Package ‘TKF’

April 18, 2015

Version 0.0.8
Date 2015-04-17
Title Pairwise Distance Estimation with TKF91 and TKF92 Model
Description Pairwise evolutionary distance estimation between protein sequences with the TKF91 and TKF92 model, which consider all the possible paths of transforming from one sequence to another.
Author Ge Tan <ge.tan09@imperial.ac.uk>
Maintainer Ge Tan <ge.tan09@imperial.ac.uk>
Imports methods, expm, numDeriv, ape (>= 3.2), phytools (>= 0.4-45), phangorn (>= 1.99-12)
Depends R (>= 3.0.2)
Suggests RUnit, seqinr
SystemRequirements gsl
License GPL-2
Type Package
NeedsCompilation yes
LazyData yes
Repository CRAN
Date/Publication 2015-04-18 14:29:04

R topics documented:

AAToInt 2
GONNET 3
optim.phylo.wls 3
PAMn 5
TKF91 6
TKF92 7
TKF92HG 9

Index 12
AAToInt

Description

Some AA, DNA, RNA character set defined in this package and functions to convert them into integers.

Usage

AAToInt(AA)

Arguments

AA A vector of character.

Details

Each AA is converted to the position of that AA in AAClusterSet.

Value

A integer vector.

Author(s)

Ge Tan

Examples

library(seqinr)
fasta <- read.fasta(file.path(system.file("extdata", package="TKF"),
 "pair1.fasta"),
 seqtype="AA", set.attributes=FALSE)
AAToInt(fasta[[1]])

AAClusterSet
Description

The GONNET mutation matrix and background frequency.

Usage

data(GONNET)
data(GONNETBF)

Format

A 20*20 numeric matrix.
A 20 numeric vector.

Source

Examples

data(GONNET)
data(GONNETBF)

optim.phylo.wls Phylogeny inference using the weighted least squares method

Description

This function performs phylogeny inference using weighted least-squares.

Usage

optim.phylo.wls(Dist, Var=NULL, stree=NULL, set.neg.to.zero=TRUE, fixed=FALSE, tol=1e-10, collapse=TRUE)
Arguments

- **Dist**: a distance matrix.
- **Var**: a covariance matrix of the distance. When it is NULL, ordinary least squares tree will be built.
- **stree**: an optional starting tree for the optimization.
- **set.neg.to.zero**: a logical value indicating whether to set negative branch lengths to zero (default "TRUE").
- **fixed**: a logical value indicating whether to estimate the topology - if "TRUE" only the branch lengths will be computed.
- **tol**: a tolerance value used to assess whether the optimization has converged.
- **collapse**: a logical indicating whether to collapse branches with zero length.

Details

This function extends the function `optim.phylo.ls` in package `phytools` to support weighted least squares tree reconstruction. For more details, please check the help page of `optim.phylo.ls`.

Value

An objec of class "phylo" that (may be) the least-squares tree with branch lengths; also returns the sum of squares in 'attr(tree,"Q-score")'.

Author(s)

Ge Tan

Examples

```r
Dist <- matrix(c(0.00000, 27.78202, 29.54125, 29.06183, 40.63082, 41.20910, 27.78202, 0.00000, 14.82329, 24.26988, 47.40101, 43.76202, 29.54125, 14.82329, 0.00000, 26.82772, 48.17819, 41.27872, 29.06183, 24.26988, 26.82772, 0.00000, 44.66941, 44.39078, 40.63082, 47.40101, 48.17819, 44.66941, 0.00000, 45.63394, 41.20910, 43.76202, 41.27872, 44.39078, 45.63394, 0.00000), ncol=6, dimnames=list("YARLI", "KLULA", "CANGA", "DEBHA", "CRYNE", "ASPFU"), c("YARLI", "KLULA", "CANGA", "DEBHA", "CRYNE", "ASPFU"))
Var <- matrix(c(0.00000, 6.261368, 6.816608, 6.660132, 11.361800, 12.037978, 6.261368, 0.00000, 2.877505, 5.054447, 14.315551, 12.734813, 6.816608, 2.877505, 0.00000, 5.699967, 12.638321, 11.598558, 6.660132, 5.054447, 5.699967, 0.00000, 12.189609, 13.185733, 11.36180, 14.31555, 12.63832, 12.18961, 0.00000, 15.19872, 12.03798, 12.73481, 11.59856, 13.18573, 15.19872, 0.00000), ncol=6, dimnames=list("YARLI", "KLULA", "CANGA", "DEBHA", "CRYNE", "ASPFU"), c("YARLI", "KLULA", "CANGA", "DEBHA", "CRYNE", "ASPFU"))

tree <- optim.phylo.wls(Dist, Var)
plot(tree, type="unrooted")
```
PAMn

