Package ‘SurvRegCensCov’

September 27, 2023

Type Package
Title Weibull Regression for a Right-Censored Endpoint with Interval-Censored Covariate
Version 1.7
Date 2023-09-27
Author Stanislas Hubeaux <stan.hubeaux@bluewin.ch> and Kaspar Rufibach <kaspar.rufibach@gmail.com>
Maintainer Stanislas Hubeaux <stan.hubeaux@bluewin.ch>
Depends R (>= 2.10), survival, stats, graphics
Imports numDeriv
Description The function SurvRegCens() of this package allows estimation of a Weibull Regression for a right-censored endpoint, one interval-censored covariate, and an arbitrary number of non-censored covariates. Additional functions allow to switch between different parametrizations of Weibull regression used by different R functions, inference for the mean difference of two arbitrarily censored Normal samples, and estimation of canonical parameters from censored samples for several distributional assumptions. Hubeaux, S. and Rufibach, K. (2014) <arXiv:1402.0432>.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2023-09-27 12:50:02 UTC

R topics documented:

SurvRegCensCov-package ... 2
CDF ... 3
censorContVar ... 4
coeff.src .. 5
ConvertWeibull .. 6
larynx ... 7
logLik.src ... 8
LoglikCens .. 9
Description

The function SurvRegCens of this package allows estimation of a Weibull Regression for a right-censored endpoint, one interval-censored covariate, and an arbitrary number of non-censored covariates. Additional functions allow to switch between different parametrizations of Weibull regression used by different R functions (ConvertWeibull, WeibullReg, WeibullDiag), inference for the mean difference of two arbitrarily censored Normal samples (NormalMeanDiffCens), and estimation of canonical parameters from censored samples for several distributional assumptions (ParamSampleCens).

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>SurvRegCensCov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.7</td>
</tr>
<tr>
<td>Date</td>
<td>2023-09-27</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>=2)</td>
</tr>
</tbody>
</table>

Author(s)

Stanislas Hubeaux (maintainer), <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

We thank Sarah Haile for contributing the functions ConvertWeibull, WeibullReg, WeibullDiag to the package.
References

Hubeaux, S. (2013). Estimation from left- and/or interval-censored samples. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd.

Examples

The main functions in this package are illustrated in their respective help files.

CDF

Description

Evaluates the cumulative distribution function using the integral of its density function.

Usage

CDF(c, density)

Arguments

c

density

Value at which the CDF is to be evaluated.
Density function.

Note

Function not intended to be invoked by the user.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch
censorContVar

Censor a vector of continuous numbers

Description

Given a vector of realizations of a continuous random variable, interval-, left-, or right-censor these numbers at given boundaries. Useful when setting up simulations involving censored observations.

Usage

censorContVar(x, LLOD = NA, ULOD = NA)

Arguments

x
Vector of random numbers.

LLOD
Lower limit where x should be left-censored at. If no left-censoring, set to NA.

ULOD
Upper limit where x should be left-censored at. If no left-censoring, set to NA.

Value

A data.frame as specified by code = interval2 in Surv.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>

Kaspar Rufibach, <kaspar.rufibach@gmail.com>

http://www.kasparrufibach.ch

Examples

```r
## random vector
x <- rnorm(200)

## interval-censor this vector at -1 and 0.5
censorContVar(x, -1, 0.5)
```
coef.src

Extract coefficients of Weibull regression with an interval-censored covariate

Description

coef method for class "src".

Usage

S3 method for class 'src'
coef(object, ...)

Arguments

object An object of class "src", usually a result of a call to SurvRegCens.
...
Further arguments.

Value

The function coef.src returns the estimated parameters of the Weibull regression when calling SurvRegCens.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

Examples

See help file of function "SurvRegCens".
Description

Transforms output from `survreg` using the Weibull distribution to a more natural parameterization. See details and the vignette for more information.

