Package ‘TRexSelector’

February 24, 2024

Title T-Rex Selector: High-Dimensional Variable Selection & FDR Control

Version 1.0.0

Date 2024-02-23

Description Performs fast variable selection in high-dimensional settings while controlling the false discovery rate (FDR) at a user-defined target level. The package is based on the paper Machkour, Muma, and Palomar (2022) \texttt{arXiv:2110.06048}.

Maintainer Jasin Machkour <jasin.machkour@tu-darmstadt.de>

BugReports https://github.com/jasinmachkour/TRexSelector/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

biocViews

Suggests knitr, rmarkdown, ggplot2, patchwork, WGCNA, fastcluster, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports MASS, stats, tlars, parallel, doParallel, foreach, doRNG, methods, glmnet, boot

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation no

Author Jasin Machkour [aut, cre],
 Simon Tien [aut],
 Daniel P. Palomar [aut],
 Michael Muma [aut]

Repository CRAN

Date/Publication 2024-02-23 23:20:02 UTC
add_dummies

Add dummy predictors to the original predictor matrix

Description

Sample num_dummies dummy predictors from the univariate standard normal distribution and append them to the predictor matrix X.

Usage

add_dummies(X, num_dummies)

Arguments

X
Real valued predictor matrix.

num_dummies
Number of dummies that are appended to the predictor matrix.

Value

Enlarged predictor matrix.

Examples

set.seed(123)
n <- 50
p <- 100
X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)
add_dummies(X = X, num_dummies = p)
add_dummies_GVS

Add dummy predictors to the original predictor matrix, as required by the T-Rex+GVS selector (\cite{EUSIPCO55093.2022.9909883})

Description

Generate `num_dummies` dummy predictors as required for the T-Rex+GVS selector (\cite{EUSIPCO55093.2022.9909883}) and append them to the predictor matrix `X`.

Usage

```r
add_dummies_GVS(X, num_dummies, corr_max = 0.5)
```

Arguments

- `X` Real valued predictor matrix.
- `num_dummies` Number of dummies that are appended to the predictor matrix. Has to be a multiple of the number of original variables.
- `corr_max` Maximum allowed correlation between any two predictors from different clusters.

Value

Enlarged predictor matrix for the T-Rex+GVS selector.

Examples

```r
set.seed(123)
n <- 50
p <- 100
X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)
add_dummies_GVS(X = X, num_dummies = p)
```

FDP

False discovery proportion (FDP)

Description

Computes the FDP based on the estimated and the true regression coefficient vectors.

Usage

```r
FDP(beta_hat, beta, eps = .Machine$double.eps)
```
Arguments

- **beta_hat**: Estimated regression coefficient vector.
- **beta**: True regression coefficient vector.
- **eps**: Numerical zero.

Value

False discovery proportion (FDP).

Examples

```r
data("Gauss_data")
X <- Gauss_data$X
y <- c(Gauss_data$y)
beta <- Gauss_data$beta

set.seed(1234)
res <- trex(X, y)
beta_hat <- res$selected_var

FDP(beta_hat = beta_hat, beta = beta)
```

fdp_hat
Computes the conservative FDP estimate of the T-Rex selector ([doi:10.48550/arXiv.2110.06048](https://doi.org/10.48550/arXiv.2110.06048))

Description

Computes the conservative FDP estimate of the T-Rex selector ([doi:10.48550/arXiv.2110.06048](https://doi.org/10.48550/arXiv.2110.06048))

Usage

```r
fdp_hat(V, Phi, Phi_prime, eps = .Machine$double.eps)
```

Arguments

- **V**: Voting level grid.
- **Phi**: Vector of relative occurrences.
- **Phi_prime**: Vector of deflated relative occurrences.
- **eps**: Numerical zero.

Value

Vector of conservative FDP estimates for each value of the voting level grid.
Gauss_data

Description
A data set containing a predictor matrix X with n = 50 observations and p = 100 variables (predictors), and a sparse parameter vector beta with associated support vector.

Usage
Gauss_data

Format
A list containing a matrix X and vectors y, beta, and support:

X Predictor matrix, n = 50, p = 100.
y Response vector.
beta Parameter vector.
support Support vector.

