surrogacy in the meta-
analytic multiple-trial setting (continuous-continuous case)

Description

The function UnimixedContCont uses the univariate mixed-effects approach to estimate trial- and
individual-level surrogacy when the data of multiple clinical trials are available. The user can
specify whether a (weighted or unweighted) full, semi-reduced, or reduced model should be fitted.
See the Details section below. Further, the Individual Causal Association (ICA) is computed.

Usage

UnimixedContCont(Dataset, Surr, True, Treat, Trial.ID, Pat.ID, Model=c("Full"),
Weighted=TRUE, Min.Trial.Size=2, Alpha=.05, Number.Bootstraps=500,
Seed=sample(1:1000, size=1), T0T1=seq(-1, 1, by=.2), T0S1=seq(-1, 1, by=.2),
T1S0=seq(-1, 1, by=.2), S0S1=seq(-1, 1, by=.2), ...)

Arguments

Dataset A data.frame that should consist of one line per patient. Each line contains (at
least) a surrogate value, a true endpoint value, a treatment indicator, a patient
ID, and a trial ID.
Surr The name of the variable in Dataset that contains the surrogate endpoint values.
True The name of the variable in Dataset that contains the true endpoint values.
Treat The name of the variable in Dataset that contains the treatment indicators. The
treatment indicator should either be coded as 1 for the experimental group and
−1 for the control group, or as 1 for the experimental group and 0 for the control
group.
Trial.ID The name of the variable in Dataset that contains the trial ID to which the
patient belongs.
Pat.ID The name of the variable in Dataset that contains the patient's ID.
Model The type of model that should be fitted, i.e., Model=c("Full"), Model=c("Reduced"),
or Model=c("SemiReduced"). See the Details section below. Default Model=c("Full").
Weighted Logical. If TRUE, then a weighted regression analysis is conducted at stage 2
of the two-stage approach. If FALSE, then an unweighted regression analysis is
conducted at stage 2 of the two-stage approach. See the Details section below.
Default TRUE.
Min.Trial.Size The minimum number of patients that a trial should contain to be included in the
analysis. If the number of patients in a trial is smaller than the value specified by
Min.Trial.Size, the data of the trial are excluded from the analysis. Default 2.
Alpha The α-level that is used to determine the confidence intervals around R^2_{trial},
R^2_{trial}, R^2_{indiv}, and R^2_{indiv}. Default 0.05.
The confidence intervals for \(R^2_{\text{indiv}} \) and \(R^2_{\text{indiv}} \) are determined as based on a bootstrap procedure. \texttt{Number.Bootstraps} specifies the number of bootstrap samples that are to be used. Default 500.

The seed to be used in the bootstrap procedure. Default \texttt{sample(1 : 1000, size = 1)}.

\(T0T1 \) A scalar or vector that contains the correlation(s) between the counterfactuals \(T0 \) and \(T1 \) that should be considered in the computation of \(\rho_\Delta \) (ICA). For details, see function \texttt{ICA.ContCont}. Default \texttt{seq(-1, 1, by=.2)}.

\(T0S1 \) A scalar or vector that contains the correlation(s) between the counterfactuals \(T0 \) and \(S1 \) that should be considered in the computation of \(\rho_\Delta \). Default \texttt{seq(-1, 1, by=.2)}.

\(T1S0 \) A scalar or vector that contains the correlation(s) between the counterfactuals \(T1 \) and \(S0 \) that should be considered in the computation of \(\rho_\Delta \). Default \texttt{seq(-1, 1, by=.2)}.

\(S0S1 \) A scalar or vector that contains the correlation(s) between the counterfactuals \(S0 \) and \(S1 \) that should be considered in the computation of \(\rho_\Delta \). Default \texttt{seq(-1, 1, by=.2)}.

Other arguments to be passed to the function \texttt{lmer} (of the R package \texttt{lme4}) that is used to fit the generalized linear mixed-effect models in the function \texttt{BimixedContCont}.