PAM and Dayhoff matrices calculation

Description

These functions calculate the mutation matrix or Dayhoff matrix from the mutation matrix at PAM 1 and base background frequency.

Usage

```r
PAMn(PAM1, n)
Dayhoffn(PAM1, BF, n)
```

Arguments

- `PAM1` A matrix of numeric: the mutation probability from one AA to another AA at PAM distance 1. The order of AA in the matrix should be identical to `AACharacterSet`.
- `n` A numeric: the PAM distance.
- `BF` A numeric vector: the background frequency of AAs. The order of AA in the vector should also be identical to `AACharacterSet`.

Details

Calculate the n-PAM matrices from PAM1 mutation matrix and n. To compute n-PAM matrices, we multiply the PAM1 matrix through itself N times, which is most efficiently achieved through n additions in log space.

Computing Dayhoff matrices from PAM mutation matrices and AA frequency. Dayhoff matrices are the ratios \(P(\text{alignment i and j arose through evolution}) / P(\text{alignment i and j arose by chance}) \)

Value

A numeric matrix is returned.

Author(s)

Ge Tan

References

Evolutionary distance estimation with TKF91 model

Description

This function implements the TKF91 model to estimate the pairwise distance from protein sequences.

Usage

TKF91(fasta, mu=NULL, expectedLength=362, substModel, substModelBF)

Arguments

- `fasta`: A named list of sequences in vector of characters format. `read.fasta` from package `seqinr` outputs this format when reading from a fasta file.
- `mu`: A numeric value or NULL. It is the death rate per normal link in TKF91 model. When it is NULL, a joint estimation of `mu` and `distance` will be done. When it is given, only the distance will be estimated.
- `distance`: A numeric value: the PAM distance between two protein sequences. When it is given, TKF91Pair only calculates the negative log-likelihood.
- `expectedLength`: A numeric object: the expected length of input protein sequences. By default, the average sequence length, 362, from OMA browser is used.
- `substModel`: A numeric matrix: the mutation probability from one AA to another AA at PAM distance 1. The order of AA in the matrix should be identical to `AAClusterSet`.
- `substModelBF`: A vector of numeric: the background frequency of AAs. The order of AA in the vector should also be identical to `AAClusterSet`.
- `seq1`, `seq2`: A vector of character: the sequences of two proteins to compare.

Details

Currently this implementation only supports the normal 20 AAs. Missing or Ambiguous characters are not supported.
TKF92

Value

A list of matrices are returned: the matrix of estimated distances, the matrix of estimated distance variances, the matrix of negative log-likelihood between the sequences.

Author(s)

Ge Tan

References

See Also

AACharacterSet, GONNET, GONNETBF

Examples

```r
## This example is not tested due to running time > 5s
data(GONNET)
data(GONNETBF)
library(seqinr)
fasta <- read.fasta(file.path(system.file("extdata", package="TKF"),
                           "pair1.fasta"),
                           seqtype="AA", set.attributes=FALSE)
## 1D estimation: only distance
tKF91(fasta, mu=5.920655e-04,
       substModel=GONNET, substModelBF=GONNETBF)
## 2D estimation: joint estimation of distance and mu
tKF91(fasta, substModel=GONNET, substModelBF=GONNETBF)
## only apply to a pair of sequences
seq1 <- fasta[[1]]
seq2 <- fasta[[2]]
tKF91Pair(seq1, seq2, mu=5.920655e-04,
           substModel=GONNET, substModelBF=GONNETBF)
```