Usage

```r
ConvertWeibull(model, conf.level = 0.95)
```

Arguments

- **model**: A `survreg` model, with `dist = "weibull"`.
- **conf.level**: Confidence level used to produce two-sided $1 - \frac{\alpha}{2}$ confidence intervals for the hazard and event time ratios.

Details

The `survreg` function fits a Weibull accelerated failure time model of the form

$$\log t = \mu + \alpha^T Z + \sigma W,$$

where Z is a matrix of covariates, and W has the extreme value distribution, μ is the intercept, α is a vector of parameters for each of the covariates, and σ is the scale. The usual parameterization of the model, however, is defined by hazard function

$$h(t|Z) = \gamma \lambda t^{\gamma-1} \exp(\beta^T Z).$$

The transformation is as follows: $\gamma = 1/\sigma$, $\lambda = \exp(-\mu/\sigma)$, and $\beta = -\alpha/\sigma$, and estimates of the standard errors can be found using the delta method.

The Weibull distribution has the advantage of having two separate interpretations. The first, via proportional hazards, leads to a hazard ratio, defined by $\exp \beta$. The second, of accelerated failure times, leads to an event time ratio (also known as an acceleration factor), defined by $\exp(-\beta/\gamma)$.

Further details regarding the transformations of the parameters and their standard errors can be found in Klein and Moeschberger (2003, Chapter 12). An explanation of event time ratios for the accelerated failure time interpretation of the model can be found in Carroll (2003). A general overview can be found in the vignette ("weibull") of this package.

Value

- **vars**: A matrix containing the values of the transformed parameters and their standard errors.
- **HR**: A matrix containing the hazard ratios for the covariates, and $1 - \text{conf.level}/2$ confidence intervals.
- **ETR**: A matrix containing the event time ratios for the covariates, and $1 - \text{conf.level}/2$ confidence intervals.
Author(s)

Sarah R. Haile, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, <sarah.haile@uzh.ch>

References

See Also

This function is used by *WeibullReg*.

Examples

```r
data(larynx)
ConvertWeibull(survreg(Surv(time, death) ~ stage + age, larynx), conf.level = 0.95)
```

| larynx | Survival Times of Larynx Cancer Patients |

Description

A study of 90 males with laryngeal cancer was performed, comparing survival times. Each patient’s age, year of diagnosis, and disease stage was noted, see Kardaun (1983) and Klein and Moeschberger (2003).

Usage

```r
data(larynx)
```

Format

A data frame with 90 observations on the following 5 variables.

- **stage**: Disease stage (1-4) from TNM cancer staging classification.
- **time**: Time from first treatment until death, or end of study.
- **age**: Age at diagnosis.
- **year**: Year of diagnosis.
- **death**: Indicator of death [1, if patient died at time t; 0, otherwise].

Source

https://www.mcw.edu/~/media/MCW/Departments/Biostatistics/datafromsection18.txt?la=en
References

Examples

```r
library(survival)
data(larynx)
Surv(larynx$time, larynx$death)
```

logLik.src

| Extract value of log-likelihood at maximum for Weibull regression with an interval-censored covariate |

Description

`logLik` method for class "src".

Usage

```r
## S3 method for class 'src'
logLik(object, ...)
```

Arguments

- `object` An object of class "src", usually a result of a call to `SurvRegCens`.
- `...` Further arguments.

Value

The function `logLik.src` returns the value of the log-likelihood at the maximum likelihood estimate, as well as the corresponding degrees of freedom.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>

Kaspar Rufibach, <kaspar.rufibach@gmail.com>

http://www.kasparrufibach.ch
References

Examples

```r
## See help file of function "SurvRegCens".
```

LoglikCens: Log-likelihood functions for estimation of canonical parameters from a censored sample

Description

Computes the log-likelihood function for a censored sample, according to a specified distributional assumptions. Available distributions are Normal, Weibull, Logistic, and Gamma.