\textbf{Details}

When the full bivariate mixed-effects model is fitted to assess surrogate in the meta-analytic framework (for details, Buyse & Molenberghs, 2000), computational issues often occur. In that situation, the use of simplified model-fitting strategies may be warranted (for details, see Burzykowski et al., 2005; Tibaldi et al., 2003).

The function \texttt{UnimixedContCont} implements one such strategy, i.e., it uses a two-stage univariate mixed-effects modelling approach to assess surrogate. In the first stage of the analysis, two univariate mixed-effects models are fitted to the data. When a full or semi-reduced model is requested (by using the argument \texttt{Model=c("Full")} or \texttt{Model=c("SemiReduced")} in the function call), the following univariate models are fitted:

\[
S_{ij} = \mu_S + m_{Si} + (\alpha + a_i)Z_{ij} + \varepsilon_{Sij},
\]

\[
T_{ij} = \mu_T + m_{Ti} + (\beta + b_i)Z_{ij} + \varepsilon_{Tij},
\]

where \(i \) and \(j \) are the trial and subject indicators, \(S_{ij} \) and \(T_{ij} \) are the surrogate and true endpoint values of subject \(j \) in trial \(i \), \(Z_{ij} \) is the treatment indicator for subject \(j \) in trial \(i \), \(\mu_S \) and \(\mu_T \) are the fixed intercepts for \(S \) and \(T \), \(m_{Si} \) and \(m_{Ti} \) are the corresponding random intercepts, \(\alpha \) and \(\beta \) are the fixed treatment effects for \(S \) and \(T \), and \(a_i \) and \(b_i \) are the corresponding random treatment effects, respectively. The error terms \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are assumed to be independent.

When a reduced model is requested (by using the argument \texttt{Model=c("Reduced")} in the function call), the following two univariate models are fitted:

\[
S_{ij} = \mu_S + (\alpha + a_i)Z_{ij} + \varepsilon_{Sij},
\]

...
\[T_{ij} = \mu_T + (\beta + b_i)Z_{ij} + \varepsilon_{Tij}, \]

where \(\mu_S \) and \(\mu_T \) are the common intercepts for S and T (i.e., it is assumed that the intercepts for the surrogate and the true endpoints are identical in each of the trials). The other parameters are the same as defined above, and \(\varepsilon_{Sij} \) and \(\varepsilon_{Tij} \) are again assumed to be independent.

An estimate of \(R^2_{\text{indiv}} \) is computed as \(r(\varepsilon_{Sij}, \varepsilon_{Tij})^2 \).

Next, the second stage of the analysis is conducted. When a full model is requested by the user (by using the argument Model=c("Full") in the function call), the following model is fitted:

\[\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\mu}_{Si} + \lambda_2 \hat{\alpha}_i + \varepsilon_i, \]

where the parameter estimates for \(\beta_i, \mu_{Si}, \) and \(\alpha_i \) are based on the models that were fitted in stage 1, i.e., \(\beta_i = \beta + b_i, \mu_{Si} = \mu_S + m_{Si}, \) and \(\alpha_i = \alpha + a_i. \)

When a reduced or semi-reduced model is requested by the user (by using the arguments Model=c("SemiReduced") or Model=c("Reduced") in the function call), the following model is fitted:

\[\hat{\beta}_i = \lambda_0 + \lambda_1 \hat{\alpha}_i + \varepsilon_i, \]

where the parameters are the same as defined above.

When the argument Weighted=FALSE is used in the function call, the model that is fitted in stage 2 is an unweighted linear regression model. When a weighted model is requested (using the argument Weighted=TRUE in the function call), the information that is obtained in stage 1 is weighted according to the number of patients in a trial.

