Package ‘TFDEA’

March 30, 2015

Version 0.9.8.3
Date 2015-03-28
Title Technology Forecasting using DEA (Data Envelopment Analysis)
Depends R (>= 3.0.0), lpSolveAPI
License GPL-2
Description The TFDEA algorithm for technology forecasts when future products will be introduced based upon their features. It also includes DEA (Data Envelopment Analysis) functions including extensions dealing with infeasibility. In addition it includes some standard technology forecasting data sets.

URL http://www.pdx.edu/extreme-technology-analytics/open-tfdea-r-package
Author Tom Shott [aut, cre],
Dong-Joon Lim [aut]
Maintainer Tom Shott <tshott@pdx.edu>
NeedsCompilation no
Repository CRAN
Date/Publication 2015-03-30 15:07:52

R topics documented:

DEA ... 2
fighter_jet .. 4
isEfficient ... 5
SDEA ... 6
TFDEA ... 8
wireless_2012 .. 10

Index 12
DEA: Data Envelopment Analysis

Description
Estimates a Data Envelopment Analysis frontier and calculates efficiency measures

Usage
DEA(x, y, rts="vrs", orientation="input", slack=TRUE, dual=FALSE, second="none", z=NULL, round=FALSE, debug=1)

Arguments
- x: Inputs or resources used by each decision making unit.
- y: Outputs or products of each decision making unit. Must have same number of rows as x.
- rts: Returns to scale for the application, production technology, or industry studied.
- vrs: Variable returns to scale, convexity and free disposability.
- drs: Decreasing returns to scale, convexity, down-scaling and free disposability.
- crs: Constant returns to scale, convexity and free disposability.
- irs: Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability.
- orientation: Orientation of the DEA model - primary emphasis on input-reduction input or output-augmentation output.
- slack: Optional: slack=TRUE indicates a secondary objective function of maximizing radial slacks to identify weakly efficient DMUs.
- dual: Optional: dual=TRUE reports back the dual weights (multipliers) for the inputs and outputs.
- round: Optional: round=TRUE rounds efficiency values to 0 and 1 if close.
- second: Optional: Enables an alternate secondary objective function based on lambda and the z argument. The default is none. Other options are min or max which will then minimize or maximize z*lambda while holding efficiency constant for each decision making unit. Note that this precludes slack maximization in the current implementation.
- z: Optional: a matrix with one column and the same number of rows (decision making units) as x and y, it is only used when second=min or max.
- debug: Optional: Only for debugging. If debug is a integer greater then zero debug information will be output.

Details
This DEA function draws inspiration from previous R packages for doing DEA including Benchmarking and FEAR. As such it was designed to use similar parameters and return similar results.
to allow users to switch between packages. The DEA function was developed to support a function for doing Technology Forecasting using Data Envelopment Analysis or TFDEA. In particular, TFDEA requires an option to resolve multiple optima that is similar to but different from the standard slack maximization approach in Data Envelopment Analysis. This feature is exposed through DEA function’s second and z parameters.

Value

status
If the solver returned a non-zero status for each decision making unit

eff
Efficiency score for each decision making unit

λ values for each decision making unit

vx
Input weights used by each decision making unit, only returned when dual=TRUE

vy
Output weights used by each decision making unit, only returned when dual=TRUE

w
W value for each decision making unit, only returned when dual=TRUE

sx
Radial input slacks, only returned when slack=TRUE

sy
Radial output slacks, only returned when slack=TRUE

References

Bogetoft and Otto; Benchmarking with DEA, SFA, and R; Springer 2011

See Also

SDEA Super-efficiency - an extension to regular DEA that allows for differentiating between efficient DMUs.

