Package ‘SurvMI’

July 13, 2020

Type Package

Title Multiple Imputation Method in Survival Analysis

Version 0.1.0

Depends R(>= 3.4.0)

Imports survival (>= 3.1.11), zoo, stats, graphics, base

Maintainer Yiming Chen <yimingc1208@gmail.com>

Description In clinical trials, endpoints are sometimes evaluated with uncertainty. Adjudication is commonly adopted to ensure the study integrity. We propose to use multiple imputation (MI) introduced by Robin (1987) <doi:10.1002/9780470316696> to incorporate these uncertainties if reasonable event probabilities were provided. The method has been applied to Cox Proportional Hazard (PH) model, Kaplan-Meier (KM) estimation and Log-rank test in this package. Moreover, weighted estimations discussed in Cook (2004) <doi:10.1016/S0197-2456(00)00053-2> were also implemented with weights calculated from event probabilities. In conclusion, this package can handle time-to-event analysis if events presented with uncertainty by different methods.

License GPL-2

Encoding UTF-8

LazyData TRUE

RoxygenNote 7.1.1

NeedsCompilation no

Author Yiming Chen [aut, cre],
John Lawrence [ctb]

Repository CRAN

Date/Publication 2020-07-13 08:50:03 UTC

R topics documented:

CoxMI ... 2
CoxMI.summ ... 3
Coxwt ... 4
Coxwt.summ ... 6
CoxMI

Cox PH model with MI method

Description
CoxMI function estimated Cox model with uncertain endpoints by using MI method. Users have to provide survival data in a long format with rows for all potential events, together with corresponding event probabilities. The long format data should be transformed by the uc_data_transform function into a data list before feed into the function.

Usage
CoxMI(data_list,nMI=1000,covariates=NULL,id=NULL,...)

Arguments
- data_list The data list which has been transformed from the long format by the uc_data_transform function.
- nMI Number of imputations (>1).
- covariates Vector of covariates on the RHS of Cox model. Categorical variables need to be encoded as factor variables before entering the model. This encoding has to be done before the data transform step.
- id Vector of id variable if Andersen-Gill model is required.
- ... Other arguments passed on to coxph().

Details
 Calculates the estimated parameters as in the usual Cox proportional hazards model when event uncertainties present. The data are assumed to consist of potential event times with probabilities or weights between 0 and 1 corresponding to the probability that an event occurred at each time.

Value
- est Estimated vector of coefficients in the model
- var Estimated variance of the coefficients
- betamat Matrix containing estimate of coefficient from each imputed dataset
- Var_mat Array containing variances for each imputed dataset
- Between Var Between imputation variance
Within Var Mean within imputed dataset variance
nMI Number of imputed datasets
pvalue Estimated two-sided p-value
en Expected events count - mean event count of imputed datasets

Author(s)
Yiming Chen, John Lawrence

References

See Also
Coxwt, CoxMI.summ.

Examples
set.seed(128)
df_x<-data_sim(n=500,true_hr=0.8,haz_c=0.5/365)
df_x$f.trt<-as.factor(df_x$trt_long)
data_intrim<-uc_data_transform(data=df_x,
var_list=c("id_long","f.trt"),
var_list_new=c("id","trt"),
time="time_long",
prob="prob_long")
#nMI=10 used in the example below to reduce the time needed
#but a large number as nMI=1000 is recommended in practice

fit<-CoxMI(data_list=data_intrim,nMI=10,covariates=c("trt"))
CoxMI.summ(fit)

fit<-CoxMI(data_list=data_intrim,nMI=1000,covariates=c("trt"),id=c("id"))
CoxMI.summ(fit)

CoxMI.summ(x,digits=3)
Arguments

- `x`: An object returned by the CoxMI function.
- `digits`: Digits of output

Details

Print a summary table of Cox regression result with MI implemented.

Value

A summary table of Cox regression result with MI implemented.

Author(s)

Yiming Chen

See Also

CoxMI.

Coxwt

Weighted Cox PH model estimation

Description

Estimate the Cox PH model by weighted partial likelihood. Event weights are calculated with respect to event probabilities.

Usage

`Coxwt(data_list, covariates, init=NULL, BS=FALSE, nBS=1000)`

Arguments

- `data_list`: The data list which has been transformed from the long format by the uc_data_transform function.
- `covariates`: The vector of variable on the RHS of the Cox model.
- `init`: The initial value of covariates vector in the likelihood, length matches the length of covariates.
- `BS`: T/F, whether conduct estimation via the Bootstrap method.
- `nBS`: Number of BS, only effective if BS=TRUE.
Value

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficients</td>
<td>Estimated vector of coefficients in the model</td>
</tr>
<tr>
<td>var</td>
<td>Estimated variance of the coefficients</td>
</tr>
<tr>
<td>hr</td>
<td>Estimated hazard ratios in the model</td>
</tr>
<tr>
<td>z</td>
<td>Wald test statistics</td>
</tr>
<tr>
<td>pvalue</td>
<td>Estimated two-sided p-value</td>
</tr>
<tr>
<td>coefficients_bs</td>
<td>Bootstrapped coefficient estimation</td>
</tr>
<tr>
<td>var_bs</td>
<td>Bootstrapped variance estimation</td>
</tr>
<tr>
<td>column_name</td>
<td>Column name</td>
</tr>
</tbody>
</table>

Author(s)

Yiming Chen, John Lawrence

References

See Also

CoxMI, Coxwt.summ.

