Package ‘TLBC’

August 29, 2016

Type Package
Title Two-Level Behavior Classification
Version 1.0
Date 2015-10-08
Author Katherine Ellis
Maintainer Katherine Ellis <kellis@ucsd.edu>
Description Contains functions for training and applying two-level random forest and hidden Markov models for human behavior classification from raw tri-axial accelerometer and/or GPS data. Includes functions for training a two-level model, applying the model to data, and computing performance.
Depends R(>= 2.10)
Imports stringr, randomForest, HMM, tools, signal, caret
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2015-10-14 18:13:22

R topics documented:

 TLBC-package ... 2
 alignStart ... 4
 annotationsToLabels ... 5
 calcPerformance ... 5
 classify ... 6
 clearFiles ... 7
 computeEmissionProbs ... 8
 computeOneAccFeat .. 9
 computeOneGPSFeat .. 9
 computePriorProbs ... 10
 computeTransProbs .. 11
 distance .. 11
 extractAccelerometerFeatures ... 12
TLBC-package

Two-Level Behavior Classification

Contains functions for training and applying two-level random forest and hidden Markov models for human behavior classification from raw tri-axial accelerometer and/or GPS data.

This code works with csv data from Actigraph accelerometers (please export in RAW format, without timestamps), and/or with GPS data processed by the PALMS GPS cleaning software.

The TLBC classifier uses six behavior labels:

- Sitting
- Standing Still
- Standing Moving
- Walking/Running

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>extractAccFeatsFile</td>
<td>13</td>
</tr>
<tr>
<td>extractFeatsPALMSDir</td>
<td>13</td>
</tr>
<tr>
<td>extractFeatsPALMSOneFile</td>
<td>14</td>
</tr>
<tr>
<td>extractLabelsDir</td>
<td>15</td>
</tr>
<tr>
<td>extractLabelsSingleFile</td>
<td>15</td>
</tr>
<tr>
<td>getDateFmt</td>
<td>16</td>
</tr>
<tr>
<td>hmm</td>
<td>16</td>
</tr>
<tr>
<td>isFeatureDirectory</td>
<td>17</td>
</tr>
<tr>
<td>isInstanceFormat</td>
<td>17</td>
</tr>
<tr>
<td>loadData</td>
<td>18</td>
</tr>
<tr>
<td>loadFeatures</td>
<td>18</td>
</tr>
<tr>
<td>loadLabels</td>
<td>19</td>
</tr>
<tr>
<td>loadModel</td>
<td>20</td>
</tr>
<tr>
<td>loadPredictions</td>
<td>20</td>
</tr>
<tr>
<td>loadPredictionsAndLabels</td>
<td>21</td>
</tr>
<tr>
<td>looXval</td>
<td>22</td>
</tr>
<tr>
<td>rf</td>
<td>23</td>
</tr>
<tr>
<td>senseCamLabels</td>
<td>23</td>
</tr>
<tr>
<td>sensorsToFeatures</td>
<td>24</td>
</tr>
<tr>
<td>stratSample</td>
<td>25</td>
</tr>
<tr>
<td>testHMM</td>
<td>25</td>
</tr>
<tr>
<td>testRF</td>
<td>26</td>
</tr>
<tr>
<td>testTwoRFs</td>
<td>27</td>
</tr>
<tr>
<td>trainHMM</td>
<td>27</td>
</tr>
<tr>
<td>trainModel</td>
<td>28</td>
</tr>
<tr>
<td>trainRF</td>
<td>30</td>
</tr>
<tr>
<td>winSize</td>
<td>31</td>
</tr>
<tr>
<td>writePredictions</td>
<td>31</td>
</tr>
</tbody>
</table>

Description

Contains functions for training and applying two-level random forest and hidden Markov models for human behavior classification from raw tri-axial accelerometer and/or GPS data.

This code works with csv data from Actigraph accelerometers (please export in RAW format, without timestamps), and/or with GPS data processed by the PALMS GPS cleaning software.

The TLBC classifier uses six behavior labels:

- Sitting
- Standing Still
- Standing Moving
- Walking/Running

Function `classify` uses a pre-learned TLBC model to classify accelerometer and/or GPS data with behavior labels. Pre-trained models that have been trained on three UCSD datasets are available for download.