Usage

```r
LoglikNormalCens(x, data, lowerbound, vdelta)
LoglikWeibullCens(x, data, lowerbound, vdelta)
LoglikLogisticCens(x, data, lowerbound, vdelta)
LoglikGammaCens(x, data, lowerbound, vdelta)
```

Arguments

- `x`: Two-dimensional vector giving the canonical parameters of the distribution.
- `data`: Observed or censored event times.
- `lowerbound`: A vector that collect lower bounds for the interval-censored observations. If no lower bound is available then put NA.
- `vdelta`: A vector which indicates censoring (0: censored, 1: not censored).

Note

Function not intended to be invoked by the user.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch
References

Hubeaux, S. (2013). Estimation from left- and/or interval-censored samples. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd.

LoglikNormalDeltaCens

Log likelihood function to compute mean difference between two normally distributed censored samples.

Description

Reparametrization of the log likelihood function for a normally distributed censored sample such that the mean difference is a parameter of the function, thus allowing to be made inference on. The mean difference is computed as sample 1 - sample 2.

Usage

```r
LoglikNormalDeltaCens(x, data1, lowerbound1, vdelta1, data2, lowerbound2, vdelta2)
```

Arguments

- `x`: A vector of four components where the first component corresponds to the mean of the normal distribution of the first sample, the second component corresponds to mean difference between the two samples: sample 1 - sample 2, the third component corresponds to the standard deviation of the normal distribution of the first sample, and the fourth component corresponds to the standard deviation of the normal distribution of the second sample.
- `data1`: A vector of data corresponding to the first sample.
- `lowerbound1`: A vector which corresponds to the lower bounds for the interval-censored observations of the vector of data corresponding to the first sample. If no lower bound is available then put `NA`.
- `vdelta1`: A vector which indicates for censoring for the first sample (0: censored, 1: not censored).
- `data2`: A vector of data corresponding to the second sample.
- `lowerbound2`: A vector which corresponds to the lower bounds for the interval-censored observations of the vector of data corresponding to the second sample. If no lower bound is available then put `NA`.
- `vdelta2`: A vector which indicates for censoring for the second sample (0: censored, 1: not censored).

Note

Function not intended to be invoked by the user.
Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

Hubeaux, S. (2013). Estimation from left- and/or interval-censored samples. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd.

Description

Computes the log-likelihood function of a Weibull Survival Regression Model allowing for an interval-censored covariate.

Usage

LoglikWeibullSurvRegCens(x, data_y, data_delta_loglik, data_cov_noncens = NULL, data_cov_cens, density, data_r_loglik, data_lowerbound, intlimit = 10^-10)

Arguments

x Vector of parameters, ordered as follows: Scale parameter, Shape parameter, regression parameters (i.e. β) linked to the non-censored covariates, regression parameter (i.e. β) linked to the censored covariate.

data_y Time-to-event vector.
data_delta_loglik Censored indicator vector of the time-to-event (0: censored, 1: not censored).
data_cov_noncens Matrix where each column represents a non-censored covariate.
data_cov_cens Censored covariate vector.
density Censored covariate vector.
data_r_loglik Censored indicator vector of the censored covariate (0: censored, 1: not censored).
NormalMeanDiffCens

data_lowerbound
A vector which corresponds to the lower bounds for the interval-censored observations of the censored covariate. If no lower bound is available then put NA.

intlimit
In computation of integrals, values of the function to be integrated below intlimit are set to 0. This makes integration results more accurate and speeds up integration. If the data is such that the absolute values of the underlying baseline Weibull density are very small, i.e. in the range of intlimit, it is advisable to rescale the time variable, e.g. change the scaling from days to years. A very small value of the estimated \(\lambda \) is indicative of that situation.

Note

Function not intended to be invoked by the user.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

NormalMeanDiffCens Maximum Likelihood Estimator for the mean difference between two censored normally distributed samples

Description

Computes estimates of the parameters of two censored Normal samples, as well as the mean difference between the two samples.

Usage

```r
NormalMeanDiffCens(censdata1, censdata2, conf.level = 0.95, null.values = c(0, 0, 1, 1))
```
Arguments

censdata1 Observations of first sample, format as specified by code = interval2 in Surv.
censdata2 Observations of second sample, as specified by code = interval2 in Surv.
conf.level Confidence level for confidence intervals.
null.values Fixed values for hypothesis tests. Four-dimensional vector specifying the hypothesis for $\mu_1, \mu_2, \sigma_1, \sigma_2$.