Examples

```r
df_x<-data_sim(n=500,0.8,haz_c=0.5/365)
data_intrim<-uc_data_transform(data=df_x, var_list=c("id_long","trt_long"), var_list_new=c("id","trt"), time="time_long", prob="prob_long")
fit<-Coxwt(data_list=data_intrim,covariates=c("trt"),init=c(1),BS=FALSE)
Coxwt.summ(fit)

## an example if we would like to check the BS variance
fit2<-Coxwt(data_list=data_intrim,covariates=c("trt"),init=c(1),BS=TRUE, nBS = 100)
Coxwt.summ(fit2)
```
Coxwt.summ Summary function for the weighted Cox model

Description

Print the fitting results from the weighted Cox regression.

Usage

Coxwt.summ(x,digits=3)

Arguments

x An object returned by the Coxwt function
digits Digits of output

Value

A summary table of weighted Cox regression result.

Author(s)

Yiming Chen

See Also

Coxwt, CoxMI.

data_sim Simulated survival data with uncertain endpoints from exponential distribution.

Description

data_sim function simulates data from a hypothetic 1:1 two-arms clinical trial, with one year uniform accrual period and three years follow-up.

data_sim2 function simplifies data list generated from above function to a more events only case. Note this function is only used for demonstration purpose.

Usage

data_sim(n=200,true_hr=0.8,haz_c=1/365)
data_sim2(data_list,covariates,percentage)
Arguments

- `n`: Total number of subject.
- `true_hr`: True hazard ratio between trt and control.
- `haz_c`: True event rate in the control arm.
- `data_list`: The data list which has been transformed from the long format by uc_data_transform function.
- `covariates`: The covariate we pose the true HR.
- `percentage`: The percentage of censored subjects with potential events we would like to utilize in the analysis. Ideally, with more potential events added, more power gain of imputation.

Value

Dataframe. Simulated datasets with event probabilities and potential event date.

Author(s)

Yiming Chen, John Lawrence

Examples

```r
df_x<-data_sim(n=500,true_hr=0.8,haz_c=1/365)
data_intrim<-uc_data_transform(data=df_x,
    var_list=c("id_long","trt_long"),
    var_list_new=c("id","trt"),
    time="time_long",
    prob="prob_long")
df_y<-data_sim2(data_list=data_intrim,covariates=c("trt"),percentage=0.2)
```

KMMI
Kaplan-Meier estimation with event uncertainty

Description

KM estimation for survival data when event uncertainty presents. KM plot will be output if `plot=TRUE` specified.

Usage

```r
KMMI(data_list,nMI,covariates,data_orig = NULL,plot = TRUE,
    time_var=NULL,event_var=NULL)
```
Arguments

data_list The data list which has been transformed from the long format by \texttt{uc_data_transform} function.

nMI Number of imputations (>1). If missing, weighted statistics would be output instead.

covariates The grouping variable, no need to be factorized. If missing then the overall KM is returned.

plot T/F, whether output a KM plot, the plot potentially contains KM curves from original dataset and imputed/weighted dataset.

data_orig The original data without any uncertain events. If supplies then user can compare results from certain events only and all possible events.

time_var Time variable in data_orig. If user provides the orig dataset then user need to specify the time and event indicator variable in the original dataset.

event_var Event indicator variable in the original data set.

Value

KM_mi A dataset contains MI estimation and variance at all potential event time

KM_cook A dataset contains weighted KM estimation and variance at all potential event time

ngroup Number of groups

cate_level Values of the categorical variable

nMI Number of imputed datasets

Author(s)

Yiming Chen

References

See Also

\texttt{uc_data_transform}
Examples

```r
## an example with more potential event case
## data_orig was created as keeping the event with largest weights for individuals
df_x <- data_sim(n=500, 0.8, haz_c=0.5/365)
data_intrim <- uc_data_transform(data=df_x,
  var_list=c("id_long","trt_long"),
  var_list_new=c("id","trt"),
  time="time_long",
  prob="prob_long")
df_y <- data_sim2(data_list=data_intrim, covariates=c("trt"), percentage=1)
data_orig <- df_y[df_y$prob==0 | df_y$prob==1,]
data_orig <- data_orig[!duplicated(data_orig$id),]
data_orig$cens <- data_orig$prob

## weighted estimation
KM_res <- KMMI(data_list=data_intrim, nMI=NULL, covariates=c("trt"), plot=TRUE, data_orig=NULL)

## MI estimation
KMMI(data_list=data_intrim, nMI=1000, covariates=c("trt"), plot=TRUE, data_orig=NULL)
data_intrim2 <- uc_data_transform(data=df_y, var_list=c("id","trt"),
  var_list_new=NULL, time="time", prob="prob")
KMMI(data_list=data_intrim2, nMI=1000, covariates=c("trt"), plot=TRUE, data_orig=data_orig,
  time_var=c("time"), event_var=c("cens"))
```

LRMI

Log-rank test with events uncertainty

Description

This function conducts the Log-rank test with respect to uncertain endpoints, by MI or weighted method.