Function `trainModel` trains a TLBC model from annotated accelerometer and/or GPS data.

Function `calcPerformance` computes the accuracy of predictions made on a given dataset.

Function `looXval` performs leave-one-out cross-validation on a dataset.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>TLBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0</td>
</tr>
<tr>
<td>Date</td>
<td>2015-05-29</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

Katherine Ellis <kellis@ucsd.edu>

See Also

`randomForest`, `HMM`

Examples

```r
## Not run:

# train a new model
myAnnotations<-"~/myStudy/annotations.csv"
myAccel="~/myStudy/hipGT3X.csv"
myGPS="~/myStudy/GPS.csv"
WS=60
myModel="~/myStudy/myModel.RData"
trainModel(annotations=myAnnotations, accelerometers=myAccel, GPS=myGPS, winSize=WS, modelName=myModel)

# classify using a model computed yourself
myAccel="~/myStudy/hipGT3X.csv"
myGPS="~/myStudy/GPS.csv"
myModel="~/myStudy/myModel.RData"
myPredictions="~/myStudy/myModelPredictions.csv"
classify(accelerometers=myAccel, GPS=myGPS, modelName=myModel, saveDir=myPredictions)
```
compute the performance of a model on a dataset
myAnnotations="/myStudy/annotations.csv"
myPredictions="/myStudy/myModelPredictions"
WS=60
calcPerformance(annotations=myAnnotations, predictions=myPredictions, winSize=WS)

perform leave-one-out cross-validation on a dataset
myAnnotations="/myStudy/annotations.csv"
myAccel="/myStudy/HipGT3X+
WS=60
myPredictions="/myStudy/looxValPredictions"
looxVal(annotations=myAnnotations, accelerometers=myAccel, winSize=WS, saveDir=myPredictions)

End(Not run)

alignStart

Function to align start of a window

Description
Aligns start time to nearest minute interval.

Usage
alignStart(winSize, start)

Arguments
- **winSize**: Window size in seconds.
- **start**: The start time as a POSIXlt DateTime object.

Author(s)
Katherine Ellis

See Also
- [DateTimeClasses](#)
annotationsToLabels

Function to convert bout-level annotations to instance-level labels

Description

Converts bout-level annotations to instance-level labels.

Usage

```r
annotationsToLabels(annotations, winSize, names = NULL)
```

Arguments

- `annotations`: Path to file containing bout-level annotations, or directory of files containing bout-level annotations. Should be csv format with fields: `identifier`, `StartDate`, `EndDate`, `behavior`.
- `winSize`: Window size in seconds.
- `names` (Optional): If provided, extract annotations only for identifiers in this list.

Value

Path to directory where instance-level label files are saved.

Author(s)

Katherine Ellis

calcPerformance

Function to calculate performance of a classification model

Description

Calculates several performance metrics.

Usage

```r
calcPerformance(annotations, predictions, winSize, names=NULL, combineStanding=FALSE)
```
Arguments

- **annotations**
 Path to file containing bout-level annotations, a directory of files containing bout-level annotations, or a directory of instance-level annotations (i.e., the output of function `annotationsToLabels`).

- **predictions**
 Path to directory containing predictions (i.e., the `saveDir` argument to the function `classify`).

- **winSize**
 Window size in seconds.

- **names**
 (Optional) List of identifiers to use.

- **combineStanding**
 logical: combine standing still and standing moving into a single category?

Value

Object containing confusion matrix and several performance metrics.

Author(s)

Katherine Ellis

See Also

- `confusionMatrix`

Examples

```r
## Not run:

# compute the performance of a model on a dataset
myAnnotations="~/myStudy/annotations.csv"
myPredictions="~/myStudy/myModelPredictions"
WS=60
calcPerformance(annotations=myAnnotations, predictions=myPredictions, winSize=WS)

## End(Not run)
```

classify

Function to classify accelerometer and/or GPS data

Description

Classifies data into behavior categories using a pre-computed two-level model.

Usage

```r
classify(accelerometers=NULL, GPS=NULL, modelName, saveDir, names=NULL)
```
Arguments

accelerometers (Optional) Path to a directory (or list of directories) containing actigraph accelerometer data files. Accelerometer data files should be csv files output in "raw" format by ActiLife (without timestamps), and named by the participant identifier, e.g., Participant01.csv.
Or, path to a directory (or list of directories) containing previously computed accelerometer features, i.e., computed by the function sensorsToFeatures.