Value

A table with estimators and inference for the means and standard deviations of both samples, as well as the difference Δ between the mean of the first and second sample. Hypothesis tests are for the values in null.values and for the null hypothesis of no mean difference.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

Hubeaux, S. (2013). Estimation from left- and/or interval-censored samples. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd.

Examples

```r
## example with interval-censored Normal samples
n <- 500
prop.cens <- 0.35
mu <- c(0, 2)
sigma <- c(1, 1)

set.seed(2013)

## Sample 1:
LOD1 <- qnorm(prop.cens, mean = mu[1], sd = sigma[1])
x1 <- rnorm(n, mean = mu[1], sd = sigma[1])
s1 <- censorContVar(x1, LLOD = LOD1)

## Sample 2:
LOD2 <- qnorm(0.35, mean = mu[2], sd = sigma[2])
x2 <- rnorm(n, mean = mu[2], sd = sigma[2])
s2 <- censorContVar(x2, LLOD = LOD2)

## inference on distribution parameters and mean difference:
NormalMeanDiffCens(censdata1 = s1, censdata2 = s2)
```
ParamSampleCens

Maximum Likelihood Estimator of parameters from a censored sample

Description
Computes maximum likelihood estimators of the canonical parameters for several distributions, based on a censored sample.

Usage
```r
ParamSampleCens(censdata, dist = c("normal", "logistic", "gamma", "weibull")[1],
null.values = c(0, 1), conf.level = 0.95, initial = NULL)
```

Arguments
- `censdata`: Dataframe that contains censored data, format as specified by `code = interval2` in `Surv`.
- `dist`: Assumed distribution of the sample.
- `null.values`: Fixed values for hypothesis tests.
- `conf.level`: Confidence level of confidence intervals.
- `initial`: Initial values for the maximization.

Value
- `coeff`: Estimators, standard errors, confidence intervals, and 2-sided p-values for the null hypothesis as given in `null.values`. All this inference is based on maximum likelihood theory, i.e. standard errors are computed using the inverse expected Hessian at the maximum likelihood estimator.
- `percent.cens`: Percentage of censored observations.
- `loglik`: Log likelihood function value at the estimator.
- `info.converg`: Convergence information provided by the function `optim`.
- `info.converg.message`: Message provided by the function `optim`.

Note
Functions with similar functionality are provided in the package `fitdistrplus`.

Author(s)
Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch
References

Hubeaux, S. (2013). Estimation from left- and/or interval-censored samples. Technical report, Biostatistics Oncology, F. Hoffmann-La Roche Ltd.

Examples

```r
n <- 500
prop.cens <- 0.35

## example with a left-censored Normally distributed sample
set.seed(2013)
mu <- 3.5
sigma <- 1
LOD <- qnorm(prop.cens, mean = mu, sd = sigma)
x1 <- rnorm(n, mean = mu, sd = sigma)
s1 <- censorContVar(x1, LLOD = LOD)
ParamSampleCens(censdata = s1)

## example with an interval-censored Normal sample
set.seed(2013)
x2 <- rnorm(n, mean = mu, sd = sigma)
LOD <- qnorm(prop.cens / 2, mean = mu, sd = sigma)
UOD <- qnorm(1 - prop.cens / 2, mean = mu, sd = sigma)
s2 <- censorContVar(x2, LLOD = LOD, ULOD = UOD)
ParamSampleCens(censdata = s2)

## Not run:
## compare to fitdistrplus
library(fitdistrplus)
s2 <- as.data.frame(s2)
colnames(s2) <- c("left", "right")
summary(fitdistcens(censdata = s2, distr = "norm"))
## End(Not run)
```

print.src

Print result of Weibull regression with an interval-censored covariate

Description

print method for class "src".