The classical coefficient of determination of the fitted stage 2 model provides an estimate of \(R^2_{\text{trial}}. \)

Value

An object of class UnimixedContCont with components,

Data.Analyze

Prior to conducting the surrogacy analysis, data of patients who have a missing value for the surrogate and/or the true endpoint are excluded. In addition, the data of trials (i) in which only one type of the treatment was administered, and (ii) in which either the surrogate or the true endpoint was a constant (i.e., all patients within a trial had the same surrogate and/or true endpoint value) are excluded. In addition, the user can specify the minimum number of patients that a trial should contain in order to include the trial in the analysis. If the number of patients in a trial is smaller than the value specified by Min.Trial.Size, the data of the trial are excluded. Data.Analyze is the dataset on which the surrogacy analysis was conducted.

Obs.Per.Trial

A data.frame that contains the total number of patients per trial and the number of patients who were administered the control treatment and the experimental treatment in each of the trials (in Data.Analyze).

Results.Stage.1

The results of stage 1 of the two-stage model fitting approach: a data.frame that contains the trial-specific intercepts and treatment effects for the surrogate and the true endpoints (when a full or semi-reduced model is requested), or the trial-specific treatment effects for the surrogate and the true endpoints (when a reduced model is requested).
Residuals.Stage.1
A data.frame that contains the residuals for the surrogate and true endpoints that are obtained in stage 1 of the analysis (ε_{Si} and ε_{Ti}).

Fixed.Effect.Pars
A data.frame that contains the fixed intercept and treatment effects for S and T (i.e., μ_S, μ_T, α, and β) when a full, semi-reduced, or reduced model is fitted in stage 1.

Random.Effect.Pars
A data.frame that contains the random intercept and treatment effects for S and T (i.e., m_{Si}, m_{Ti}, a_i, and b_i) when a full or semi-reduced model is fitted in stage 1, or that contains the random treatment effects for S and T (i.e., a_i, and b_i) when a reduced model is fitted in stage 1.

Results.Stage.2
An object of class `lm` (linear model) that contains the parameter estimates of the regression model that is fitted in stage 2 of the analysis.

Trial.R2
A data.frame that contains the trial-level coefficient of determination (R^2_{trial}), its standard error and confidence interval.

Indiv.R2
A data.frame that contains the individual-level coefficient of determination (R^2_{indiv}), its standard error and confidence interval.

Trial.R
A data.frame that contains the trial-level correlation coefficient (R_{trial}), its standard error and confidence interval.

Indiv.R
A data.frame that contains the individual-level correlation coefficient (R_{indiv}), its standard error and confidence interval.

Cor.Endpoints
A data.frame that contains the correlations between the surrogate and the true endpoint in the control treatment group (i.e., ρ_{T0S0}) and in the experimental treatment group (i.e., ρ_{T1S1}), their standard errors and their confidence intervals.

D.Equiv
The variance-covariance matrix of the trial-specific intercept and treatment effects for the surrogate and true endpoints (when a full or semi-reduced model is fitted, i.e., when `Model=c("Full")` or `Model=c("SemiReduced")` is used in the function call), or the variance-covariance matrix of the trial-specific treatment effects for the surrogate and true endpoints (when a reduced model is fitted, i.e., when `Model=c("Reduced")` is used in the function call). The variance-covariance matrix `D.Equiv` is equivalent to the D matrix that would be obtained when a (full or reduced) bivariate mixed-effects approach is used; see function `BimixedContCont`.

ICA
A fitted object of class `ICA.ContCont`.

T0T0
The variance of the true endpoint in the control treatment condition.

T1T1
The variance of the true endpoint in the experimental treatment condition.

S0S0
The variance of the surrogate endpoint in the control treatment condition.

S1S1
The variance of the surrogate endpoint in the experimental treatment condition.

