Package ‘TE’

August 22, 2018

Type Package
Version 0.3-0
Title Insertion/Deletion Dynamics for Transposable Elements
License MIT + file LICENSE
Description Provides functions to estimate the insertion and deletion rates of transposable element (TE) families. The estimation of insertion rate consists of an improved estimate of the age distribution that takes into account random mutations, and an adjustment by the deletion rate. A hypothesis test for a uniform insertion rate is also implemented. This package implements the methods proposed in Dai et al (2018).

LazyData true
Depends R (>= 2.10)
Imports MASS, rainbow
RoxygenNote 6.1.0
NeedsCompilation no
Author Xiongtao Dai [aut, cre, cph],
 Hao Wang [aut],
 Jan Dvorak [ctb],
 Jeffrey Bennetzen [ctb],
 Hans-Georg Mueller [ctb]
Maintainer Xiongtao Dai <xdai@iastate.edu>
Repository CRAN
Date/Publication 2018-08-22 19:40:06 UTC

R topics documented:

AetLTR 2
AlyLTR 3
EstDynamics 3
MasterGene 5
MatrixModel 7
nbLackOfFitKL 8
AetLTR

Description

This data file contains the LTR retrotransposons in Ae. tauschii.

Format

A data frame with 18024 rows and 12 columns. Each row corresponds to a unique LTR retrotransposon, and each column corresponds to a feature of the LTR-RT. The columns are:

- **SeqID**: LTR retrotransposon sequence ID
- **UngapedLen**: Length of each LTR
- **Mismatch**: Number of mismatches
- **Distance**: Divergence, as defined by (# of mismatches) / (LTR length)
- **Chr**: Chromosome number
- **Start**: Start location in bp
- **Stop**: Ending location in bp
- **GroupID**: LTR retrotransposon Family ID
- **sup**: Super family membership
- **recRt5**: Recombination rate
- **nearOld**: Whether the LTR-RT is near a gene that is colinear with wild emmer (TRUE) or not (FALSE)
- **cCodon**: Whether the LTR-RT is near the start codon (1) or not (-1)
- **logDist**: Log distance to the nearest gene in bp
- **distToGene**: Distance to the nearest gene in bp

References

Description

This data file contains the LTR retrotransposons in *Arabidopsis lyrata*.

Format

A data frame with 397 rows and 7 columns. Each row corresponds to a unique LTR retrotransposon, and each column corresponds to a feature of the LTR-RT. The columns are:

- **SeqID** LTR retrotransposon sequence ID
- **UngapedLen** Length of each LTR
- **Mismatch** Number of mismatches
- **Distance** Divergence, as defined by (# of mismatches) / (LTR length)
- **sup** Super family membership
- **GroupID** LTR retrotransposon Family ID
- **thaID** Family name matched in the LTR-RT families of A. thaliana

References

EstDynamics

Estimate TE dynamics using mismatch data

Description

Given the number of mismatches and element lengths for an LTR retrotransposon family, estimate the age distribution, insertion rate, and deletion rates.

Usage

```r
EstDynamics(mismatch, len, r = 0.013, perturb = 2, rateRange = NULL, plotFit = FALSE, plotSensitivity = FALSE, pause = plotFit && plotSensitivity, main = sprintf("n = %d", n))

EstDynamics2(mismatch, len, r = 0.013, nTrial = 10L, perturb = 2, rateRange = NULL, plotFit = FALSE, plotSensitivity = FALSE, pause = plotFit && plotSensitivity, ...)
```
Arguments

- mismatch: A vector containing the number of mismatches.
- len: A vector containing the length of each element.
- r: Mutation rate (substitutions/(million year * site)) used in the calculation.
- perturb: A scalar multiple to perturb the estimated death rate from the null hypothesis estimate. Used to generate the sensitivity analysis.
- rateRange: A vector of death rates, an alternative to perturb for specifying the death rates.
- plotFit: Whether to plot the distribution fits.
- plotSensitivity: Whether to plot the sensitivity analysis.
- pause: Whether to pause after each plot.
- main: The title for the plot.
- nTrial: The number of starting points for searching for the MLE.

Details

`EstDynamics` estimates the TE dynamics through fitting a negative binomial fit to the mismatch data, while `EstDynamics2` uses a mixture model. For detailed implementation see References.