Usage

```r
## S3 method for class 'src'
print(x, ...)
```
Arguments

x An object of class "src", usually a result of a call to SurvRegCens.
... Further arguments.

Value

The function print.src returns the estimated parameters of the Weibull regression, incl. AIC, when calling SurvRegCens.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

Examples

See help file of function "SurvRegCens".

summary.src

summary.src Summarizing Weibull regression with an interval-censored covariate

Description

summary method for class "src".

Usage

S3 method for class 'src'
summary(object, ...)

Arguments

object An object of class "src", usually a result of a call to SurvRegCens.
... Further arguments.
SurvRegCens

Value

The function `summary.src` returns the estimated parameters, incl. statistical inference, of the Weibull regression, incl. AIC, when calling `SurvRegCens`.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

Examples

```r
## See help file of function "SurvRegCens".
```

SurvRegCens

Weibull Survival Regression Model with a censored covariate

Description

Computes estimators for the shape and scale parameter of the Weibull distribution, as well as for the vector of regression parameters in a parametric survival model with potentially right-censored time-to-event endpoint distributed according to a Weibull distribution. The regression allows for one potentially interval-censored and an arbitrary number of non-censored covariates.

Usage

```r
SurvRegCens(formula, data = parent.frame(), Density, initial, conf.level = 0.95, intlimit = 10^-10, namCens = "VarCens", trace = 0, reltol = 10^-8)
```

Arguments

- **formula**: A formula expression as for other regression models. The response has to be a survival object for right-censored data, as returned by the `Surv` function. The censored covariate is equally specified using `Surv`. See the examples below and the documentation for `Surv`, `lm` and `formula` for details.
- **data**: A data frame in which to interpret the variables named in the formula argument.
- **Density**: Density function of the censored covariate.
SurvRegCens

initial
Initial values for the parameters to be optimized over, ordered according to Scale parameter, Shape parameter, regression parameters (i.e. β) linked to the non-censored covariates, regression parameter (i.e. β) linked to the censored covariate. A straightforward initial vector is based on ignoring the censoring of the censored covariate and using `survreg`, see the example below for an illustration.

conf.level
Confidence level of confidence intervals.

intlimit
In computation of integrals, values of the function to be integrated below `intlimit` are set to 0. This makes integration results more accurate and speeds up integration. If the data is such that the absolute values of the underlying baseline Weibull density are very small, i.e. in the range of `intlimit`, it is advisable to rescale the time variable, e.g. change the scaling from days to years. A very small value of the estimated λ is indicative of that situation.

namCens
Name of censored covariate, to tidy outputs.

trace
Trace argument in `optim`, indicates whether to show optimization progress.

reltol
`reltol` argument in `optim`. By changing this one can modify the relative tolerance in maximization of the likelihood function.

Details

The time-to-event distributed according to a Weibull distribution, i.e. time-to-event \sim Weibull(λ, γ), has conditional density given by,

$$f_{Y|X}(t|x_i, \beta) = \gamma \lambda \gamma^{-1} \exp (x_i \beta) \exp (-\lambda t \gamma \exp (x_i \beta)),$$

conditional hazard function given by,

$$h_{i}(t|x_i, \beta) = \lambda \gamma t \gamma^{-1} \exp (x_i \beta),$$

and conditional survival function given by,

$$S_{i}(t|x_i, \beta) = \exp (-\lambda t \gamma \exp (x_i \beta)),$$

where x_i collects the values of each covariate for observation i and β represents the regression parameters.

Value

`SurvRegCens` returns an object of class "src", a list containing the following components:

- **coeff**: Estimators, confidence intervals, p-values for the for the null hypothesis: {Estimators is equal to 0}, and this for each of the parameters of the Weibull survival regression model.
- **percent.cens**: Percentage of censored observations in the censored covariate.
- **loglik**: Log-likelihood function value at the estimators.
- **info.converg**: Convergence information provided by the function `optim`.
- **info.converg.message**: Message provided by `optim`.