Author(s)
Wim Van der Elst, Ariel Alonso, & Geert Molenberghs
Read the text natural language.
Index

* ARMD.MultS
 ARMD.MultS, 7

* ARMD
 ARMD, 7

* Adjusted Association
 AA.MultS, 5
 Single.Trial.RE.AA, 229

* BinBin
 Bootstrap.MEP.BinBin, 21
 MaxEntICA.BinBin, 122
 MaxEntSPF.BinBin, 124
 plot MaxEntICA.BinBin, 168
 SPF.BinBin, 233

* BinCont
 plot SPF.BinCont, 179
 SPF.BinCont, 235

* Binary Binary setting
 Sim.Data.CounterfactualsBinBin, 224
 Sim.Data.STSBinBin, 228

* Binary endpoint
 ECT, 35
 FixedBinBinIT, 45
 FixedBinContIT, 49
 FixedContBinIT, 54
 ICA.BinCont, 82
 ICA.BinCont.BS, 86
 plot Information-Theoretic BinCombn, 163

* Bootstrap
 Bootstrap.MEP.BinBin, 21

* Causal-Inference framework
 AA.MultS, 5
 Bootstrap.MEP.BinBin, 21
 CausalDiagramBinBin, 23
 CausalDiagramContCont, 25
 comb27.BinBin, 28
 Fano.BinBin, 38
 ICA.BinBin, 69
 ICA.BinBin.CounterAssum, 72
 ICA.BinBin.Grid.Full, 74
 ICA.BinBin.Grid.Sample, 77
 ICA.BinBin.Grid.Sample.Uncert, 79
 ICA.BinCont, 82
 ICA.BinCont.BS, 86
 ICA.ContCont, 89
 ICA.ContCont.MultS, 92
 ICA.ContCont.MultS.MPC, 95
 ICA.ContCont.MultS.PC, 98
 ICA.ContCont.MultS.alt, 101
 ICA.Sample.ContCont, 104
 ISTE.ContCont, 108
 ISTE.ContCont, 165
 plot Causal-Inference BinBin, 152
 plot Causal-Inference BinCont, 154
 plot Causal-Inference ContCont, 155
 plot ICA.ContCont.MultS, 159
 plot SPF.BinBin, 177
 plot SPF.BinCont, 179
 plot SPF.BinCont, 184
 plot SPF.BinBin, 185
 plot SPF.BinBin, 187
 plot SPF.BinSFBinBin, 192
 plot SPF.BinSFBinBin, 199
 Restrictions.BinBin, 202
 Sim.Data.Counterfactuals, 222
 Sim.Data.CounterfactualsBinBin, 224
 Sim.Data.STSBinBin, 228
 SPF.BinBin, 233