Value

`EstDynamics` returns a `TEfit` object, containing the following fields, where the unit for time is million years ago (Mya):

- pvalue: The p-value for testing H_0: The insertion rate is uniform over time.
- ageDist: A list containing the estimated age distributions.
- insRt: A list containing the estimated insertion rates.
- agePeakLoc: The maximum point (in age) of the age distribution.
- insPeakLoc: The maximum point (in time) of the insertion rate.
- estimates: The parameter estimates from fitting the distributions; see References
- sensitivity: A list containing the results for the sensitivity analysis, with fields time: time points; delRateRange: A vector for the range of deletion rates; insRange: A matrix whose columns contain the insertion rates under different scenarios.

n: The sample size.

meanLen: The mean of element length.

meanDiv: The mean of divergence.

KDE: A list containing the kernel density estimate for the mismatch data.

logLik: The log-likelihoods of the parametric fits.

This function returns a `TEfit2` object, containing all the above fields for `TEfit` and the following:

- estimates2: The parameter estimates from fitting the mixture distribution.
ageDist2 The estimated age distribution from fitting the mixture distribution.
insRt2 The estimated insertion rate from fitting the mixture distribution.
agePeakLoc2 Maximum point(s) for the age distribution.
insPeakLoc2 Maximum point(s) for the insertion rate.

References

Examples

Analyze Gypsy family 24 (Nusif)
data(AetLTR)
dat <- subset(AetLTR, GroupID == 24 & !is.na(Chr))
set.seed(1)
res1 <- EstDynamics(dat$Mismatch, dat$UngapedLen, plotFit=TRUE, plotSensitivity=FALSE, pause=FALSE)

p-value for testing a uniform insertion rate
res1$pvalue

Use a mixture distribution to improve fit
res2 <- EstDynamics2(dat$Mismatch, dat$UngapedLen, plotFit=TRUE)

A larger number of trials is recommended to achieve the global MLE
Not run:
res3 <- EstDynamics2(dat$Mismatch, dat$UngapedLen, plotFit=TRUE, nTrial=1000L)
End(Not run)

MasterGene Implements the master gene model in Marchani et al (2009)

Description

Implements the master gene model in Marchani et al (2009)

Usage

MasterGene(mismatch, len, r = 0.013, plotFit = FALSE,
 main = sprintf("n = %d", n))
Arguments

- **mismatch**: A vector containing the number of mismatches.
- **len**: A vector containing the length of each element.
- **r**: Mutation rate (substitutions/(million year * site)) used in the calculation.
- **plotFit**: Whether to plot the distribution fits.
- **main**: The title for the plot.

Details

For the method implemented see References.

Value

This function returns various parameter estimates described in Marchani et al (2009), containing the following fields. The unit for time is million years ago (mya):

- **B**: The constant insertion rate
- **q**: The constant excision rate
- **lam**: The population growth rate
- **R**: The ratio of the number of elements in class j over class j+1, which is constant by assumption
- **age1**: The age of the system under model 1 (lambda > 1)
- **age2**: The age of the system under model 2 (an initial burst followed by stasis lambda = 1)

References

Examples

```r
# Analyze Gypsy family 24 (Nusif)
data(AetLTR)
dat <- subset(AetLTR, GroupID == 24 & !is.na(Chr))
res2 <- MasterGene(dat$Mismatch, dat$UngapedLen, plotFit=TRUE)
```
Description

Implements the matrix model in Promislow et al (1999)

Usage

\[
\text{MatrixModel}(\text{mismatch}, \text{len}, \text{nsolo}, r = 0.013, \text{plotFit} = \text{FALSE}, \\
\text{main} = \text{sprintf("n = \%d", n)})
\]

Arguments

- **mismatch**: A vector containing the number of mismatches.
- **len**: A vector containing the length of each element.
- **nsolo**: An integer giving the number of solo elements.
- **r**: Mutation rate (substitutions/(million year * site)) used in the calculation.
- **plotFit**: Whether to plot the distribution fits.
- **main**: The title for the plot.

Details

For the method implemented see References.