GPS (Optional) Path to a PALMS-processed GPS data file (or a directory containing GPS data files). GPS data files should be in csv format with the following fields: identifier, dateTime, speed, ele, elevationDelta, lat, lon, nsatView, snrView. identifier should be the participant identifier, e.g. Participant01. If GPS is a path to a directory, each file in the directory should correspond to a participant, and the file name should be the participant identifier, e.g., Participant01.csv.
Or, path to a directory containing previously computed GPS features, i.e., computed by the function sensorsToFeatures.

modelName Path to a pre-trained TLBC model. Either a model you trained yourself, i.e., the argument modelName in the function trainModel, or a pre-trained model that has been trained on one of three UCSD datasets, available for download.

saveDir Path to a directory where predictions will be saved. Predictions will be saved in files named <identifier>.csv with two fields: timestamp, prediction.

names (Optional) List of participant identifiers to use.

Author(s)

Katherine Ellis

Examples

Not run:

use a pre-trained model to classify hip accelerometer data
myAccel="/myStudy/HipGT3X+
ovrWgtModel="OverweightWomenHipGT3X+.RData"
myPredictions="/myStudy/predictions"
classify(accelerometers=myAccel, modelName=ovrWgtModel, saveDir=myPredictions)

End(Not run)

clearFiles Clear files

Description

Deletes files in a directory
Usage

 clearFiles(dir)

Arguments

 dir Path to directory to clear.

Author(s)

 Katherine Ellis

computeEmissionProbs Compute emission probabilities

Description

 Function to compute the emission probabilities of an HMM, based on the first-level random forest classifier.

Usage

 computeEmissionProbs(rf)

Arguments

 rf A random forest object.

Author(s)

 Katherine Ellis

See Also

 trainModel
computeOneAccFeat

Compute one acceleration feature

Description

Function to compute one acceleration feature from a data window.

Usage

computeOneAccFeat(w, Fs)

Arguments

- **w**

 N x 3 matrix of 3-axis accelerometer measurements.

- **Fs**

 Sample frequency, in Hertz.

Value

Vector of acceleration features.

Author(s)

Katherine Ellis

See Also

extractAccelerometerFeatures

computeOneGPSFeat

Compute one GPS feature

Description

Function to compute one GPS feature from a data window.

Usage

computeOneGPSFeat(w, lastCoordinates)

Arguments

- **w**

 Data frame of GPS measurements from the PALMS system. Should contain the following fields: identifier, dateTime, speed, distance, duration, ele, elevation-Delta, lat, lon, nsatUsed, nsatView, snrUsed, snrView, fixType

- **lastCoordinates**

 Coordinates of last data sample, to compute change in position - data frame with fields lat and lon.
Value

Vector of GPS features.

Author(s)

Katherine Ellis

See Also

extractFeatsPALMSDir, extractFeatsPALMSOneFile

computePriorProbs Compute prior probabilities

Description

Compute the prior probabilities of an HMM from a state sequence.

Usage

computePriorProbs(stateSeq)

Arguments

stateSeq Vector of states.

Value

Vector of probabilities for each state.

Author(s)

Katherine Ellis

See Also

trainModel
computeTransProbs

Description
Compute the transition probabilities of an HMM from a state sequence.

Usage
computeTransProbs(stateSeq)

Arguments

stateSeq Vector of states.

Value
Matrix of probabilities for each transition between states.

Author(s)
Katherine Ellis

See Also

trainModel
distance

Description
Function to compute the distance between two sets of latitude and longitude coordinates.

Usage
distance(origin, destination)

Arguments

origin A data frame with the the fields lat and lon.
destination A data frame with the the fields lat and lon.

Value
Distance in meters.
extractAccelerometerFeatures

Extract accelerometer features

Description

Function to extract accelerometer features for all GT3X+ raw data files in a directory.

Usage

```
extractAccelerometerFeatures(input, output, winSize, names=NULL)
```

Arguments

- `input` Path to GT3X+ raw data file or a directory containing GT3X+ raw data files.
- `output` Path to a directory to save computed features. A separate directory for each GT3X+ file will be created containing features for each day.
- `winSize` Window size in seconds.
- `names` (Optional) If provided, compute features only for filenames in this list.