260
INDEX

SPF.BinCont, 235
* ContCont
 MaxEntContCont, 120
 plot MaxEnt ContCont, 167
* Continuous endpoint
 FixedBinContIT, 49
 FixedContBinIT, 54
 ICA. BinCont, 82
 ICA. BinCont. BS, 86
 MixedContContIT, 136
 plot Meta-Analytic, 171
* Counterfactuals
 AA. MultS, 5
 Bootstrap.MEP. BinBin, 21
 comb27.BinBin, 28
 ECT, 35
 Fano. BinBin, 38
 ICA. BinBin, 69
 ICA. BinBin. Grid. Full, 74
 ICA. BinBin. Grid. Sample, 77
 ICA. BinBin. Grid. Sample. Uncert, 79
 ICA. BinCont, 82
 ICA. BinCont. BS, 86
 ICA. ContCont, 89
 ICA. ContCont. MultS, 92
 ICA. ContCont. MultS. MPC, 95
 ICA. ContCont. MultS. PC, 98
 ICA. ContCont. MultS_alt, 101
 ICA. Sample. ContCont, 104
 ISTE. ContCont, 108
 MaxEntContCont, 120
 MaxEntICABinBin, 122
 MaxEntSPFBinBin, 124
 MICA. ContCont, 128
 MICA. Sample. ContCont, 131
 plot. comb27. BinBin, 184
 plot. Fano. BinBin, 185
 plot. PPE. BinBin, 187
 PPE. BinBin, 192
 PROC. BinBin, 199
 Restrictions. BinBin, 202
 Sim. Data. Counterfactuals, 222
 Sim. Data. CounterfactualsBinBin, 224
 Sim. Data. STSBinBin, 228
 SPF. BinBin, 233
 SPF. BinCont, 235
* Cox proportional hazards model
 SurvSurv, 238
 TwoStageSurvSurv, 245
* Entropy Concentration Theorem
 ECT, 35
* Fano
 Fano. BinBin, 38
 plot. Fano. BinBin, 185
* Fixed-effect models
 BifixedContCont, 8
 FixedBinBinIT, 45
 FixedBinContIT, 49
 FixedContBinIT, 58
 FixedDiscrDiscrIT, 63
 MufixedContCont. MultS, 141
 plot Information-Theoretic BinComb, 163
 UnifixedContCont, 250
* ICA
 AA. MultS, 5
 comb27. BinBin, 28
 Fano. BinBin, 38
 ICA. BinBin, 69
 ICA. BinBin. Grid. Full, 74
 ICA. BinBin. Grid. Sample, 77
 ICA. BinBin. Grid. Sample. Uncert, 79
 ICA. BinCont, 82
 ICA. BinCont. BS, 86
 ICA. ContCont, 89
 ICA. ContCont. MultS, 92
 ICA. ContCont. MultS. MPC, 95
 ICA. ContCont. MultS. PC, 98
 ICA. ContCont. MultS_alt, 101
 ICA. Sample. ContCont, 104
 ISTE. ContCont, 108
 MaxEntContCont, 120
 MaxEntICABinBin, 122
 MaxEntSPFBinBin, 124
 MICA. ContCont, 128
 MICA. Sample. ContCont, 131
 plot. comb27. BinBin, 184
 plot. Fano. BinBin, 185
 plot. PPE. BinBin, 187
 PPE. BinBin, 192
 PROC. BinBin, 199
* ISTE
 ISTE. ContCont, 108
* Individual-level surrogacy
 BifixedContCont, 8
 BimixedCbCContCont, 13
 BimixedContCont, 16
