Package ‘TH.data’

January 23, 2017

Title TH's Data Archive
Date 2017-01-23
Version 1.0-8
Description Contains data sets used in other packages Torsten Hothorn maintains.
Depends R (>= 2.10.0), survival, MASS
Suggests dplyr, gdata, plyr
LazyData yes
License GPL-3
NeedsCompilation no
Author Torsten Hothorn [aut, cre]
Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>
Repository CRAN
Date/Publication 2017-01-23 21:08:04

R topics documented:

birds ... 2
bodyfat .. 3
GBSG2 ... 4
geyser ... 5
GlaucomaM ... 6
mammoexp .. 9
mn6.9 ... 9
spphase ... 10
Westbc ... 11
wpbc ... 12

Index 15
Habitat Suitability for Breeding Bird Communities

Description

Environmental variables and bird counts for identifying suitable bird habitats

Usage

```r
data("birds")
```

Format

A data frame with 258 observations on the following 10 variables.

- **GST** Growing stock per grid
- **DBH** Mean diameter of the largest three trees
- **AOT** Age of oldest tree
- **AFS** Age of forest stand
- **DWC** Amount of dead wood of conifers
- **LOG** Amount of logs per grid
- **x_gk** grid location, x coordinate
- **y_gk** grid location, y coordinate
- **SG4** observed number of birds from structural gild 4: Requirement of regeneration (Phylloscopus trochilus, Aegithalos caudatus)
- **SG5** observed number of birds from structural gild 5: Requirement of regeneration combined with planted conifers (Phylloscopus collybita, Turdus merula, Sylvia atricapilla).

Details

Counts of breeding bird communities collected at 258 observation plots in a northern Bavarian forest district are the response variable of interest. Along with the number of birds in two structural gilds, 6 covariates are given here and one is interested in quantifying their impact on habitat suitability.

Source

References

Prediction of Body Fat by Skinfold Thickness, Circumferences, and Bone Breadths

Description

For 71 healthy female subjects, body fat measurements and several anthropometric measurements are available for predictive modelling of body fat.

Usage

data("bodyfat")

Format

A data frame with 71 observations on the following 10 variables.

- age age in years.
- DEXfat body fat measured by DXA, response variable.
- waistcirc waist circumference.
- hipcirc hip circumference.
- elbowbreadth breadth of the elbow.
- kneebreadth breadth of the knee.
- anthro3a sum of logarithm of three anthropometric measurements.
- anthro3b sum of logarithm of three anthropometric measurements.
- anthro3c sum of logarithm of three anthropometric measurements.
- anthro4 sum of logarithm of three anthropometric measurements.

Details

Garcia et al. (2005) report on the development of predictive regression equations for body fat content by means of common anthropometric measurements which were obtained for 71 healthy German women. In addition, the women's body composition was measured by Dual Energy X-Ray Absorptiometry (DXA). This reference method is very accurate in measuring body fat but finds little applicability in practical environments, mainly because of high costs and the methodological efforts needed. Therefore, a simple regression equation for predicting DXA measurements of body fat is of special interest for the practitioner. Backward-elimination was applied to select important variables from the available anthropometrical measurements, and Garcia (2005) report a final linear model utilizing hip circumference, knee breadth and a compound covariate which is defined as the sum of log chin skinfold, log triceps skinfold and log subscapular skinfold.
Source
http://dx.doi.org/10.1007/s00180-012-0382-5
Available as vignette via: vignette(package = "mboostDevel", "mboost_tutorial")

Examples

```r
data("bodyfat", package = "TH.data")

### final model proposed by Garcia et al. (2005)
frmod <- lm(DEXfat ~ hipcirc + anthrop3a + kneebreadth, data = bodyfat)
coef(frmod)
```

GBSG2

German Breast Cancer Study Group 2

Description

A data frame containing the observations from the GBSG2 study.

Usage

data("GBSG2")

Format

This data frame contains the observations of 686 women:

- **horTh** hormonal therapy, a factor at two levels no and yes.
- **age** of the patients in years.
- **menostat** menopausal status, a factor at two levels pre (premenopausal) and post (postmenopausal).
- **tsize** tumor size (in mm).
- **tgrade** tumor grade, a ordered factor at levels I < II < III.
- **pnodes** number of positive nodes.
- **progrec** progesterone receptor (in fmol).
- **estrec** estrogen receptor (in fmol).
- **time** recurrence free survival time (in days).
- **cens** censoring indicator (0- censored, 1- event).
Source

References

Examples

data(GBSG2)

```r
thsum <- function(x) {
  ret <- c(median(x), quantile(x, 0.25), quantile(x, 0.75))
  names(ret)[1] <- "Median"
  ret
}

t(apply(GBSG2[,c("age", "tsize", "pnodes", "progres", "estrec")], 2, thsum))

table(GBSG2$menostat)
table(GBSG2$grade)
table(GBSG2$horth)
```

Old Faithful Geyser Data

Description

A version of the eruptions data from the ‘Old Faithful’ geyser in Yellowstone National Park, Wyoming. This version comes from Azzalini and Bowman (1990) and is of continuous measurement from August 1 to August 15, 1985.