The methods `print.src`, `summary.src`, `coef.src`, and `logLik.src` are used to print or obtain a summary, coefficients, or the value of the log-likelihood at the maximum.
Author(s)
Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
Kaspar Rufibach, <kaspar.rufibach@gmail.com>
http://www.kasparrufibach.ch

References

Examples
Not run:
--
1 censored-covariate and 2 non-censored covariates
no censoring, to compare result with survival::survreg
modify prop.cens to introduce left-censoring of covariate
--

set.seed(158)
n <- 100
lambda <- exp(-2)
gamma <- 1.5

vector of regression parameters: the last entry is the one for the censored covariate
beta <- c(0.3, -0.2, 0.25)
true <- c(lambda, gamma, beta)

non-censored covariates
var1 <- rnorm(n, mean = 4, sd = 0.5)
var2 <- rnorm(n, mean = 4, sd = 0.5)

Generate censored covariate.
For generation of Weibull survival times, do not left-censor it yet.
var3 <- rnorm(n, mean = 5, sd = 0.5)

simulate from a Weibull regression model
time <- TimeSampleWeibull(covariate_noncens = data.frame(var1, var2),
 covariate_cens = var3, lambda = lambda, gamma = gamma, beta = beta)

left-censor covariate
prop.cens specifies the proportion of observations that should be left-censored
prop.cens <- 0
LOD <- qnorm(prop.cens, mean = 5, sd = 0.5)
var3.cens <- censorContVar(var3, LLOD = LOD)
SurvRegCens

censor survival time
event <- matrix(1, nrow = n, ncol = 1)
time.cens <- rexp(n, rate = 0.5)

ind.time <- (event >= time.cens)

event[ind.time] <- 0
time[ind.time] <- time.cens[ind.time]

specify the density for the censored covariate:
For simplicity, we take here the "true" density we simulate from. In an application,
you might want to use a density with parameters estimated from the censored covariate,
e.g. using the function ParamSampleCens. See example in Hubeaux & Rufibach (2014).
DensityCens <- function(value) {return(dnorm(value, mean = 5, sd = 0.5))}

use Weibull regression where each censored covariate value is set
to LOD ("naive" method)
naive <- survreg(Surv(time, event) ~ var1 + var2 + var3.cens[, 2], dist = "weibull")
initial <- as.vector(ConvertWeibull(naive)$vars[, 1])

use new method that takes into account the left-censoring of one covariate
data <- data.frame(time, event, var3.cens, var1, var2)

formula <- formula(Surv(time, event) ~ Surv(time = var3.cens[, 1], time2 = var3.cens[, 2],
 type = "interval2") + var1 + var2)
cens1 <- SurvRegCens(formula = formula, data = data, Density = DensityCens, initial = initial,
 namCens = "biomarker")
summary(cens1)
coef(cens1)
logLik(cens1)

compare estimates
tab <- data.frame(cbind(true, initial, cens1$coeff[, 1]))
colnames(tab) <- c("true", "naive", "Weibull MLE")
rownames(tab) <- rownames(cens1$coeff)
tab

compare confidence intervals
ConvertWeibull(naive)$HR[, 2:3]
cens1$coeff[, 7:8]

model without the non-censored covariates
naive2 <- survreg(Surv(time, event) ~ var3.cens[, 2], dist = "weibull")
initial2 <- as.vector(ConvertWeibull(naive2)$vars[, 1])

use new method that takes into account the left-censoring of one covariate
formula <- formula(Surv(time, event) ~ Surv(time = var3.cens[, 1], time2 = var3.cens[, 2],
 type = "interval2")
cens2 <- SurvRegCens(formula = formula, data = data, Density = DensityCens, initial = initial2,
 namCens = "biomarker")
summary(cens2)

compare estimates
tab <- data.frame(cbind(true[1, 2, 5], initial2, cens2$coeff[, 1]))
colnames(tab) <- c("true", "naive", "Weibull MLE")
rownames(tab) <- rownames(cens2$coeff)
tab

compare confidence intervals
ConvertWeibull(naive2)$HR[, 2:3]
cens2$coeff[, 7:8]

End(Not run)

TimeSampleWeibull
Generate time-to-event data according to a Weibull regression model

Description

Generates time-to-event data using the transform inverse sampling method, and such that the time-to-event is distributed according to a Weibull distribution induced by censored and/or non-censored covariates. Can be used to set up simulations.