Author(s)

Katherine Ellis

See Also

`computeOneGPSFeat`, `extractAccFeatsFile`
extractAccFeatsFile
Extract accelerometer features from a file

Description
Function to extract accelerometer features from a single GT3X+ raw data file.

Usage
```r
extractAccFeatsFile(inputFile, outputPath, winSize)
```

Arguments
- **inputFile**: Path to a GT3X+ raw data file.
- **outputPath**: Path to a directory to save computed features. A separate file for each day will be created inside the directory.
- **winSize**: Window size in seconds.

Author(s)
Katherine Ellis

See Also
- `extractAccelerometerFeatures`

extractFeatsPALMSDir
Extract GPS features from a PALMS directory

Description
Function to extract GPS features from a directory containing PALMS-filtered GPS data files.

Usage
```r
extractFeatsPALMSDir(inputDir, outputDir, winSize, names=NULL)
```

Arguments
- **inputDir**: Path to a directory containing PALMS-filtered GPS data files. Each file should be a csv file with the following fields: `identifier, dateTime, speed, distance, duration, ele, elevationDelta, lat, lon, nsatUsed, nsatView, snrUsed, snrView, fixType`.
- **outputDir**: Path to a directory to save computed features. A separate directory for each input file will be created containing features for each day.
- **winSize**: Window size in seconds.
- **names** *(Optional)*: If provided, compute features only for filenames in this list.
extractFeatsPALMSOneFile

Extract GPS features from a PALMS file

Description

Function to extract GPS features from PALMS-filtered GPS data file.

Usage

extractFeatsPALMSOneFile(inputFile, outputDir, winSize, names=NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inputFile</td>
<td>Path to a file containing PALMS-filtered GPS data. Should be a csv file with the following fields: identifier, dateTime, speed, distance, duration, ele, elevation-Delta, lat, lon, nsatUsed, nsatView, snrUsed, snrView, fixType.</td>
</tr>
<tr>
<td>outputDir</td>
<td>Path to a directory to save computed features. A separate file will be created containing features for each day.</td>
</tr>
<tr>
<td>winSize</td>
<td>Window size in seconds.</td>
</tr>
<tr>
<td>names</td>
<td>(Optional) If provided, compute features only for identifiers in this list.</td>
</tr>
</tbody>
</table>

Author(s)

Katherine Ellis

See Also

extractFeatsPALMSDir, computeOneGPSFeat
extractLabelsDir

Extract labels from a directory

Description

Function to extract labels from a directory containing annotation files.

Usage

extractLabelsDir(inputDir, outputDir, winSize, names=NULL)

Arguments

inputDir Path to a directory of files containing bout-level annotations. Should be csv format with fields: identifier, StartDateTime, EndDateTime, behavior.
outputDir Path to a directory to save labels.
winSize Window size in seconds.
names (Optional) If provided, extract labels only for identifiers in this list.

Author(s)

Katherine Ellis

See Also

annotationsToLabels, extractLabelsSingleFile

extractLabelsSingleFile

Extract labels from a directory

Description

Function to extract labels from a directory containing annotation files.

Usage

extractLabelsSingleFile(inputFile, outputDir, winSize)

Arguments

inputFile Path to a file containing bout-level annotations. Should be csv format with fields: identifier, StartDateTime, EndDateTime, behavior.
outputDir Path to a directory to save labels.
winSize Window size in seconds.
getDateFmt

Get date format

Description

Function to guess the date format from an input string

Usage

getDateFmt(inputString)

Arguments

inputString

String containing a date formatted either as yyyy-mm-dd HH:MM:SS or mm/dd/yyyy HH:MM:SS

Value

A date format string, either "%Y-%m-%d %H:%M:%S" or "%m/%d/%Y %H:%M:%S"

Author(s)

Katherine Ellis

hmm

Hidden Markov model

Description

Used for loading HMM from a TLBC model.

Author(s)

Katherine Ellis
isFeatureDirectory Is feature directory?

Description
Function to check if the directory is a feature directory or a raw data directory (by checking for existence of sub-directories).

Usage
isFeatureDirectory(dir)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| dir | Path to a directory.