TKF92

Evolutionary distance estimation with TKF92 model

Description

This function implements the TKF92 model to estimate the pairwise distance from protein sequences.
Usage

TKF92(fasta, mu=NULL, r=NULL, expectedLength=362, substModel, substModelBF)

TKF92Pair(seq1, seq2, mu=NULL, r=NULL, distance=NULL, expectedLength=362, substModel, substModelBF)

Arguments

- **fasta**: A named list of sequences in vector of characters format. `read.fasta` from package `seqinr` outputs this format when reading from a fasta file.
- **mu**: A numeric value between 0 and 1 or NULL. It is the death rate per normal link in TKF92 model. When it is NULL, a joint estimation of mu, r and distance will be done. When it is given, only the distance will be estimated.
- **r**: A numeric value between 0 and 1 or NULL. It is the success probability of the geometric distribution for modeling the fragment length in TKF92 model. When it is NULL, a joint estimation of mu, r and distance will be done. When it is given, only the distance will be estimated.
- **distance**: A numeric value: the PAM distance between two protein sequences. When it is given, TKF92Pair only calculates the negative log-likelihood.
- **expectedLength**: A numeric object: the expected length of input protein sequences. By default, the average sequence length, 362, from OMA browser is used.
- **substModel**: A numeric matrix: the mutation probability from one AA to another AA at PAM distance 1. The order of AA in the matrix should be identical to AACharacterSet.
- **substModelBF**: A vector of numeric: the background frequency of AAs. The order of AA in the vector should also be identical to AACharacterSet.
- **seq1**, **seq2**: A vector of character: the sequences of two proteins to compare.

Details

Currently this implementation only supports the normal 20 AAs. Missing or Ambiguous characters are not supported.

Value

A list of matrices are returned: the matrix of estimated distances, the matrix of estimated distance variances, the matrix of negative log-likelihood between the sequences.

Author(s)

Ge Tan

References

TKF92HG

See Also

AACharacterSet, GONNET, GONNETBF

Examples

```r
## This example is not tested due to running time > 5s
data(GONNET)
data(GONNETBF)
library(seqinr)
fasta <- read.fasta(file.path(system.file("extdata", package="TKF"),
    "pair1.fasta"),
    seqtype="AA", set.attributes=FALSE)
## 1D estimation: only distance
TKF92(fasta, mu=0.006137344, r=0.7016089061,
    substModel=GONNET, substModelBF=GONNETBF)

## 2D estimation: joint estimation of distance, mu and r
TKF92(fasta, substModel=GONNET, substModelBF=GONNETBF)

## only apply to a pair of sequences
seq1 <- fasta[[1]]
seq2 <- fasta[[2]]
TKF92Pair(seq1, seq2, mu=0.006137344, r=0.7016089061,
    substModel=GONNET, substModelBF=GONNETBF)
```

TKF92HG

Evolutionary distance estimation with TKF92 model considering the regional heterogeneity of substitution rates

Description

This function implements the TKF92 model to estimate the pairwise distance from protein sequences. An additional simple model of regional heterogeneity of substitution rates is used.

Usage

```r
TKF92HG(fasta, mu=NULL, r=NULL, Ps=NULL, Kf=NULL, expectedLength=362,
    substModel, substModelBF)
TKF92HGPair(seq1, seq2, mu=NULL, r=NULL, Ps=NULL, Kf=NULL, distance=NULL,
    expectedLength=362, substModel, substModelBF)
```

Arguments

- `fasta` A named list of sequences in vector of characters format. `read.fasta` from package `seqinr` outputs this format when reading from a fasta file.
mu A numeric value between 0 and 1 or NULL. It is the death rate per normal link in TKF92 model. When it is NULL, a joint estimation of μ, r, ψ, Kf and distance will be done. When it is given, only the distance will be estimated.

r A numeric value between 0 and 1 or NULL. It is the success probability of the geometric distribution for modeling the fragment length in TKF92 model. When it is NULL, a joint estimation of μ, r, ψ, Kf and distance will be done. When it is given, only the distance will be estimated.