TFDEA Technology Forecasting using Data Envelopment Analysis - a method of technology forecasting using past data to predict future capabilities

Examples

```r
x <- matrix(c(8,2,4,7,2,8,4,3),ncol=2,dimnames=list(LETTERS[1:4]))
colnames(x) = c("X1", "X2")
y <- matrix(c(1,1,1,1),ncol=1,dimnames=list(LETTERS[1:4],"Y"))

# Simple radial DEA efficiency
DEA(x, y, rts="crs", orientation="input")

# Simple radial DEA efficiency with slack maximization
DEA(x, y, rts="crs", orientation="input", slack=TRUE)

# Example of secondary objective function
x <- matrix(c(8,2,4,7,10,12,2,8,4,3,2,2),ncol=2,dimnames=list(LETTERS[1:6]))
colnames(x) = c("X1", "X2")
y <- matrix(c(1,1,1,1,1),ncol=1,dimnames=list(LETTERS[1:6],"Y"))
z <- matrix(c(1:6),ncol=1,dimnames=list(LETTERS[1:6],"Z"))
```
Data: Fighter Jet technology forecasting data

Description

Technical data from fighter jets for technology forecasting.

Usage

data(fighter_jet)

Format

A data frame containing historical jet fighter data for technology forecasting.

CruiseSpeed a numeric vector
FirstFlight a numeric vector
Guns a numeric vector
InstantaneousTurnRate a numeric vector
MaintenanceHoursPerFlightHour a numeric vector
MaximumMachNumber a numeric vector
MeanFlightHoursBetweenFailure a numeric vector
Name a numeric vector
NumberOfBVRMissiles a numeric vector
NumberOfDogfightMissiles a numeric vector
NumberOfSimultaneousTargets a numeric vector
Payload a numeric vector
RadarRange a numeric vector
Range a numeric vector
RangeOfBVRMissiles a numeric vector
RangeOfDogfightMissiles a numeric vector
SeaLevelClimbRate a numeric vector
SustainedTurnRate a numeric vector
TakeoffRoll a numeric vector
isEfficient

References

O. Inman, T.R. Anderson, R. Harmon, Predicting U.S. jet fighter aircraft introductions from 1944
1178–1187.

D.-J. Lim, T.R. Anderson, O.L. Inman, Choosing effective dates from multiple optima in Technol-
ogy Forecasting using Data Envelopment Analysis (TFDEA), Technol. Forecast. Soc. Change. 88

Examples

Reproduce the published results
data(fighter_jet)
attach(fighter_jet)
x <- data.frame(rep(1, 19)); row.names(x) <- Name
y <- data.frame(MeanFlightHoursBetweenFailure, Payload, MaximumMachNumber,
 RangeOfVBRMissiles);
row.names(y) <- Name
z <- data.frame(FirstFlight); row.names(z) <- Name
detach(fighter_jet)
TFDEA(x, y, z, 1960, rts="vrs", orientation="output", mode="dynamic",
 second="min", debug=0)

isEfficient Check if DEA DMU is efficient

Description

Checks that based upon model orientation a DMU is efficient. For input orientation DMU’s >= 0 are
efficient, for output orientation DMU’s <= 0.

Usage

isEfficient(eff, orientation)

Arguments

eff Efficiency - numeric value.

orientation Orientation is either input or output

Value

Returns a logical value.
Super-efficiency Data Envelopment Analysis

Description

Calculate Data Envelopment Analysis super-efficiency

Usage

```r
SDEA(x, y, rts="vrs", orientation="input", slack=TRUE, dual = FALSE, 
cook=FALSE, 
second="none", z=0, 
round=FALSE, debug=1)
```

Arguments

- **x** Inputs or resources used by each decision making unit
- **y** Outputs or products of each decision making unit
- **rts** Returns to scale for the application, production technology, or industry studied
 - **vrs** Variable returns to scale, convexity and free disposability
 - **drs** Decreasing returns to scale, convexity, down-scaling and free disposability
 - **crs** Constant returns to scale, convexity and free disposability
 - **irs** Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability
- **orientation** Orientation of the DEA model - primary emphasis on input-reduction input or output-augmentation output
- **slack** Optional: slack=TRUE indicates a secondary objective function of maximizing non-radial slacks
- **dual** Optional: dual=TRUE reports back the dual weights (multipliers) for the inputs and outputs
- **cook** Optional: cook=TRUE enables using Cook algo. to compute super efficiency of DMUs that are infeasible under the standard model.
- **round** Optional: round=TRUE rounds efficiency values to 0 and 1 if close.
- **second** Optional: Enables an alternate secondary objective function based on lambda and the z matrix. The default is second=none. Other options include min or max which will then minimize or maximize z*lambda while holding efficiency constant for each decision making unit. Note that this precludes slack maximization in the current implementation
- **z** Optional: a matrix with one column and the same number of rows (decision making units) as x and y, it is required when second=min or max
- **debug** Optional: Only for debugging. If debug is a integer greater then zero debug information is output.
Details