Value

This function returns various parameter estimates described in Promislow et al. (1999), containing the following fields. The unit for time is million years ago (Mya):

- **B**: The constant insertion rate
- **q**: The constant excision rate
- **lam**: The population growth rate
- **R**: The ratio of the number of elements in class j over class j+1, which is constant by assumption
- **age1**: The age of the system under model 1 (lambda > 1)
- **age2**: The age of the system under model 2 (an initial burst followed by stasis lambda = 1)

References

Examples

```r
# Analyze Gypsy family 24 (Nusif)
data(AetLTR)
dat <- subset(AetLTR, GroupID == 24 & !is.na(Chr))
res1 <- MatrixModel(dat$Mismatch, dat$UngapedLen, nsolo=450, plotFit=TRUE)
```

`nbLackOffitKL` *Calculate the KL divergence of a negative binomial fit to the mismatch data.*

Description

Calculate the KL divergence of a negative binomial fit to the mismatch data.

Usage

```r
nbLackOffitKL(res)
```

Arguments

- `res` A `TEfit` object.

Examples

```r
# Analyze Gypsy family 24 (Nusif)
data(AetLTR)
dat <- subset(AetLTR, GroupID == 24 & !is.na(Chr))
set.seed(1)
res1 <- EstDynamics(dat$Mismatch, dat$UngapedLen, plotFit=TRUE, plotSensitivity=FALSE, pause=FALSE)
nbLackOffitKL(res1)
```

`plotfamilies` *Plot the age distributions or insertion rates for multiple families.*

Description

Plot the age distributions or insertion rates for multiple families.

Usage

```r
PlotFamilies(resList, type = c("insRt", "ageDist"), ...)
```

Arguments

- `resList` A list of `TEfit` objects, which can be mixed
- `type` Whether to plot the insertion rates (`'insRt'`) or the age distributions (`'ageDist'`).
- `...` Passed into plotting functions.
print.TEfit

Value

A list of line data (plotDat) and peak locations (peakDat).

Examples

data(AetLTR)
copia3 <- subset(AetLTR, GroupID == 3 & !is.na(Chr))
gypsy24 <- subset(AetLTR, GroupID == 24 & !is.na(Chr))
res3 <- EstDynamics(copia3$Mismatch, copia3$UngapedLen)
res24 <- EstDynamics2(gypsy24$Mismatch, gypsy24$UngapedLen)

Plot insertion rates
PlotFamilies(list('Copia 3'=res3, 'Gypsy 24'=res24))

Plot age distributions
PlotFamilies(list('Copia 3'=res3, 'Gypsy 24'=res24), type='ageDist')
SensitivityPlot

Generate sensitivity plots

Description

Create sensitivity plots of a few families to investigate different death rate scenarios

Usage

SensitivityPlot(resList, col, xMax, markHalfPeak = FALSE, famLegend = TRUE, rLegend = names(resList), ...)

Arguments

resList A list of families returned by EstDynamics
col A vector of colors
xMax The maximum of the x-axis
markHalfPeak Whether to mark the time points with half-intensity
famLegend Whether to create legend for families
rLegend Text for the legend for families
... Passed into matplot

Examples

data(AetLTR)
copia3 <- subset(AetLTR, GroupID == 3 & !is.na(Chr))
copia9 <- subset(AetLTR, GroupID == 9 & !is.na(Chr))
res3 <- EstDynamics(copia3$Mismatch, copia3$UngapedLen)
res9 <- EstDynamics(copia9$Mismatch, copia9$UngapedLen)
SensitivityPlot(list('Copia 3'=res3, 'Copia 9'=res9))

TE

TE: Insertion/Deletion Dynamics for Transposable Elements

Description

TE package for analyzing insertion/deletion dynamics for transposable elements

Details

Provides functions to estimate the insertion and deletion rates of transposable element (TE) families. The estimation of insertion rate consists of an improved estimate of the age distribution that takes into account random mutations, and an adjustment by the deletion rate. This package includes functions EstDynamics and EstDynamics2 for analyzing the TE divergence, and visualization functions such as PlotFamilies and SensitivityPlot. This package implements the methods proposed in Dai et al (2018+).
Author(s)

Xiongtao Dai <xdai@iastate.edu>, Hao Wang Jan Dvorak Jeffrey Bennetzen Hans-Georg Mueller
Maintainer: Xiongtao Dai <xdai@iastate.edu>

References

Index

AeLTR, 2
AlyLTR, 3

EstDynamics, 3, 10
EstDynamics2(EstDynamics), 3

MasterGene, 5
MatrixModel, 7

nBlackOffitKL, 8

PlotFamilies, 8
print.TEfit, 9
print.TEfit2(print.TEfit), 9

SensitivityPlot, 10

TE, 10
TE-package (TE), 10