Usage

```r
LRMI(data_list, nMI, covariates, strata = NULL,...)
```

Arguments

- `data_list` The data list which has been transformed from the long format by `uc_data_transform` function.
- `nMI` Number of imputation (>1). If missing, weighted statistics would be output instead.
- `covariates` The categorical variable used in the Log-rank test. No need to factorlize numeric variables.
strata Strata variable may required by the Log-rank test
... Other arguments passed on to survdiff().

Value

est Estimated LR statistics, either from the MI method or weighted method
var Estimated variance matrix
est_mat Matrix containing estimate of statistics from each imputed dataset
Var_mat Array containing variances for each imputed dataset
Between Var Between imputation variance
Within Var Mean within imputed dataset variance
nMI Number of imputed datasets
pvalue Estimated two-sided Chi-square test p-value
df Degree of freedom
covariates covariates
ngroup Number of groups
obsmean Mean of observed events count across imputations
expmean Mean of expected events count across imputations

Author(s)

Yiming Chen

References

See Also

uc_data_transform, LRMI.summ

Examples

df_x<-data_sim(n=500,0.8,haz_c=0.5/365)
data_intrim<-uc_data_transform(data=df_x,
 var_list=c("id_long","trt_long"),
 var_list_new=c("id","trt"),
 time="time_long",
 prob="prob_long")
LRMI.summ

#nMI=10 used in the example below to reduce the time needed
#but a large number as nMI=1000 is recommended in practice
fit<-LRMI(data_list=data_intrim,nMI=10,covariates=c("trt"),strata=NULL)
LRMI.summ(fit)

LRMI.summ

Prints the test results output by the LRMI function

Description

Summary function for the Log-rank test either by the MI method or the weighted method.

Usage

LRMI.summ(x,digits=3)

Arguments

x An object returned by the LRMI function.
digits Digits of output

Value

A summary table of LR test result with MI implemented.

Author(s)

Yiming Chen

See Also

LRMI

uc_data_transform

Transform long formatted time-to-event data into a data list

Description

This function transforms data from long format (one record per event) to a datalist with length as unique subject number. The transformation is required before fitting other models from the package.

Usage

uc_data_transform(data,var_list,var_list_new,time,prob)
Arguments

data The dataset in long format with a row for each potential event. For censored
record, the event prob should be 0. It should include id, time and prob vari-
ables at a minimum. If any covariates are included in the call to the function,
then these variables should also be included. A censoring record is required for
each subject. Categorical variables need to be encoded as factor variable before
transformation if they are expected to be in the Cox model.

var_list The list of identification variables, such as: c("id_long","trt_long").
time The time variable need to be transformed, e.g. time_long.
prob The prob variable need to be transformed, e.g. prob_long.
var_list_new The character vector contains the new names for the id variables defined in the
var_list, if missing, previous variable names would be used.

Value

time The list of all potential event time
prob The list of all potential event probabilities
weights The list of all potential event weights
e The list of individual potential event count
s The list of all survival probabilities
data_uc The dataset contains unique information of each subject
data_long The dataset contains the original data in long format

Author(s)
Yiming Chen

Examples

df_x <- data_sim(n=1000, true_hr=0.8, haz_c=0.5/365)
df_x$f.trt <- as.factor(df_x$trt_long)
data_intrim <- uc_data_transform(data=df_x,
 var_list=c("id_long","f.trt"),
 var_list_new=c("id","trt"),
 time="time_long",
 prob="prob_long")
Index

* datagen
data_sim, 6

* list
 uc_data_transform, 11

* manip
data_sim, 6
 uc_data_transform, 11

* nonparametric
 KMMI, 7

* survival
 CoxMI, 2
 CoxMI.summ, 3
 Coxwt, 4
 Coxwt.summ, 6
 KMMI, 7
 LRMI, 9
 LRMI.summ, 11

 CoxMI, 2, 4–6
 CoxMI.summ, 3, 3
 Coxwt, 3, 4, 6
 Coxwt.summ, 5, 6

 data_sim, 6
 data_sim2 (data_sim), 6

 KMMI, 7

 LRMI, 9, 11
 LRMI.summ, 10, 11

 uc_data_transform, 8, 10, 11