This function implements either the standard super-efficiency model or the Cook's extended model whereby each decision making unit is compared to all other decision making units but not itself. This allows for efficiency scores that are "better" than 1 for most efficient Decision Making Units. Note that the standard super-efficiency model can cause infeasibilities especially when the Variable Returns to Scale is assumed. (Ex. rts=vrs)

Value

status
If the solver returned a non-zero status for each decision making unit

eff
Efficiency score for each decision making unit

lambda
Lambda values for each decision making unit

se.eff
Tau(Gamma) in input(output)-orientated model, only returned when cook=TRUE

se.excess
Beta(Delta) in input(output)-oriented model, only returned when cook=TRUE

vx
Input weights used by each decision making unit, only returned when dual=TRUE

uy
Output weights used by each decision making unit, only returned when dual=TRUE

w
W value for each decision making unit, only returned when dual=TRUE

sx
Radial input slacks, only returned when slack=TRUE

sy
Radial output slacks, only returned when slack=TRUE

References

See Also

DEA Data Envelopment Analysis - provides a variety of standard DEA models for examining the efficiency of different decision making units.

TFDEA Technology Forecasting Using Data Envelopment Analysis - a method of technology forecasting using past data to predict future capabilities

Examples

```r
x <- matrix(c(1,2,3,4),ncol=1,dimnames=list(LETTERS[1:4],"X"))
y <- matrix(c(1,3,4,2),ncol=1,dimnames=list(LETTERS[1:4],"Y"))

# Simple radial DEA super-efficiency
SDEA(x, y, rts="vrs", orientation="input")

# Simple radial DEA super-efficiency with slack maximization
SDEA(x, y, rts="vrs", orientation="input", slack=TRUE)

# Cook's super-efficiency with slack maximization
```
SDEA(x, y, rts="vrs", orientation="input", slack=TRUE, cook=TRUE)

Example of secondary objective function
x <- matrix(c(8,2,4,7,10,12,2,8,4,3,2,2),ncol=2,dimnames=list(LETTERS[1:6]))
colnames(x) = c("X1", "X2")
y <- matrix(c(1,1,1,1,1,1),ncol=1,dimnames=list(LETTERS[1:6],"Y"))
z <- matrix(c(1:6),ncol=1,dimnames=list(LETTERS[1:6],"Z"))
SDEA(x, y, rts="crs", orientation="input", slack=FALSE, second="min", z=z)

TFDEA Technology Forecasting Using DEA

Description

Calculate the technology rate of change (ROC) which can then be used for predicting future product performance, estimate new product release dates, and other purposes.

Usage

TFDEA(x, y, dmu_date_rel, date_forecast, rts="vrs", orientation="output",
second="min", mode="static", segroc=FALSE, debug=1)

Arguments

x Inputs or resources used by each decision making unit
y Outputs or products of each decision making unit
dmu_date_rel Date of introduction (release) for decision making unit or product
date_forecast Date of forecast
rts Returns to scale for the application, production technology, or industry studied

vrs Variable returns to scale, convexity and free disposability
drs Decreasing returns to scale, convexity, down-scaling and free disposability
crs Constant returns to scale, convexity and free disposability
irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability

orientation Orientation of the DEA model - primary emphasis on input-reduction input or output-augmentation output. Note that unlike the DEA functions, the default is output orientation.

second Optional: Enables an alternate secondary objective function based on the product of lambda and dmu_date_rel. The default is min. Other options include none or max which will then skip this step or minimize date * lambda while holding the efficiency constant.

mode Declares if the technology forecast is done using static or dynamic frontiers.
A static frontier is where the forecast is made using a fixed date of `date_forecast`. A dynamic frontier allows for different based dates on the frontier based on the product of `dmu_date` and `lambda`. When a dynamic frontier is selected, a secondary objective function should be specified to avoid problems with multiple optima (second=min or max).