Value
TRUE, if the directory is a feature directory. FALSE otherwise.

Author(s)
Katherine Ellis

isInstanceFormat Is instance format?

Description
Function to check if the directory contains instance-level annotations or bout-level annotations (by checking for existence of sub-directories).

Usage
isInstanceFormat(annotations)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| annotations | Path to an annotations directory.

Value
TRUE, if the directory contains instance-level annotations. FALSE otherwise.

Author(s)
Katherine Ellis
loadData

Description

Function to load corresponding label and feature data.

Usage

```r
loadData(labelDir, featDirs, names=NULL)
```

Arguments

- **labelDir**
 - Path to a label directory containing instance-level label files.
- **featDirs**
 - List of paths to feature directories containing feature files.
- **names**
 - (Optional) If provided, only load data for identifiers provided in this list.

Value

A list containing (1) a data frame of labels and (2) a data frame of features.

Author(s)

Katherine Ellis

See Also

`loadFeatures`, `loadLabels`

loadFeatures

Description

Function to load feature data.

Usage

```r
loadFeatures(featDirs, names=NULL)
```

Arguments

- **featDirs**
 - List of paths to feature directories containing feature files.
- **names**
 - (Optional) If provided, only load data for identifiers provided in this list.
loadLabels

Value

A data frame of features.

Author(s)

Katherine Ellis

See Also

loadData, loadLabels

loadLabels Load labels

Description

Function to load label data.

Usage

loadLabels(labelDir, names=NULL)

Arguments

labelDir Path to label directories containing instance-level annotation files.

names (Optional) If provided, only load labels for identifiers provided in this list.

Value

A data frame of labels.

Author(s)

Katherine Ellis

See Also

loadData, loadFeatures
loadModel Load model

Description
Function to load a model.

Usage
loadModel(modelName, which)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>modelName</td>
<td>Path to model.</td>
</tr>
<tr>
<td>which</td>
<td>String specifying which part of model to return. One of "winSize", "rf", or "hmm".</td>
</tr>
</tbody>
</table>

Value
A model (or parameter).

Author(s)
Katherine Ellis

loadPredictions Load predictions

Description
Function to load predictions from csv files in a directory.

Usage
loadPredictions(predDir, names=NULL)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predDir</td>
<td>Path to directory containing prediction files.</td>
</tr>
<tr>
<td>names</td>
<td>(Optional) If specified, load only predictions for identifiers in this list.</td>
</tr>
</tbody>
</table>

Value
A data frame of predictions.
loadPredictionsAndLabels

Load predictions and labels

Description

Function to load corresponding labels and predictions.

Usage

```r
loadPredictionsAndLabels(labelDir, predDir, names=NULL)
```

Arguments

- `labelDir` Path to directory containing label files.
- `predDir` Path to directory containing prediction files.
- `names` (Optional) If specified, load only data for identifiers in this list.

Value

A data frame containing predictions and labels.

Author(s)

Katherine Ellis

See Also

`loadPredictions`
Function to perform leave-one-out cross-validation

Description

Performs leave-one-out cross-validation

Usage

looxval(annotations, accelerometers=NULL, GPS=NULL, winSize=60, saveDir, names=NULL, strat=TRUE)

Arguments

- **annotations**: Path to a file containing bout-level annotations (or directory of files containing bout-level annotations). Should be csv format with fields: identifier, StartDateTime, EndDateTime, behavior. Or, path to a directory containing instance-level annotations, i.e., created by the function annotationsToLabels.
- **accelerometers**: (Optional) Path to a directory (or list of directories) containing actigraph accelerometer data files. Accelerometer data files should be csv files output in "raw" format by ActiLife (without timestamps), and named by the participant identifier, e.g., Participant01.csv. Or, path to a directory (or list of directories) containing previously computed accelerometer features, i.e., computed by the function sensorsToFeatures.
- **GPS**: (Optional) Path to a PALMS-processed GPS data file (or a directory containing GPS data files). GPS data files should be in csv format with the following fields: identifier, dateTime, speed, ele, elevationDelta, lat, lon, nsatView, snrView. identifier should be the participant identifier, e.g., Participant01. If GPS is a path to a directory, each file in the directory should correspond to a participant, and the file name should be the participant identifier, e.g., Participant01.csv. Or, path to a directory containing previously computed GPS features, i.e., computed by the function sensorsToFeatures.
- **winSize**: Window size in seconds.
- **saveDir**: Path to a directory where predictions will be saved. Predictions will be saved in files named <identifier>.csv with two fields: timestamp,prediction.
- **names**: (Optional) List of participant identifiers to use.
- **strat**: (Optional) Logical: use stratified sampling for the random forest?

