Package ‘TSA’

June 30, 2018

Type Package
Title Time Series Analysis
Version 1.2
Date 2018-6-17
Author Kung-Sik Chan, Brian Ripley
Maintainer Kung-Sik Chan <kungsiNchan@gmail.com>
Depends R (>= 2.5.1)
Imports leaps, locfit, mgcv
Description Contains R functions and datasets detailed in the book
 "Time Series Analysis with Applications in R (second edition)" by Jonathan Cryer and Kung-
 Sik Chan.
License GPL (>= 2)
URL http://www.stat.uiowa.edu/~kchan/TSA.htm
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-06-30 21:10:56 UTC

R topics documented:

TSA-package ... 3
acf .. 4
airmiles .. 5
airpass ... 6
ar1.2.s .. 6
ar1.s .. 7
ar2.s .. 8
arima .. 8
arima.boot ... 10
arimax ... 11
arma11.s .. 13
R topics documented:

- ARMAspec 13
- armasubsets 14
- beersales 15
- bluebird 15
- bluebirdlite 16
- boardings 17
- BoxCox.ar 17
- co2 18
- color 19
- CREF 19
- cref.bond 20
- days 20
- deere1 21
- deere2 21
- deere3 22
- detectAO 22
- detectIO 24
- eacf 25
- eeg 26
- electricity 27
- euph 27
- explode.s 28
- fitted.Arima 28
- flow 29
- garch.sim 29
- gBox 30
- gold 31
- google 32
- hare 33
- harmonic 33
- hours 34
- ima22.s 35
- JJ 35
- Keenan.test 36
- kurtosis 37
- lagplot 38
- larain 39
- LB.test 39
- ma1.1.s 40
- ma1.2.s 41
- ma2.s 41
- McLeod.Li.test 42
- milk 43
- oil.price 43
- oilfilters 44
- periodogram 44
- plot.Arima 45
- plot.armasubsets 47
Description

Contains R functions and datasets detailed in the book "Time Series Analysis with Applications in R (second edition)” by J.D. Cryer and K.S. Chan

Details
Author(s)

Kung-Sik Chan, Brian Ripley

Description

This function calls the acf function in the stats package and processes to drop lag-0 of the acf. It only works for univariate time series, so x below should be 1-dimensional.

Usage

acf(x, lag.max = NULL, type = c("correlation", "covariance", "partial")[1], plot = TRUE, na.action = na.fail, demean = TRUE, drop.lag.0 = TRUE, ...)
Value

An object of class "acf", which is a list with the following elements:

- lag: A three dimensional array containing the lags at which the acf is estimated.
- acf: An array with the same dimensions as lag containing the estimated acf.
- type: The type of correlation (same as the type argument).
- n.used: The number of observations in the time series.
- series: The name of the series x.
- snames: The series names for a multivariate time series.

Author(s)

Original authors of stats::acf are: Paul Gilbert, Martyn Plummer, B.D. Ripley. This wrapper is written by Kung-Sik Chan.

References

~put references to the literature/web site here~

See Also

plot.acf, ARMAacf for the exact autocorrelations of a given ARMA process.

Examples

data(rwalk)
model1 = lm(rwalk ~ time(rwalk))
summary(model1)
acf(rstudent(model1), main = '')

airmiles

Monthly Airline Passenger-Miles in the US

Description

Usage

data(airmiles)

Format

Source

www.bts.gov/xml/air_traffic/src/index.xml#MonthlySystem

Examples

data(airmiles)
maybe str(airmiles) ; plot(airmiles) ...

airpass

Monthly total international airline passengers

Description

Monthly total international airline passengers from 01/1960-12/1971.

Usage

data(airpass)

Format

The format is: Time-Series [1:144] from 1960 to 1972: 112 118 132 129 121 135 148 148 136 119 ...

Source

Examples

data(airpass)
maybe str(airpass) ; plot(airpass) ...

ar1.2.s

A simulated AR(1) series

Description

A simulated AR(1) series with the AR coefficient equal to 0.4.

Usage

data(ar1.2.s)
ar1.s

Format

The format is: Time-Series [1:60] from 1 to 60: -0.0678 1.4994 0.4888 0.3987 -0.5162 ...

Details

The model is $Y(t)=0.4*Y(t-1)+e(t)$ where the e’s are iid standard normal.

Examples

data(ar1.s)
maybe str(ar1.s) ; plot(ar1.s) ...

| ar1.s | A simulated AR(1) series |

Description

A simulated AR(1) series with the AR coefficient equal to 0.9.

Usage

data(ar1.s)

Format

The format is: Time-Series [1:60] from 1 to 60: -1.889 -1.691 -1.962 -0.566 -0.627 ...

Details

The model is $Y(t)=0.9*Y(t-1)+e(t)$ where the e’s are iid standard normal.

Examples

data(ar1.s)
maybe str(ar1.s) ; plot(ar1.s) ...
arima

arima

Description

Fitting an ARIMA model with Exogeneous Variables

Usage

```r
arima(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA),
      xreg = NULL, include.mean = TRUE, transform.pars = TRUE, fixed = NULL,
      init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond, optim.control = list(),
      kappa = 1e+06, io = NULL, xtransf, transfer = NULL)
```

ar2.s

Description

Asimulated AR(2) series / time series

Usage

```r
data(ar2.s)
```

Format

The format is: Time-Series [1:120] from 1 to 120: -2.064 -1.937 0.406 2.039 2.953 ...

Details

The model is Y(t)=1.5*Y(t-1)-0.75*Y(t-2)+e(t) where the e’s are iid standard normal random variables.