Examples
Generated as follows:
set.seed(789)
n <- 50
p <- 100
X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)
beta <- c(rep(5, times = 3), rep(0, times = 97))
support <- beta > 0
y <- X %*% beta + stats::rnorm(n)
Gauss_data <- list(
 X = X,
 y = y,
 beta = beta,
 support = support
)

lm_dummy

Perform one random experiment

Description
Run one random experiment of the T-Rex selector (doi:10.48550/arXiv.2110.06048), i.e., generates dummies, appends them to the predictor matrix, and runs the forward selection algorithm until it is terminated after T_stop dummies have been selected.
Usage

```r
lm_dummy(
  X,
  y,
  model_tlars,
  T_stop = 1,
  num_dummies = ncol(X),
  method = "trex",
  GVS_type = "IEN",
  type = "lar",
  corr_max = 0.5,
  lambda_2_lars = NULL,
  early_stop = TRUE,
  verbose = TRUE,
  intercept = FALSE,
  standardize = TRUE
)
```

Arguments

- **X**: Real valued predictor matrix.
- **y**: Response vector.
- **model_tlars**: Object of the class tlars_cpp. It contains all state variables of the previous T-LARS step (necessary for warm-starts, i.e., restarting the forward selection process exactly where it was previously terminated).
- **T_stop**: Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped.
- **num_dummies**: Number of dummies that are appended to the predictor matrix.
- **type**: 'lar' for 'LARS' and 'lasso' for Lasso.
- **corr_max**: Maximum allowed correlation between any two predictors from different clusters.
- **lambda_2_lars**: lambda_2-value for LARS-based Elastic Net.
- **early_stop**: Logical. If TRUE, then the forward selection process is stopped after T_stop dummies have been included. Otherwise the entire solution path is computed.
- **verbose**: Logical. If TRUE progress in computations is shown when performing T-LARS steps on the created model.
- **intercept**: Logical. If TRUE an intercept is included.
- **standardize**: Logical. If TRUE the predictors are standardized and the response is centered.
Phi_prime_fun

Value

Object of the class tlars_cpp.

Examples

```r
set.seed(123)
eps <- .Machine$double.eps
n <- 75
p <- 100
X <- matrix(stats::rnorm(n * p), nrow = n, ncol = p)
beta <- c(rep(3, times = 3), rep(0, times = 97))
y <- X %*% beta + rnorm(n)
res <- lm_dummy(X = X, y = y, T_stop = 1, num_dummies = 5 * p)
beta_hat <- res$get_beta()$seq(p)

support <- abs(beta_hat) > eps
```

Description

Computes the vector of deflated relative occurrences for all variables (i.e., \(j = 1, \ldots, p \)) and \(T = T_{\text{stop}} \).

Usage

```r
Phi_prime_fun(
  p,
  T_stop,
  num_dummies,
  phi_T_mat,
  Phi,
  eps = .Machine$double.eps
)
```

Arguments

- **p**: Number of candidate variables.
- **T_stop**: Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped.
- **num_dummies**: Number of dummies.
- **phi_T_mat**: Matrix of relative occurrences for all variables (i.e., \(j = 1, \ldots, p \)) and for \(T = 1, \ldots, T_{\text{stop}} \).
- **Phi**: Vector of relative occurrences for all variables (i.e., \(j = 1, \ldots, p \)) at \(T = T_{\text{stop}} \).
- **eps**: Numerical zero.
random_experiments

Value

Vector of deflated relative occurrences for all variables (i.e., \(j = 1, \ldots, p \)) and \(T = T_{\text{stop}} \).

Description

Run \(K \) early terminated T-Rex (doi:10.48550/arXiv.2110.06048) random experiments and compute the matrix of relative occurrences for all variables and all numbers of included variables before stopping.

Usage

```r
random_experiments(
  X,  
  y,  
  K = 20,  
  T_stop = 1,  
  num_dummies = ncol(X),  
  method = "trex",  
  GVS_type = "EN",  
  type = "lar",  
  corr_max = 0.5,  
  lambda_2_lars = NULL,  
  early_stop = TRUE,  
  lars_state_list,  
  verbose = TRUE,  
  intercept = FALSE,  
  standardize = TRUE,  
  dummy_coef = FALSE,  
  parallel_process = FALSE,  
  parallel_max_cores = min(K, max(1, parallel::detectCores(logical = FALSE))),  
  seed = NULL,  
  eps = .Machine$double.eps
)
```

Arguments

- **X** Real valued predictor matrix.
- **y** Response vector.
- **K** Number of random experiments.
- **T_stop** Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped.
- **num_dummies** Number of dummies that are appended to the predictor matrix.
random_experiments

type 'lar' for 'LARS' and 'lasso' for Lasso.

corr_max Maximum allowed correlation between any two predictors from different clusters (for method = 'trex+GVS').

lambda_2_lars lambda_2-value for LARS-based Elastic Net.

early_stop Logical. If TRUE, then the forward selection process is stopped after T_stop dummies have been included. Otherwise the entire solution path is computed.

lars_state_list If parallel_process = TRUE: List of state variables of the previous T-LARS steps of the K random experiments (necessary for warm-starts, i.e., restarting the forward selection process exactly where it was previously terminated). If parallel_process = FALSE: List of objects of the class tlars_cpp associated with the K random experiments (necessary for warm-starts, i.e., restarting the forward selection process exactly where it was previously terminated).

verbose Logical. If TRUE progress in computations is shown.

intercept Logical. If TRUE an intercept is included.

standardize Logical. If TRUE the predictors are standardized and the response is centered.

dummy_coef Logical. If TRUE a matrix containing the terminal dummy coefficient vectors of all K random experiments as rows is returned.

parallel_process Logical. If TRUE random experiments are executed in parallel.

parallel_max_cores Maximum number of cores to be used for parallel processing.

seed Seed for random number generator (ignored if parallel_process = FALSE).

eps Numerical zero.