Some nocturnal duration measurements have originally been described as ‘short’, ‘medium’ or ‘long’ and are given as interval censored observations in this version of the dataset.

Usage

data(geyser)
Format

A data frame with 299 observations on 2 variables.

<table>
<thead>
<tr>
<th>duration</th>
<th>Surv</th>
<th>Eruption time in mins</th>
</tr>
</thead>
<tbody>
<tr>
<td>waiting</td>
<td>numeric</td>
<td>Waiting time for this eruption</td>
</tr>
</tbody>
</table>

Note

Variable duration was converted to a Surv object for representing interval censored nocturnal observations.

References

See Also

faithful, geyser.

GlaucomaM

Glaucoma Database

Description

The GlaucomaM data has 196 observations in two classes. 62 variables are derived from a confocal laser scanning image of the optic nerve head, describing its morphology. Observations are from normal and glaucomatous eyes, respectively.

Usage

data("GlaucomaM")

Format

This data frame contains the following predictors describing the morphology of the optic nerve head and a membership variable:

- **ag** area global.
- **at** area temporal.
- **as** area superior.
- **an** area nasal.
- **ai** area inferior.
- **eag** effective area global.
eat effective area temporal.
eas effective area superior.
ean effective area nasal.
eai effective area inferior.
abrg area below reference global.
abrt area below reference temporal.
abrs area below reference superior.
abrn area below reference nasal.
abri area below reference inferior.
hic height in contour.
mhcg mean height contour global.
mhct mean height contour temporal.
mhcs mean height contour superior.
mhcn mean height contour nasal.
mhci mean height contour inferior.
phcg peak height contour.
phct peak height contour temporal.
phcs peak height contour superior.
phcn peak height contour nasal.
phci peak height contour inferior.
hvc height variation contour.
vbsg volume below surface global.
vbst volume below surface temporal.
vbsss volume below surface superior.
vbsn volume below surface nasal.
vbsi volume below surface inferior.
vasg volume above surface global.
vast volume above surface temporal.
vass volume above surface superior.
vasn volume above surface nasal.
vasi volume above surface inferior.
vbrg volume below reference global.
vbtr volume below reference temporal.
vbrs volume below reference superior.
vbrn volume below reference nasal.
vbri volume below reference inferior.
varg volume above reference global.
GlaucmaM

- **vart** volume above reference temporal.
- **vars** volume above reference superior.
- **varn** volume above reference nasal.
- **vari** volume above reference inferior.
- **mdg** mean depth global.
- **mdt** mean depth temporal.
- **mds** mean depth superior.
- **mdn** mean depth nasal.
- **mdi** mean depth inferior.
- **tmg** third moment global.
- **tmt** third moment temporal.
- **tms** third moment superior.
- **tmn** third moment nasal.
- **tmi** third moment inferior.
- **mr** mean radius.
- **rnf** retinal nerve fiber thickness.
- **mdic** mean depth in contour.
- **emd** effective mean depth.
- **mv** mean variability.

Class a factor with levels glaucoma and normal.

Details

All variables are derived from a laser scanning image of the eye background taken by the Heidelberg Retina Tomograph. Most of the variables describe either the area or volume in certain parts of the papilla and are measured in four sectors (temporal, superior, nasal and inferior) as well as for the whole papilla (global). The global measurement is, roughly, the sum of the measurements taken in the four sector.

The observations in both groups are matched by age and sex to prevent any bias.

Source

mammoexp

Mammography Experience Study

Description

Data from a questionnaire on the benefits of mammography.

Usage

```r
data(mammoexp)
```

Format

A data frame with 412 observations on the following 6 variables.

- **ME** Mammograph experience, an ordered factor with levels *Never* < *Within a Year* < *Over a Year*
- **SYMPT** Agreement with the statement: ‘You do not need a mamogram unless you develop symptoms.’ A factor with levels *Strongly Agree*, *Agree*, *Disagree* and *Strongly Disagree*
- **PB** Perceived benefit of mammography, the sum of five scaled responses, each on a four point scale. A low value is indicative of a woman with strong agreement with the benefits of mammography.
- **HIST** Mother or Sister with a history of breast cancer; a factor with levels *No* and *Yes*.
- **BSE** Answers to the question: ‘Has anyone taught you how to examine your own breasts?’ A factor with levels *No* and *Yes*.
- **DECT** Answers to the question: ‘How likely is it that a mammogram could find a new case of breast cancer?’ An ordered factor with levels *Not likely* < *Somewhat likely* < *Very likely*.

Source

mn6.9

I.Q. and attitude towards science

Description

Responses given by 2982 New Jersey high-school seniors on 4 questions concerning attitude towards science. Also recorded was whether students had a high or low I.Q.