 FixedBinBinIT, 45
FixedBinContIT, 49
FixedContBinIT, 54
FixedContContIT, 58
FixedDiscrDiscrIT, 63
MixedContIT, 136
MufixedContCont.MultS, 141
MumixedContCont.MultS, 145
plot FixedDiscrDiscrIT, 157
plot Information-Theoretic, 161
plot Information-Theoretic BinCombn, 163
plot Meta-Analytic, 171
plot.SurvSurv, 189
Single.Trial.RE.AA, 229
SurvSurv, 238
UnifixedContCont, 250
UnimixedContCont, 255
* Individual-level surrogate threshold effect
 ISTE.ContCont, 108
* Information-Theoretic framework
 plot FixedDiscrDiscrIT, 157
 plot Information-Theoretic, 161
 plot Information-Theoretic BinCombn, 163
 plot.SurvSurv, 189
* Information-theoretic framework
 FixedBinBinIT, 45
 FixedBinContIT, 49
 FixedContBinIT, 54
 FixedContContIT, 58
 FixedDiscrDiscrIT, 63
 MixedContIT, 136
 plot TrialLevelIT, 180
 plot TwoStageSurvSurv, 183
 SurvSurv, 238
 TrialLevelIT, 242
 TwoStageSurvSurv, 245
* Likelihood Reduction Factor (LRF)
 FixedBinBinIT, 45
 FixedBinContIT, 49
 FixedContBinIT, 54
 FixedContContIT, 58
 FixedDiscrDiscrIT, 63
 MixedContIT, 136
* MICA
 MICA.ContCont, 128
 MICA.Sample.ContCont, 131
* Marginal probabilities
 MarginalProbs, 116
* MarginalProbs
 Fano.BinBin, 38
 ICA.BinBin, 69
 ICA.BinBin.Grid.Full, 74
 ICA.BinBin.Grid.Sample, 77
 ICA.BinBin.Grid.Sample.Uncert, 79
 plot.Fano.BinBin, 185
* Maximum Entropy
 Bootstrap.MEP.BinBin, 21
 MaxEntContCont, 120
 MaxEntICABinBin, 122
 MaxEntSPFBinBin, 124
 plot MaxEntContCont, 167
 plot MaxEntICA BinBin, 168
 plot MaxEntSPF BinBin, 169
* Maximum entropy
 ECT, 35
* Meta-analytic framework
 BifixedContCont, 8
 BimixedCbCContCont, 13
 BimixedContCont, 16
 MufixedContCont.MultS, 141
 MumixedContCont.MultS, 145
 plot Meta-Analytic, 171
 plot TrialLevelMA, 181
 Single.Trial.RE.AA, 229
 TrialLevelMA, 244
 UnifixedContCont, 250
 UnimixedContCont, 255
* Mixed-effect models
 BimixedCbCContCont, 13
 BimixedContCont, 16
 MixedContContIT, 136
 UnimixedContCont, 255
* Monotonicity
 Test.Mono, 241
* Multiple surrogates
 AA.MultS, 5
 ICA.ContCont.MultS, 92
 ICA.ContCont.MultS.MPC, 95
 ICA.ContCont.MultS.PC, 98
 ICA.ContCont.MultS_alt, 101
 plot ICA.ContCont.MultS, 159
* Multiple-trial setting
 BifixedContCont, 8
 BimixedCbCContCont, 13
 BimixedContCont, 16
INDEX