Value

List containing the results of the K random experiments.

Examples

```r
set.seed(123)
data("Gauss_data")
X <- Gauss_data$x
y <- c(Gauss_data$y)
res <- random_experiments(X = X, y = y)
relative_occurrences_matrix <- res$phi_T_mat
relative_occurrences_matrix
```
Run the Screen-T-Rex selector (doi:10.1109/SSP53291.2023.10207957)

Description

The Screen-T-Rex selector (doi:10.1109/SSP53291.2023.10207957) performs very fast variable selection in high-dimensional settings while informing the user about the automatically selected false discovery rate (FDR).

Usage

```r
screen_trex(
  X,
  y,
  K = 20,
  R = 1000,
  method = "trex",
  bootstrap = FALSE,
  conf_level_grid = seq(0, 1, by = 0.001),
  cor_coef = NA,
  type = "lar",
  corr_max = 0.5,
  lambda_2_lars = NULL,
  rho_thr_DA = 0.02,
  parallel_process = FALSE,
  parallel_max_cores = min(K, max(1, parallel::detectCores(logical = FALSE))),
  seed = NULL,
  eps = .Machine$double.eps,
  verbose = TRUE
)
```

Arguments

- `X` Real valued predictor matrix.
- `y` Response vector.
- `K` Number of random experiments.
- `R` Number of bootstrap resamples.
- `bootstrap` Logical. If TRUE Screen-T-Rex is carried out with bootstrapping.
- `conf_level_grid` Confidence level grid for the bootstrap confidence intervals.
select_var_fun

- **cor_coef**: AR(1) autocorrelation coefficient for the T-Rex+DA+AR1 selector or equicorrelation coefficient for the T-Rex+DA+equi selector.
- **type**: 'lar' for 'LARS' and 'lasso' for Lasso.
- **corr_max**: Maximum allowed correlation between any two predictors from different clusters.
- **lambda_2_lars**: lambda_2-value for LARS-based Elastic Net.
- **rho_thr_DA**: Correlation threshold for the T-Rex+DA+AR1 selector and the T-Rex+DA+equi selector (i.e., method = 'trex+DA+AR1' or 'trex+DA+equi').
- **parallel_process**: Logical. If TRUE random experiments are executed in parallel.
- **parallel_max_cores**: Maximum number of cores to be used for parallel processing.
- **seed**: Seed for random number generator (ignored if parallel_process = FALSE).
- **eps**: Numerical zero.
- **verbose**: Logical. If TRUE progress in computations is shown.

Value

A list containing the estimated support vector, the automatically selected false discovery rate (FDR) and additional information.

Examples

```r
data("Gauss_data")
X <- Gauss_data$X
y <- Gauss_data$y
set.seed(123)
res <- screen_trex(X = X, y = y)
selected_var <- res$selected_var
selected_var
```

Description

Computes the set of selected variables and returns the estimated support vector for the T-Rex selector (doi:10.48550/arXiv.2110.06048).

Usage

```r
select_var_fun(p, tFDR, T_stop, FDP_hat_mat, Phi_mat, V)
```
select_var_fun_DA_BT

Arguments

\(p \) Number of candidate variables.
\(tFDR \) Target FDR level (between 0 and 1, i.e., 0\% and 100\%).
\(T_stop \) Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped.
\(FDP_hat_mat \) Matrix whose rows are the vectors of conservative FDP estimates for each value of the voting level grid.
\(Phi_mat \) Matrix of relative occurrences as determined by the T-Rex calibration algorithm.
\(V \) Voting level grid.

Value

Estimated support vector.

Description

Computes the set of selected variables and returns the estimated support vector for the T-Rex+DA+BT selector (doi:https://doi.org/10.48550/arXiv.2401.15796).

Usage

```r
select_var_fun_DA_BT(
  p,
  tFDR,
  T_stop,
  FDP_hat_array_BT,
  Phi_array_BT,
  V,
  rho_grid
)
```

Arguments

\(p \) Number of candidate variables.
\(tFDR \) Target FDR level (between 0 and 1, i.e., 0\% and 100\%).
\(T_stop \) Number of included dummies after which the random experiments (i.e., forward selection processes) are stopped.
TPP

FDP_hat_array_BT
Array containing the conservative FDP estimates for all variables (dimension 1), values of the voting level grid (dimension 2), and values of the dendrogram grid (dimension 3).

