Package ‘TDAmapper’

August 29, 2016

Title Analyze High-Dimensional Data Using Discrete Morse Theory
Version 1.0
Date 2015-05-26
Author Paul Pearson [aut, cre, trl],
 Daniel Muellner [aut, ctb],
 Gurjeet Singh [aut, ctb]
Maintainer Paul Pearson <pearsonp@hope.edu>

Description Topological Data Analysis using Mapper (discrete Morse theory).
Generate a 1-dimensional simplicial complex from a filter
function defined on the data: 1. Define a filter function (lens) on the
data. 2. Perform clustering within each level set and generate
one node (vertex) for each cluster. 3. For each pair of clusters in
adjacent level sets with a nonempty intersection, generate one edge
between vertices. The function mapper1D uses a filter function with
codomain R, while the function mapper2D uses a filter function with
codomain R^2.

Depends R (>= 3.1.2)
Suggests fastcluster, igraph
License GPL-3
LazyData true

URL https://github.com/paultpearson/TDAmapper/
BugReports https://github.com/paultpearson/TDAmapper/issues

R topics documented:

 cluster_cutoff_at_first_empty_bin . 2
 mapper1D . 3
 mapper2D . 4
cluster_cutoff_at_first_empty_bin

Description

This function decides where to cut the hierarchical clustering tree to define clusters within a level set.

Usage

cluster_cutoff_at_first_empty_bin(heights, diam, num_bins_when_clustering)

Arguments

heights Height values in hierarchical clustering.
diam Maximum distance between points in a level set.
num_bins_when_clustering Controls how many bins there are in the histogram used to determine cutoff.

Value

Numerical value for cutoff point of hierarchical cluster diagram.

Author(s)

Paul Pearson, <pearsonp@hope.edu>

References

https://github.com/paultpearson/TDAmapper

See Also

mapper1D, mapper2D
mapper1D

mapper1D function

Description

This function uses a filter function \(f: X \to \mathbb{R} \) on a data set \(X \) that has \(n \) rows (observations) and \(k \) columns (variables).

Usage

mapper1D(distance_matrix = dist(data.frame(x = 2 * cos(0.5 * (1:100)), y = sin(1:100))), filter_values = 2 * cos(0.5 * (1:100)), num_intervals = 10, percent_overlap = 50, num_bins_when_clustering = 10)

Arguments

distance_matrix
An \(n \times n \) matrix of pairwise dissimilarities.

filter_values
A length \(n \) vector of real numbers.

num_intervals
A positive integer.

percent_overlap
A number between 0 and 100 specifying how much adjacent intervals should overlap.

num_bins_when_clustering
A positive integer that controls whether points in the same level set end up in the same cluster.

Value

An object of class TDAmapper which is a list of items named adjacency (adjacency matrix for the edges), num_vertices (integer number of vertices), level_of_vertex (vector with level_of_vertex[i] = index of the level set for vertex i), points_in_vertex (list with points_in_vertex[[i]] = vector of indices of points in vertex i), points_in_level (list with points_in_level[[i]] = vector of indices of points in level set i, and vertices_in_level (list with vertices_in_level[[i]] = vector of indices of vertices in level set i).

Author(s)

Paul Pearson, <pearsonp@hope.edu>

References

https://github.com/paultpearson/TDAmapper

See Also

mapper2D
mapper2D

mapper2D function

Description

This function uses a filter function \(f: X \rightarrow \mathbb{R}^2 \) on a data set \(X \) that has \(n \) rows (observations) and \(k \) columns (variables).

Usage

mapper2D(distance_matrix = dist(data.frame(x = 2 * cos(1:100), y = sin(1:100))), filter_values = list(2 * cos(1:100), sin(1:100)), num_intervals = c(5, 5), percent_overlap = 50, num_bins_when_clustering = 10)

Arguments

distance_matrix
 an \(n \times n \) matrix of pairwise dissimilarities

filter_values
 a list of two length \(n \) vector of real numbers

num_intervals
 a vector of two positive integers

percent_overlap
 a number between 0 and 100 specifying how much adjacent intervals should overlap

num_bins_when_clustering
 a positive integer that controls whether points in the same level set end up in the same cluster

Examples

\[
\begin{align*}
m1 & \leftarrow \text{mapper1D}(
 \text{distance_matrix} = \text{dist(data.frame(x = 2 * cos(1:100), y = sin(1:100))}, \\
 \text{filter_values} = 2 * \text{cos}(0.5 * (1:100)), \\
 \text{num_intervals} = 10, \\
 \text{percent_overlap} = 50,
 \text{num_bins_when_clustering} = 10)
\end{align*}
\]

not run:
#install.packages("igraph")
library(igraph)
g1 \leftarrow \text{graph.adjacency(m1$adjacency, mode="undirected")}
plot(g1, layout = layout.auto(g1))

End(not run)
Value

An object of class TDAmapper which is a list of items named adjacency (adjacency matrix for the edges), num_vertices (integer number of vertices), level_of_vertex (vector with level_of_vertex[i] = index of the level set for vertex i), points_in_vertex (list with points_in_vertex[[i]] = vector of indices of points in vertex i), points_in_level (list with points_in_level[[i]] = vector of indices of points in level set i, and vertices_in_level (list with vertices_in_level[[i]] = vector of indices of vertices in level set i.

Author(s)

Paul Pearson, <pearsonp@hope.edu>

References

https://github.com/paultpearson/TDAmapper

See Also

mapper1D

Examples

m2 <- mapper2d(
 distance_matrix = dist(data.frame(x=2*cos(1:100), y=sin(1:100))),
 filter_values = list(2*cos(1:100), sin(1:100)),
 num_intervals = c(5,5),
 percent_overlap = 50,
 num_bins_when_clustering = 10)

not run:
library(igraph)
g2 <- graph.adjacency(m2$adjacency, mode="undirected")
plot(g2, layout = layout.auto(g2))

End(Not run)
Index

*Topic mapper1D
 mapper1D, 3

*Topic mapper2D
 mapper2D, 4

cluster_cutoff_at_first_empty_bin, 2

mapper1D, 2, 3, 5
mapper2D, 2, 3, 4