Author(s)

Katherine Ellis

See Also

trainModel.classify
Examples

```r
## Not run:

# perform leave-one-out cross-validation on a dataset
myAnnotations="~/myStudy/annotations.csv"
myAccel="~/myStudy/HipGT3X+
winSize=60
myPredictions="~/myStudy/looxvalPredictions"
looxval(annotations=myAnnotations, accelerometers=myAccel, winSize=WS, saveDir=myPredictions)

## End(Not run)
```

rf

Random Forest

Description

Used for loading RF from a TLBC model.

Author(s)

Katherine Ellis

senseCamLabels

SenseCam Labels

Description

Function to convert bout-level annotations from senseCam labels to 6 categories (can be either single file or directory).

Usage

```
senseCamLabels(input, output)
```

Arguments

- **input**: Path to file or directory containing bout-level annotations.
- **output**: Path to output directory.

Author(s)

Katherine Ellis
sensorsToFeatures

Function to extract features from raw sensor data

Description

Extracts features from accelerometer and/or GPS data.

Usage

sensorsToFeatures(accelerometers = NULL, GPS = NULL, winSize, names = NULL)

Arguments

accelerometers (Optional) Path to a directory (or a list of paths to multiple directories) containing actigraph accelerometer data files. Accelerometer data files should be csv files output in "raw" format by ActiLife (without timestamps), and named by the participant identifier, e.g., Participant01.csv.

GPS (Optional) Path to a PALMS-processed GPS data file (or a directory containing GPS data files). GPS data files should be in csv format with the following fields: identifier, dateTime, speed, ele, elevationDelta, lat, lon, nsatView, snrView. identifier should be the participant identifier, e.g. Participant01. If GPS is a path to a directory, each file in the directory should correspond to a participant, and the file name should be the participant identifier, e.g., Participant01.csv.

winSize Window size in seconds.

names (Optional) List of identifiers to use.

Value

List of feature directories created.

Author(s)

Kat Ellis

See Also

trainModel
stratSample

Stratified sample

Description

Function to choose a random sample of data stratified by label.

Usage

```
stratSample(labels, nsamp)
```

Arguments

- **labels** Vector of strings denoting labels.
- **nsamp** Number of items to sample from each label class.

Value

Vector of indices chosen.

Author(s)

Katherine Ellis

testHMM

Test a hidden Markov model

Description

Function to apply a HMM classifier to some data.

Usage

```
testHMM(predDir, modelName, saveDir, names)
```

Arguments

- **predDir** Path to a directory containing predictions made by the random forest classifier (i.e., the `saveDir` argument of `testRF`).
- **modelName** Path to pre-trained model.
- **saveDir** Path to a directory where predictions will be saved. Predictions will be saved in files named `<identifier>.csv` with two fields: `timestamp, prediction`.
- **names** List of participant identifiers to use.
Author(s)

Katherine Ellis

See Also

classify, testRF

testRF

Description

Function to apply a random forest classifier to some data.

Usage

```r
testRF(featdirs, modelName, savedir, testnames)
```

Arguments

- `featdirs`: Path to a directory (or list of directories) containing features, i.e., computed by the function `sensorsToFeatures`.
- `modelName`: Path to pre-trained model.
- `savedir`: Path to a directory where predictions will be saved. Predictions will be saved in files named `<identifier>.csv` with two fields: `timestamp, prediction`.
- `testnames`: List of participant identifiers to use.

Author(s)

Katherine Ellis

See Also

classify, testHMM
testTwoRFs
Test two random forest classifiers

Description
Function to apply two random forest classifiers to some data.