Phi_array_BT
Array of relative occurrences as determined by the T-Rex calibration algorithm.

V
Voting level grid.

rho_grid
Dendrogram grid.

Value
List containing the estimated support vector, etc.

TPP

| True positive proportion (TPP) |

Description
Computes the TPP based on the estimated and the true regression coefficient vectors.

Usage
TPP(beta_hat, beta, eps = .Machine$double.eps)

Arguments

<table>
<thead>
<tr>
<th>beta_hat</th>
<th>Estimated regression coefficient vector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>beta</td>
<td>True regression coefficient vector.</td>
</tr>
<tr>
<td>eps</td>
<td>Numerical zero.</td>
</tr>
</tbody>
</table>

Value
True positive proportion (TPP).

Examples

data("Gauss_data")
X <- Gauss_data$X
y <- c(Gauss_data$y)
beta <- Gauss_data$beta

set.seed(1234)
res <- trex(X, y)
beta_hat <- res$selected_var

TPP(beta_hat = beta_hat, beta = beta)
Description

The T-Rex selector ([doi:10.48550/arXiv.2110.06048](https://doi.org/10.48550/arXiv.2110.06048)) performs fast variable selection in high-dimensional settings while controlling the false discovery rate (FDR) at a user-defined target level.

Usage

```r
trex(  
  X,  
  y,  
  tFDR = 0.2,  
  K = 20,  
  max_num_dummies = 10,  
  max_T_stop = TRUE,  
  method = "trex",  
  GVS_type = "IEN",  
  cor_coef = NA,  
  type = "lar",  
  corr_max = 0.5,  
  lambda_2_lars = NULL,  
  rho_thr_DA = 0.02,  
  hc_dist = "single",  
  hc_grid_length = min(20, ncol(X)),  
  parallel_process = FALSE,  
  parallel_max_cores = min(K, max(1, parallel::detectCores(logical = FALSE))),  
  seed = NULL,  
  eps = .Machine$double.eps,  
  verbose = TRUE
)
```

Arguments

- **X** Real valued predictor matrix.
- **y** Response vector.
- **tFDR** Target FDR level (between 0 and 1, i.e., 0% and 100%).
- **K** Number of random experiments.
- **max_num_dummies** Integer factor determining the maximum number of dummies as a multiple of the number of original variables p (i.e., num_dummies = max_num_dummies * p).
- **max_T_stop** If TRUE the maximum number of dummies that can be included before stopping is set to ceiling(n / 2), where n is the number of data points/observations.
method

GVS_type

cor_coef
AR(1) autocorrelation coefficient for the T-Rex+DA+AR1 selector or equicorrelation coefficient for the T-Rex+DA+equi selector.

type
'lar' for 'LARS' and 'lasso' for Lasso.

corr_max
Maximum allowed correlation between any two predictors from different clusters (for method = 'trex+GVS').

lambda_2_lars
lambda_2-value for LARS-based Elastic Net.

rho_thr_DA
Correlation threshold for the T-Rex+DA+AR1 selector and the T-Rex+DA+equi selector (i.e., method = 'trex+DA+AR1' or 'trex+DA+equi').

hc_dist
Distance measure of the hierarchical clustering/dendrogram (only for trex+DA+BT): 'single' for single-linkage, "complete" for complete linkage, "average" for average linkage (see hclust for more options).

hc_grid_length
Length of the height-cutoff-grid for the dendrogram (integer between 1 and the number of original variables p).

parallel_process
Logical. If TRUE random experiments are executed in parallel.

parallel_max_cores
Maximum number of cores to be used for parallel processing.

seed
Seed for random number generator (ignored if parallel_process = FALSE).

eps
Numerical zero.

verbose
Logical. If TRUE progress in computations is shown.

Value
A list containing the estimated support vector and additional information, including the number of used dummies and the number of included dummies before stopping.

Examples

data("Gauss_data")
X <- Gauss_data$X
y <- c(Gauss_data$y)
set.seed(1234)
res <- trex(X = X, y = y)
selected_var <- res$selected_var
selected_var
Index

* datasets
 Gauss_data, 5
 add_dummies, 2
 add_dummies_GVS, 3
 FDP, 3
 fdp_hat, 4
 Gauss_data, 5
 hclust, 15
 lm_dummy, 5
 Phi_prime_fun, 7
 random_experiments, 8
 screen_trex, 10
 select_var_fun, 11
 select_var_fun_DA_BT, 12
 TPP, 13
 trex, 14