Usage

```r
TimeSampleWeibull(covariate_noncens = NULL, covariate_cens, lambda, gamma, beta)
```

Arguments

- `covariate_cens` Censored covariate vector.
- `covariate_noncens` Matrix where each column represents a non-censored covariate.
- `lambda` Scale parameter.
- `gamma` Shape parameter.
- `beta` Regression parameters, ordered as β linked to the non-censored covariates, β linked to the censored covariate.

Note

The use of this function is illustrated in `SurvRegCens`.

Author(s)

Stanislas Hubeaux, <stan.hubeaux@bluewin.ch>
WeibullDiag

Diagnostic Plot of Adequacy of Weibull Distribution

Description
This function constructs a diagnostic plot of the adequacy of the Weibull distribution for survival data with respect to one categorical covariate. If the Weibull distribution fits the data well, then the lines produced should be linear and parallel.

Usage
WeibullDiag(formula, data = parent.frame(), labels = names(m$strata))

Arguments
- formula: A formula containing a `Surv` object, should only contain one categorical predictor, or a set of indicators describing only one predictor.
- data: Data set.
- labels: A vector containing labels for the plotted lines.

Details
As discussed in Klein and Moeschberger (2003), one method for checking the adequacy of the Weibull model with a categorical covariate is to produce stratified Kaplan-Meier estimates (KM), which can be transformed to estimate the log cumulative hazard for each stratum. Then in a plot of \(\log(t) \) versus \(\log(-\log(KM)) \), the lines should be linear and parallel. This can be seen as the log cumulative hazard for the Weibull distribution is

\[
\log H(t) = \log \lambda + \alpha \log t.
\]

Value
Produces a plot of log Time vs. log Estimated Cumulative Hazard for each level of the predictor (similarly to what can be obtained using `plot.survfit` and the `fun = "cloglog"` option), as well as a data set containing that information.

Author(s)
Sarah R. Haile, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, <sarah.haile@uzh.ch>

References
WeibullIntegrate

See Also

Requires survival. A similar plot can be produced using plot.survfit and the option fun = "cloglog".

Examples

data(larynx)
WeibullDiag(Surv(time, death) ~ stage, data = larynx)

Description

Function to be integrated to compute log-likelihood function for the Weibull survival regression model with a censored covariate.

Usage

WeibullIntegrate(x, x_i_noncens = NULL, density, param_y_i, param_delta_i, param_lambda, param_gamma, param_beta, intlimit = 10^-10, ForIntegrate = TRUE)

Arguments

x Value of the censored covariate for observation \(i \).
x_i_noncens Vector of values of the non-censored covariates for observation \(i \), i.e. one row of the matrix where each column represents a non-censored covariate.
density Density function of the censored covariate.
param_y_i Value of the time-to-event for observation \(i \).
param_delta_i Censoring indicator of time-to-event for observation \(i \) (0: censored, 1: not censored).
param_lambda Scale parameter of the Weibull distribution.
param_gamma Shape parameter of the Weibull distribution.
param_beta Regression parameters (i.e. \(\beta \)): \(\beta_{\text{NonCens1}}, ..., \beta_{\text{NonCens}}, \beta_{\text{Cens}} \)
intlimit In computation of integrals, values of the function to be integrated below intlimit are set to 0. This makes integration results more accurate and speeds up integration. If the data is such that the absolute values of the underlying baseline Weibull density are very small, i.e. in the range of intlimit, it is advisable to rescale the time variable, e.g. change the scaling from days to years. A very small value of the estimated \(\lambda \) is indicative of that situation.
ForIntegrate logical indicating whether the function is to be integrated or not.
WeibullReg

Weibull Regression for Survival Data

Description

WeibullReg performs Weibull regression using the `survreg` function, and transforms the estimates to a more natural parameterization. Additionally, it produces hazard ratios (corresponding to the proportional hazards interpretation), and event time ratios (corresponding to the accelerated failure time interpretation) for all covariates.