ψ A numeric value between 0 and 1 or NULL. It is the equilibrium frequency of slow fragments. Hence the equilibrium frequency of fast fragments is $\Psi = 1 - \psi$. When it is NULL, a joint estimation of μ, r, ψ, Kf and distance will be done. When it is given, only the distance will be estimated.

Kf A numeric value larger than 1 or NULL. It is the ratio of substitution rates between fast fragments and slow fragments. When it is NULL, a joint estimation of μ, r, ψ, Kf and distance will be done. When it is given, only the distance will be estimated.

distance A numeric value: the PAM distance between two protein sequences. When it is given, TKF92HGPair only calculates the negative log-likelihood.

expectedLength A numeric object: the expected length of input protein sequences. By default, the average sequence length, 362, from OMA browser is used.

substModel A numeric matrix: the mutation probability from one AA to another AA at PAM distance 1. The order of AA in the matrix should be identical to AACharacter-Set.

substModelBF A vector of numeric: the background frequency of AAs. The order of AA in the vector should also be identical to AACharacterSet.

seq1, seq2 A vector of character: the sequences of two proteins to compare.

Details

Currently this implementation only supports the normal 20 AAs. Missing or Ambiguous characters are not supported.

This is a very simple model of substitution rate heterogeneity. This model assumes that there are only two varieties of fragments: one with relatively fast substitution rates and the other with slow substitution rates. This model also assumes the fragment size distribution of these two fragments is identical.

Value

A list of matrices are returned: the matrix of estimated distances, the matrix of estimated distance variances, the matrix of negative log-likelihood between the sequences.

Author(s)

Ge Tan
References

See Also

AACharacterSet, GONNET, GONNETBF

Examples

```r
## This example is not tested due to running time > 5s
data(GONNET)
data(GONNETBF)
library(seqinr)
fasta <- read.fasta(file.path(system.file("extdata", package="TKF"),
                           "pair1.fasta"),
                           seqtype="AA", set.attributes=FALSE)

## 1D estimation: only distance
tKF92HG(fasta, mu=5.920655e-04, r=0.8, Ps=1, Kf=1.2,
       substModel=GONNET, substModelBF=GONNETBF)

## 2D estimation: joint estimation of distance, mu and r
tKF92HG(fasta, substModel=GONNET, substModelBF=GONNETBF)

## only apply to a pair of sequences
seq1 <- fasta[[1]]
seq2 <- fasta[[2]]
tKF92HPair(seq1, seq2, mu=5.920655e-04, r=0.8, Ps=1, Kf=1.2,
           substModel=GONNET, substModelBF=GONNETBF)
```
Index

*Topic \texttt{Textasciitildekwd1}

AAToInt, 2
optim.phylo.wls, 3
PAMn, 5
TKF91, 6
TKF92, 7
TKF92HG, 9

*Topic \texttt{Textasciitildekwd2}

AAToInt, 2
optim.phylo.wls, 3
PAMn, 5
TKF91, 6
TKF92, 7
TKF92HG, 9

*Topic datasets

GONNET, 3

AACharacterSet, 5–11
AACharacterSet (AAToInt), 2
AAGapCharacterSet (AAToInt), 2
AAToInt, 2
AmbiguousAACharacterSet (AAToInt), 2
AmbiguousAAGapCharacterSet (AAToInt), 2
character, 2, 6
Dayhoffn (PAMn), 5
DNACharacterSet (AAToInt), 2
DNAGapCharacterSet (AAToInt), 2
GONNET, 3, 7, 9, 11
GONNETBF, 7, 9, 11
GONNETBF (GONNET), 3
matrix, 6
numeric, 5, 6
optim.phylo.wls, 3
PAMn, 5

RNACharacterSet (AAToInt), 2
RNAGapCharacterSet (AAToInt), 2
TKF91, 6
TKF91Pair (TKF91), 6
TKF92, 7
TKF92HG, 9
TKF92HPair (TKF92HG), 9
TKF92Pair (TKF92), 7