CausalDiagramContCont, 25
FixedBinBinIT, 45
FixedBinContIT, 49
FixedContBinIT, 54
FixedContContIT, 58
FixedDiscrDiscrIT, 63
MICA.ContCont, 128
MICA.Sample.ContCont, 131
MixedContContIT, 136
MufixedContCont.MultS, 141
MumixedContCont.MultS, 145
plot Causal-Inference ContCont, 155
plot FixedDiscrDiscrIT, 157
plot ICA.ContCont.MultS, 159
plot Information-Theoretic, 161
plot Information-Theoretic
BinCombn, 163
plot Meta-Analytic, 171
plot TrialLevelIT, 180
plot TrialLevelMA, 181
plot TwoStageSurvSurv, 183
plotSurvSurv, 189
Sim.Data.MTS, 225
SurvSurv, 238
TrialLevelIT, 242
TrialLevelMA, 244
TwoStageSurvSurv, 245
UnifixedContCont, 250
UnimixedContCont, 255
* Multivariate setting
 plot ICA.ContCont.MultS, 159
* Multivariate
 ICA.ContCont.MultS, 92
 ICA.ContCont.MultS.MPC, 95
 ICA.ContCont.MultS_PC, 98
 ICA.ContCont.MultS_alt, 101
* New trial
 plot PredTrialTContCont, 175
 Pred.TrialT.ContCont, 194
* PANSS
 PANSS, 151
* PPE
 comb27.BinBin, 28
 plot.comb27.BinBin, 184
 plot.PPE.BinBin, 187
 PPE.BinBin, 192
 PROC.BinBin, 199
* Plausibility of a good surrogate
 MinSurrContCont, 134
* Plausibility of a surrogate
 plot Causal-Inference ContCont, 155
 plot MinSurrContCont, 174
* Plot ISTE
 plot ISTE.ContCont, 165
* Plot SPF
 plot MaxEntSPF BinBin, 169
 plot SPF BinBin, 177
 plot SPF BinCont, 179
* Plot individual-level surrogate threshold effect
 plot ISTE.ContCont, 165
* Plot surrogacy
 CausalDiagramBinBin, 23
 CausalDiagramContCont, 25
 ICA.BinBin.CounterAssum, 72
 plot Causal-Inference BinBin, 152
 plot Causal-Inference BinCont, 154
 plot Causal-Inference ContCont, 155
 plot FixedDiscrDiscrIT, 157
 plot ICA.ContCont.MultS, 159
 plot Information-Theoretic, 161
 plot Information-Theoretic
BinCombn, 163
 plot Meta-Analytic, 171
 plot TrialLevelIT, 180
 plot TrialLevelMA, 181
 plot TwoStageSurvSurv, 183
 plotSurvSurv, 189
 Sim.Data.MTS, 225
 SurvSurv, 238
 TrialLevelIT, 242
 TrialLevelMA, 244
 TwoStageSurvSurv, 245
 UnifixedContCont, 250
 UnimixedContCont, 255
* Predict treatment effect T
 plot PredTrialTContCont, 175
 Pred.TrialT.ContCont, 194
* Prentice criteria
 Prentice, 196
* RPE
 PPE.BinBin, 192
 PROC.BinBin, 199
* RandVec
 RandVec, 201
* Relative effect
 Single.Trial.RE.AA, 229
* SPF
 SPF.BinBin, 233
 SPF.BinCont, 235
* Schizo_Bin
Schizo_Bin, 208
* Schizo_PANSS
 Schizo_PANSS, 210
* Schizo
 Schizo, 207
 Schizo_BinCont, 209
* Sensitivity
 AA.MultS, 5
 ICA.BinBin, 69
 ICA.BinBin.Grid.Full, 74
 ICA.BinBin.Grid.Sample, 77
 ICA.BinBin.Grid.Sample.Uncert, 79
 ICA.BinCont, 82
 ICA.BinCont.BS, 86
 ICA.ContCont, 89
 ICA.ContCont.MultS, 92
 ICA.ContCont.MultS.MPC, 95
 ICA.ContCont.MultS.PC, 98
 ICA.ContCont.MultS_alt, 101
 ICA.Sample.ContCont, 104
 ISTE.ContCont, 108
 MICA.ContCont, 128
 MICA.Sample.ContCont, 131
 plot Causal-Inference BinBin, 152
 plot Causal-Inference BinCont, 154
 plot Causal-Inference ContCont, 155
 plot ICA.ContCont.MultS, 159
 plot ICA.LibContCont, 165
 plot MaxEnt ContCont, 167
 plot MaxEntICA BinBin, 168
 plot MaxEntSPF BinBin, 169
 plot SPF BinBin, 177
 plot SPF BinCont, 179
 SPF.BinBin, 233
 SPF.BinCont, 235
* Simulate data
 Sim.Data.Counterfactuals, 222
 Sim.Data.CounterfactualsBinBin, 224
 Sim.Data.MTS, 225
 Sim.Data.STS, 227
 Sim.Data.STSBinBin, 228
* Single-trial setting
 AA.MultS, 5
 CausalDiagramBinBin, 23
 CausalDiagramContCont, 25
 comb27.BinBin, 28
 ECT, 35
 Fano.BinBin, 38
 ICA.BinBin, 69
 ICA.BinBin.CounterAssum, 72
 ICA.BinBin.Grid.Full, 74
 ICA.BinBin.Grid.Sample, 77
 ICA.BinBin.Grid.Sample.Uncert, 79
 ICA.BinCont, 82
 ICA.BinCont.BS, 86