Usage

```
WeibullReg(formula, data = parent.frame(), conf.level = 0.95)
```

Arguments

- `formula`: A `Surv` formula.
- `data`: The dataset containing all variables referenced in `formula`.
- `conf.level`: Specifies that $1 - \alpha$ level confidence intervals for the hazard and event time ratios should be produced.

Details

Details regarding the transformations of the parameters and their standard errors can be found in Klein and Moeschberger (2003, Chapter 12). An explanation of event time ratios for the accelerated failure time interpretation of the model can be found in Carroll (2003). A general overview can be found in the vignette("weibull") of this package, or in the documentation for `ConvertWeibull`.

Value

- `formula`: The formula for the Weibull regression model.
- `coef`: The transformed maximum likelihood estimates, with standard errors.
- `HR`: The hazard ratios for each of the predictors, with $1 - \alpha$ level confidence intervals.
- `ETR`: The event time ratios (acceleration factors) for each of the predictors, with $1 - \alpha$ level confidence intervals.
- `summary`: The summary output from the original `survreg` model.
Author(s)
Sarah R. Haile, Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, <sarah.haile@uzh.ch>

References

See Also
Requires the package `survival`. This function depends on ConvertWeibull. See also `survreg`.

Examples
```r
data(larynx)
WR <- WeibullReg(Surv(time, death) ~ factor(stage) + age, data = larynx)
WR
```
Index

* datasets
 larynx, 7
* htest
 coef.src, 5
 logLik.src, 8
 print.src, 15
 summary.src, 16
* methods
 CDF, 3
 censorContVar, 4
 LoglikCens, 9
 LoglikNormalDeltaCens, 10
 LoglikWeibullSurvRegCens, 11
 NormalMeanDiffCens, 12
 ParamSampleCens, 14
 SurvRegCens, 17
 TimeSampleWeibull, 21
 WeibullIntegrate, 23
* nonparametric
 coef.src, 5
 logLik.src, 8
 print.src, 15
 summary.src, 16
* package
 SurvRegCensCov-package, 2
* regression
 ConvertWeibull, 6
 SurvRegCens, 17
 WeibullDiag, 22
 WeibullReg, 24
* survival
 ConvertWeibull, 6
 SurvRegCens, 17
 WeibullDiag, 22
 WeibullReg, 24

CDF, 3
 censorContVar, 4
 coef.src, 5, 18
 ConvertWeibull, 2, 6, 24, 25

F_time (TimeSampleWeibull), 21
formula, 17
h_conditional
 (LoglikWeibullSurvRegCens), 11
larynx, 7
lm, 17
logLik.src, 8, 18
LoglikCens, 9
LoglikGammaCens (LoglikCens), 9
LoglikLogisticCens (LoglikCens), 9
LoglikNormalCens (LoglikCens), 9
LoglikNormalDeltaCens, 10
LoglikWeibullCens (LoglikCens), 9
LoglikWeibullSurvRegCens, 11
NormalMeanDiffCens, 2, 12
optim, 18
ParamSampleCens, 2, 14
plot.survfit, 22, 23
print.src, 15, 18
S_conditional
 (LoglikWeibullSurvRegCens), 11
summary.src, 16, 18
Surv, 4, 13, 14, 17, 22, 24
survreg, 6, 18, 24, 25
SurvRegCens, 2, 5, 16, 17, 17, 18, 21, 23
SurvRegCensCov
 (SurvRegCensCov-package), 2
SurvRegCensCov-package, 2
SurvRegCensCov-package
 (SurvRegCensCov-package), 2
survtime (TimeSampleWeibull), 21
TimeSampleWeibull, 21
WeibullDiag, 2, 22
WeibullIntegrate, 23
WeibullReg, 2, 7, 24