Usage

```r
data(mn6.9)
```
Format

A data frame with 2982 observations on the following 5 variables.

y1 Agree=1/disagree=0 to "The development of new ideas is the scientist’s greatest source of satisfaction"

y2 Agree=1/disagree=0 to "Scientists and engineers should be eliminated form the military draft"

y3 Agree=1/disagree=0 to "The scientist will make his maximum contribution to society when he has freedom to work on problems that interest him"

y4 Agree=1/disagree=0 to "The monetary compensation of a Nobel Prize-winner in physics should be at least equal to that given to popular entertainers"

group I.Q. levels: 1=low, 2=high

Source

copied from multmod package 1.0 (CRAN archive)

sphase

S-phase Fraction of Tumor Cells

Description

S-phase fraction of tumor cells in breast cancer patients.

Usage

data("sphase")

Format

This data frame contains the following columns:

SPF S-phase fraction
RFS recurrence free survival
event censoring indicator: FALSE means censored, TRUE is an event.

Details

The data have been used to address the question whether a simple cutpoint in S-phase fraction can be used to discriminate between patients with good and bad prognosis (for example in Hothorn \\& Lausen, 2003).
Source

References

Westbc

Breast Cancer Gene Expression

Description

Gene expressions for 7129 genes in 49 breast cancer samples and the status of lymph node involvement.

Usage

data("Westbc")

Format

An list with two elements to be converted to class ExpressionSet (see package Biobase).

Details

A full description of the data can be found in West et al. (2001) and an application of boosted linear models is given by Buehlmann (2006).

Source

References

Examples

```r
## Not run:
library("Biobase")
data("Westbc", package = "TH.data")
westbc <- new("ExpressionSet",
    phenoData = new("AnnotatedDataFrame", data = Westbc$pheno),
    assayData = assayDataNew(exprs = Westbc$assay))
## End(Not run)
```

Description

Each record represents follow-up data for one breast cancer case. These are consecutive patients seen by Dr. Wolberg since 1984, and include only those cases exhibiting invasive breast cancer and no evidence of distant metastases at the time of diagnosis.

Usage

```r
data("wpbc")
```

Format

A data frame with 198 observations on the following 34 variables.

- **status**: a factor with levels N (nonrecur) and R (recur).
- **time**: recurrence time (for `status == "R"`) or disease-free time (for `status == "N"`).
- **mean_radius**: radius (mean of distances from center to points on the perimeter) (mean).
- **mean_texture**: texture (standard deviation of gray-scale values) (mean).
- **mean_perimeter**: perimeter (mean).
- **mean_area**: area (mean).
- **mean_smoothness**: smoothness (local variation in radius lengths) (mean).
- **mean_compactness**: compactness (mean).
- **mean_concavity**: concavity (severity of concave portions of the contour) (mean).
- **mean_concavepoints**: concave points (number of concave portions of the contour) (mean).
- **mean_symmetry**: symmetry (mean).
- **mean_fractaldim**: fractal dimension (mean).
- **SE_radius**: radius (mean of distances from center to points on the perimeter) (SE).
- **SE_texture**: texture (standard deviation of gray-scale values) (SE).
- **SE_perimeter**: perimeter (SE).
SE_area area (SE).
SE_smoothness smoothness (local variation in radius lengths) (SE).
SE_compactness compactness (SE).
SE_concavity concavity (severity of concave portions of the contour) (SE).
SE_concavepoints concave points (number of concave portions of the contour) (SE).
SE_symmetry symmetry (SE).
SE_fractaldim fractal dimension (SE).
worst_radius radius (mean of distances from center to points on the perimeter) (worst).
worst_texture texture (standard deviation of gray-scale values) (worst).
worst_perimeter perimeter (worst).
worst_area area (worst).
worst_smoothness smoothness (local variation in radius lengths) (worst).
worst_compactness compactness (worst).
worst_concavity concavity (severity of concave portions of the contour) (worst).
worst_concavepoints concave points (number of concave portions of the contour) (worst).
worst_symmetry symmetry (worst).
worst_fractaldim fractal dimension (worst).
tsize diameter of the excised tumor in centimeters.

Details

The first 30 features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

There are two possible learning problems: predicting status or predicting the time to recur.

1) Predicting field 2, outcome: R = recurrent, N = non-recurrent - Dataset should first be filtered to reflect a particular endpoint; e.g., recurrences before 24 months = positive, non-recurrence beyond 24 months = negative. - 86.3 previous version of this data.

2) Predicting Time To Recur (field 3 in recurrent records) - Estimated mean error 13.9 months using Recurrence Surface Approximation.

The data are originally available from the UCI machine learning repository, see http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/.

Source

Examples

data("wpbc", package = "TH.data")

fit logistic regression model
coef(glm(status ~ ., data = wpbc[,colnames(wpbc) != "time"],
 family = binomial()))
Index

*Topic **datasets**
 - birds, 2
 - bodyfat, 3
 - GBSG2, 4
 - geyser, 5
 - GlaucomaM, 6
 - mammoeexp, 9
 - mn6.9, 9
 - sphase, 10
 - Westbc, 11
 - wpbc, 12

 birds, 2
 bodyfat, 3

 faithful, 6

 GBSG2, 4
 geyser, 5, 6
 GlaucomaM, 6

 mammoeexp, 9
 mn6.9, 9

 sphase, 10

 Westbc, 11
 wpbc, 12