`segroc`
Uses segmented rate of change if `TRUE`.

`debug`
Optional: Only for debugging. If `debug` is a integer greater then zero debug information will be output.

Value

`TFDEA` returns sets of values at three points in time, at the initial release of the product, `_rel`, at the forecast data specified by `date_forecast`, `_cur`, and for the date in the future when the product is forecast for.

The function returns a number of values per product (DMU). The standardized efficiency (all inefficiencies are between 0 and 1, for input and output orientation) `eff`, and the lambda values, `lambda`, are returned.

A rate of technology change `roc` is returned for products efficient at release. At current time a local rate of change and at forecast time an individualized rate of change is returned - `sroc`. If `segroc = FALSE` then the `sroc` is the average rate of change and is the same for every product.

Lastly a date for current and forecast is returned, `date`. If `mode = dynamic` then the current date is the current date adjusted by what products the product is being compared to. If `static` is used then the date is the `date_forecast` for all products. If the product release date is in the future then a forecast for the product is returned.

Not all values are calculated for all products at all points in time. For example a a product released in the past with that is inefficient at release would not have a `roc` or `sroc` calculated because the product is not used to calculate the overall rate of technology change.

- `$date_soa`: List of unique release dates for conducting analyses
- `$dmu_eff_rel`: Efficiency per product (DMU) at time of release
- `$dmu_lambda_rel`: Lambdas per DMU at time of release
- `$dmu_eff_cur`: Efficiency per product (DMU) at current time (date of forecast)
- `$dmu_lambda_cur`: Lambdas per DMU at current time
- `$dmu_date_cur`: Adjusted current date for DMU
- `$dmu_roc_cur`: Rate of Change for product from date of release to current date
- `$dmu_sroc_cur`: Local rate of change for the product
- `$dmu_eff_for`: Superefficiency per product (DMU)
- `$dmu_lambda_for`: Lambda per DMU at forecast time
- `$dmu_date_for`: Date forecast for product based upon supereffeciency and technology rate of change
- `$dmu_sroc_for`: Individualized rate of change for product
- `$roc`: Average Rate of Technology Change
See Also

DEA
SDEA

Examples

Example from Inman (2004) p. 93-104, predicting flash drive introduction dates

drive <- c("A", "B", "C", "D", "E", "F", "G")

x <- data.frame(c(16, 14, 8, 25, 40, 30, 40))
rownames(x) <- drive
colnames(x) <- c("Cost")

y <- data.frame(c(16, 32, 32, 128, 32, 64, 256))
rownames(y) <- drive
colnames(y) <- c("Capacity")

rownames(z) <- drive
colnames(z) <- c("Date_Intro")

Calc intro date for products using forecast year 2003
results <- TFDEA(x, y, z, 2003, rts="vrs", orientation="output", mode="dynamic")

Examine what dates are forecast for DMU D & G
print(results$dmu_date_for)

wireless_2012 Data: Wireless Forecasting Data

Description

Technical data from wireless protocol for technology forecasting.

Usage

data(wireless_2012)

Format

A data frame containing historical wireless data for technology forecasting.

Date a numeric vector
Bandwidth a numeric vector
Bitrate a numeric vector
References

Examples

Reproduce the published results
data(wireless_2012)
attach(wireless_2012)
x <- data.frame(Bandwidth); row.names(x) <- rownames(wireless_2012)
y <- data.frame(Bitrate); row.names(y) <- rownames(wireless_2012)
z <- data.frame(Date); row.names(z) <- rownames(wireless_2012)
detach(wireless_2012)
TFDEA(x, y, z, 2001, rts="crs", orientation="input", second="none",
 mode="static", debug=0)
Index

*Topic datasets
 fighter_jet, 4
 wireless_2012, 10

DEA, 2, 7, 10

fighter_jet, 4

isEfficient, 5

SDEA, 3, 6, 10

TFDEA, 3, 7, 8

wireless_2012, 10