 ICA.ContCont.BS, 89
 ICA.ContCont.MultS, 92
 ICA.ContCont.MultS.MPC, 95
 ICA.ContCont.MultS.PC, 98
 ICA.ContCont.MultS_alt, 101
 ICA.Sample.ContCont, 104
 ISTE.ContCont, 108
 MICA.ContCont, 128
 MICA.Sample.ContCont, 131
 plot Causal-Inference BinBin, 152
 plot Causal-Inference BinCont, 154
 plot Causal-Inference ContCont, 155
 plot ICA.ContCont.MultS, 159
 plot ICA.LibContCont, 165
 plot MaxEnt ContCont, 167
 plot MaxEntICA BinBin, 168
 plot MaxEntSPF BinBin, 169
 plot SPF BinBin, 177
 plot SPF BinCont, 179
 SPF.BinBin, 233
 SPF.BinCont, 235
* Survival endpoints
 plot TwoStageSurvSurv, 183
 SurvSurv, 238
 TwoStageSurvSurv, 245
* Survival endpoint
 plot SurvSurv, 189
* Test Monotonicity
 Test.Mono, 241
* Time-to-event endpoints
 SurvSurv, 238
 TwoStageSurvSurv, 245
* Transpose dataset
 LongToWide, 114
* Trial-level surrogacy
 BifixedContCont, 8
ICA.BinBin.Grid.Sample, 22, 76, 77, 79, 123, 125, 168, 194, 233, 234
ICA.BinBin.Grid.Sample.Uncert, 79, 81
ICA.BinCont, 82, 88, 154, 155, 179
ICA.BinCont.BS, 86
ICA.ContCont, 25, 26, 29, 70, 72, 76, 78–81, 85, 89, 94, 97, 100, 103, 106, 111, 121, 130, 134, 135, 156, 157, 160, 167, 168, 188, 193, 199, 232
ICA.ContCont.MultS, 92, 96–101, 159, 160
ICA.ContCont.MultS.MPC, 95
ICA.ContCont.MultS.PC, 93, 98
ICA.ContCont.MultS_alt, 94, 97, 100, 101, 159, 160
ICA.Sample.ContCont, 91, 104
ICA_given_model_constructor, 107
ICA_given_model_constructor(), 107, 108
ISTE.ContCont, 108, 165, 166
log_likelihood_copula_model, 113
logistf, 66
loglik_copula_scale, 112
LongToWide, 114
marginal_distribution, 117
marginal_gof_plots_scr, 118
marginal_gof_plots_scr(), 118
marginal_gof_scr_S_plot, 118
marginal_gof_scr_S_plot(), 119, 126
marginal_gof_scr_T_plot
(marginal_gof_scr_S_plot), 118
marginal_gof_scr_T_plot(), 119, 126
MarginalProbs, 70, 116, 202, 233
MaxEntContCont, 120, 167, 168
MaxEntICABinBin, 36, 121, 122, 168, 169
MaxEntSPFBinBin, 124, 170
mean_S_before_T_plot_scr, 126
mean_S_before_T_plot_scr(), 126
MICA.ContCont, 25, 26, 27, 76, 79, 81, 85, 91, 94, 97, 100, 103, 106, 128, 134, 156, 157, 160
MICA.Sample.ContCont, 130, 131
MinSurrContCont, 134, 174, 175
MixedContContIT, 62, 136, 162
model_fit_measures, 140
MufixedContCont.MultS, 141, 148
MumixedContCont.MultS, 144, 145, 145
new_vine_copula_ss_fit, 149
Ovarian, 150
PANSS, 151
pdf_fun, 152
plot Causal-Inference BinBin, 152
plot Causal-Inference BinCont, 154
plot Causal-Inference ContCont, 155
plot FixedDiscrDiscrIT, 157
plot ICA.ContCont.MultS, 159
plot Information-Theoretic, 161
plot Information-Theoretic BinCombn, 163
plot ISTE.ContCont, 165
plot MaxEnt ContCont, 167
plot MaxEntICA BinBin, 168
plot MaxEntSPF BinBin, 169
plot Meta-Analytic, 171
plot MinSurrContCont, 157, 160, 174
plot PredTrialITContCont, 175
plot SPF BinBin, 177
plot SPF BinCont, 179
plot TrialLevelIT, 180
plot TrialLevelMA, 181
plot TwoStageSurvSurv, 183
plot(), 119, 126
plot.BifixedContCont(plot
Meta-Analytic), 171
plot.BimixedContCont(plot
Meta-Analytic), 171
plot.comb27.BinBin, 184
plot.Fano.BinBin, 39, 185
plot.FixedBinBinIT(plot
Information-Theoretic
BinCombn), 163
plot.FixedBinContIT(plot
Information-Theoretic
BinCombn), 163
plot.FixedContBinIT(plot
Information-Theoretic
BinCombn), 163
plot.FixedContContIT(plot
Information-Theoretic
BinCombn), 163
plot.FixedDiscrDiscrIT(plot
FixedDiscrDiscrIT), 157
plot.ICA.BinBin(plot Causal-Inference
BinBin), 152
plot.ICA.BinCont(plot
Causal-Inference BinCont), 154
UnimixedContCont, 12, 16, 18–20, 130, 133, 134, 194–196, 198, 226, 230, 232, 243, 245, 254, 255