Usage
`testTwoRFs(featDirs1, featDirs2, rf1, rf2, saveDir, testNames)`

Arguments
- `featDirs1`: Path to a directory (or list of directories) containing features corresponding to the first RF classifier.
- `featDirs2`: Path to a directory (or list of directories) containing features corresponding to the second RF classifier.
- `rf1`: A random forest model.
- `rf2`: A second random forest model.
- `saveDir`: Path to a directory where predictions will be saved. Predictions will be saved in files named `<identifier>.csv` with two fields: `timestamp, prediction`.
- `testNames`: List of participant identifiers to use.

Author(s)
Katherine Ellis

See Also
- `testRF`

trainHMM
Train a hidden Markov model

Description
Function to train a HMM classifier from some data and a trained random forest model.

Usage
`trainHMM(labelDir, rf, names, combineStanding=FALSE)`
Arguments

- **labelDir**: Path to a directory containing instance-level annotations, *i.e.*, created by the function `annotationsToLabels`.
- **rf**: A random forest model.
- **names**: List of participant identifiers to use.
- **combineStanding**: If TRUE, combine the labels *standing still* and *standing moving* into a single label *standing*.

Author(s)

Katherine Ellis

See Also

`trainModel`, `trainRF`
trainModel

GPS (Optional) Path to a PALMS-processed GPS data file (or a directory containing GPS data files). GPS data files should be in csv format with the following fields: identifier, dateTime, speed, ele, elevationDelta, lat, lon, nsatView, snrView. identifier should be the participant identifier, e.g. Participant01. If GPS is a path to a directory, each file in the directory should correspond to a participant, and the file name should be the participant identifier, e.g., Participant01.csv.
Or, path to a directory containing previously computed GPS features, i.e., computed by the function sensorsToFeatures.

winSize Window size in seconds.

modelName Path to location to save model.

names (Optional) List of participant identifiers to use.

strat (Optional) logical: use stratified sampling for the random forest?

ntree (Optional) Number of trees in the random forest

mtry (Optional) Number of variables randomly sampled as candidates at each split in the random forest.

replace (Optional) Should sampling in the random forest be done with or without replacement?

nsample (Optional) Number of instances to sample.

nodesize (Optional) Minimum size of terminal nodes in the random forest.

sampsize (Optional) Size of sample to draw for the random forest.

Author(s)
Katherine Ellis

See Also
classify, looXval

Examples

```r
# Not run:
myAnnots="~/myStudy/annotations.csv"
myAccol="~/myStudy/hipGTX+
myGPS="~/myStudy/GPS.csv"
winSize=60
myModel="~/myStudy/myModel.Rdata"
trainModel(annotations=myAnnots, accelerometers=myAccel, GPS=myGPS, winSize=WS, modelName=myModel)
```

End(Not run)
trainRF

Train a random forest classifier

Description

Function to train a random forest classifier from some data.

Usage

```r
trainRF(labelDir, featDirs, names, combineStanding=FALSE, strat=TRUE, ntree=500, mtry=NULL, replace=TRUE, nsample=10000, nodesize=1, sampsize=10000)
```

Arguments

- `labelDir`: Path to a directory containing instance-level annotations, *i.e.*, created by the function `annotationsToLabels`.
- `featDirs`: Path to a directory (or list of directories) containing features, *i.e.*, computed by the function `sensorsToFeatures`.
- `names`: List of participant identifiers to use.
- `combineStanding`: (Optional) If TRUE, combine the labels *standing still* and *standing moving* into a single label *standing*.
- `strat`: (Optional) logical: use stratified sampling for the random forest?
- `ntree`: (Optional) Number of trees in the random forest
- `mtry`: (Optional) Number of variables randomly sampled as candidates at each split in the random forest.
- `replace`: (Optional) Should sampling in the random forest be done with or without replacement?
- `nsample`: (Optional) Number of instances to sample.
- `nodesize`: (Optional) Minimum size of terminal nodes in the random forest.
- `sampsize`: (Optional) Size of sample to draw for the random forest.

Author(s)

Katherine Ellis

See Also

`trainModel`, `trainHMM`
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>winSize</td>
<td>Used for loading window size from a TLBC model.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Katherine Ellis</td>
</tr>
<tr>
<td>writePredictions</td>
<td>Write predictions to a file</td>
</tr>
<tr>
<td>Usage</td>
<td>writePredictions(values, timestamps, saveFile)</td>
</tr>
<tr>
<td>Arguments</td>
<td>values: Vector of predicted labels.</td>
</tr>
<tr>
<td></td>
<td>timestamps: Vector of timestamps.</td>
</tr>
<tr>
<td></td>
<td>saveFile: Path to file where predictions will be saved.</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Katherine Ellis</td>
</tr>
</tbody>
</table>
Index

*Topic \textit{alignStart}, 4
annotationsToLabels, 5
calcPerformance, 5
classify, 6
clearFiles, 7
computeEmissionProbs, 8
computeOneAccFeat, 9
computeOneGPSFeat, 9
computePriorProbs, 10
computeTransProbs, 11
distance, 11
extractAccelerometerFeatures, 12
extractAccFeatsFile, 13
extractFeatsPALSMDir, 13
extractFeatsPALSMSOneFile, 14
extractLabelsDir, 15
extractLabelsSingleFile, 15
genDateFmt, 16
hmm, 16
isFeatureDirectory, 17
isInstanceFormat, 17
loadData, 18
loadFeatures, 18
loadLabels, 19
loadModel, 20
loadPredictions, 20
loadPredictionsAndLabels, 21
looxval, 22
rf, 23
senseCamLabels, 23
sensorsToFeatures, 24
stratSample, 25
testHMM, 25
testRF, 26
testTwoRFs, 27
trainHMM, 27
trainModel, 28
trainRF, 30

writePredictions, 31

*Topic \textit{alignStart}, 4
annotationsToLabels, 5
calcPerformance, 5
classify, 6
clearFiles, 7
computeEmissionProbs, 8
computeOneAccFeat, 9
computeOneGPSFeat, 9
computePriorProbs, 10
computeTransProbs, 11
distance, 11
extractAccelerometerFeatures, 12
extractAccFeatsFile, 13
extractFeatsPALSMDir, 13
extractFeatsPALSMSOneFile, 14
extractLabelsDir, 15
extractLabelsSingleFile, 15
genDateFmt, 16
hmm, 16
isFeatureDirectory, 17
isInstanceFormat, 17
loadData, 18
loadFeatures, 18
loadLabels, 19
loadModel, 20
loadPredictions, 20
loadPredictionsAndLabels, 21
looxval, 22
rf, 23
senseCamLabels, 23
sensorsToFeatures, 24
stratSample, 25
testHMM, 25
testRF, 26
testTwoRFs, 27
trainHMM, 27
trainModel, 28
trainRF, 30

winSize, 31
INDEX

trainModel, 28
trainRF, 30
winSize, 31
writePredictions, 31

*Topic package
TLBC-package, 2

alignStart, 4
annotationsToLabels, 5, 15, 16
calcPerformance, 3, 5
calcPerformanceFromLabels
(calcPerformance), 5
classify, 3, 6, 22, 26, 29
clearFiles, 7
computeEmissionProbs, 8
computeOneAccFeat, 9
computeOneGPSFeat, 9, 12, 14
computePriorProbs, 10
computeTransProbs, 11
confusionMatrix, 6

DateTimeClasses, 4
distance, 11

extractAccelerometerFeatures, 9, 12, 13
extractAccFeatsFile, 12, 13
extractFeatsPALMSDir, 10, 13, 14
extractFeatsPALMSSOneFile, 10, 14, 14
extractLabelsDir, 15, 16
extractLabelsSingleFile, 15, 15

getDateTime, 16

testAllDir (classify), 6
testHMM, 25, 26
testRF, 25, 26, 26, 27
testTwoRFS, 27
TLBC (TLBC-package), 2
TLBC-package, 2
trainFromFeatures (trainModel), 28
trainHMM, 27, 30
trainModel, 3, 8, 10, 11, 22, 24, 28, 28, 30
trainRF, 28, 30

winSize, 31
writePredictions, 31

randomForest, 3

rf, 23

senseCamLabels, 23
senseCamLabelsFile (senseCamLabels), 23
sensorsToFeatures, 24
stratSample, 25

HMM, 3

isFeatureDirectory, 17
isInstanceFormat, 17

loadData, 18, 19
loadFeatures, 18, 18, 19
loadLabels, 18, 19, 19
loadModel, 20
loadPredictions, 20, 21
loadPredictionsAndLabels, 21, 21

looxval, 3, 22, 29

looxvalFromFeats (looxval), 22