Examples

```r
data(ar2.s)
## maybe str(ar2.s) ; plot(ar2.s) ...
```
Arguments

- **x**: time series response
- **order**: regular ARIMA order
- **seasonal**: seasonal ARIMA order
- **xreg**: a dataframe containing covariates
- **include.mean**: if true, an intercept term is incorporated in the model; applicable only to stationary models.
- **transform.pars**: if true, the AR parameters are transformed to ensure stationarity
- **fixed**: a vector indicating which coefficients are fixed or free
- **init**: initial values
- **method**: estimation method
- **n.cond**: number of initial values to be conditioned on in a conditional analysis
- **optim.control**: control parameters for the optimization procedure
- **kappa**: prior variance; used in dealing with initial values

All of the above parameters have the same usage as those in the arima function. Please check the help manual of the arima function. Below are new options.

- **io**: a list of time points at which the model may have an innovative outlier. The time point of the outlier can be given either as absolute time point or as \(c(a,b)\), i.e. at the \(b\)-th 'month' of the \(a\)-th 'year' where each year has frequency(\(x\)) months, assuming \(x\) is a time series.

\[
\left(\theta_0 + \theta_1 B + \ldots + \theta_q B^q - 1 \right) \left(1 - \phi_1 B - \ldots - \phi_p B^p \right) Z_t
\]

In particular, if \(p = 0\) and \(q = 1\), this specifies a simple regression relationship, which should be included in xreg and not here. Note that the filter starts with zero initial values. Hence, it is pertinent to mean-delete each distributed-lag covariate, and this is not done automatically.

- **xtransf**: xtranf is a matrix with each column containing a covariate that affects the time series response in terms of an ARMA filter of order \((p,q)\), i.e. if \(Z\) is one such covariate, its effect on the time series is \(\left(\theta_0 + \theta_1 B + \ldots + \theta_q B^q - 1 \right) \left(1 - \phi_1 B - \ldots - \phi_p B^p \right) Z_t\). In particular, if \(p = 0\) and \(q = 1\), this specifies a simple regression relationship, which should be included in xreg and not here. Note that the filter starts with zero initial values. Hence, it is pertinent to mean-delete each distributed-lag covariate, and this is not done automatically.

- **transfer**: a list consisting of the ARMA orders for each transfer (distributed lag) covariate.

Value

An Arimax object containing the model fit.

Author(s)

Original author of the arima function in R stats: Brian Ripley. The arimax function is based on the stats::arima function, with modifications by Kung-Sik Chan.

See Also

arima
arima.boot

Compute the Bootstrap Estimates of an ARIMA Model

Description

This function bootstraps time series according to the fitted ARMA(p,d,q) model supplied by the fitted object arima.fit, and estimate the same model using the arima function. Any bootstrap sample that has problem when fitted with the ARIMA model will be omitted from the final results and all error messages will be suppressed. You can check if there is any fitting problem by running the command geterrmessage().

Usage

arima.boot(arima.fit, cond.boot = FALSE, is.normal = TRUE, B = 1000, init, ntrans = 100)

Arguments

arima.fit a fitted object from the arima function (seasonal components not allowed)
cond.boot whether or not the bootstrap is conditional on the (p+d) initial values; if it is set true. If false (default), the stationary bootstrap is used.
is.normal if true (default), errors are normally distributed, otherwise errors are drawn randomly and with replacement from the residuals of the fitted model.
B number of bootstrap replicates (1000, default)
init initial values for the bootstrap; needed if cond.boot=TRUE default values are the initial values of the time series of the fitted model.
ntrans number of transient values for the stationary bootstrap. Default=100

Value

a matrix each row of which consists of the coefficient estimates of a bootstrap time-series.

Author(s)

Kung-Sik Chan

Examples

data(hare)
arima(sqrt(hare),order=c(3,0,0))
Fitting an ARIMA model with Exogeneous Variables

Description

This function builds on and extends the capability of the arima function in R stats by allowing the incorporation of transfer functions, innovative and additive outliers. For backward compatibility, the function is also named arima. Note in the computation of AIC, the number of parameters excludes the noise variance.

Usage

```
arimax(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, transform.pars = TRUE, fixed = NULL,
init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond, optim.control = list(),
kappa = 1e+06, io = NULL, xtransf, transfer = NULL)
```

Arguments

- **x**: time series response
- **order**: regular ARIMA order
- **seasonal**: seasonal ARIMA order
- **xreg**: a dataframe containing covariates
- **include.mean**: if true, an intercept term is incorporated in the model; applicable only to stationary model.
- **transform.pars**: if true, the AR parameters are transformed to ensure stationarity
fixed a vector indicating which coefficients are fixed or free
init initial values
method estimation method
n.cond number of initial values to be conditioned on a conditional analysis
optim.control control parameters for the optimization procedure
kappa prior variance; used in dealing with initial values

All of the above parameters have the same usage as those in the arima function. Please check the help manual of the arima function. Below are new options.

io a list of time points at which the model may have an innovative outlier. The time point of the outlier can be given either as absolute time point or as c(a, b), i.e. at the b-th 'month' of the a-th 'year' where each year has frequency(x) months, assuming x is a time series.

xtransf xtranf is a matrix with each column containing a covariate that affects the time series response in terms of an ARMA filter of order (p,q), i.e. if Z is one such covariate, its effect on the time series is \((\theta_0 + \theta_1 B + ... + \theta_q B^q - 1)/(1 - \phi_1 B - ... - \phi_p B^p)Z_t\). In particular, if \(p = 0\) and \(q = 1\), this specifies a simple regression relationship, which should be included in xreg and not here. Note that the filter starts with zero initial values. Hence, it is pertinent to mean-delete each distributed-lag covariate, which is not done automatically.

transfer a list consisting of the ARMA orders for each transfer (distributed lag) covariate.

Value

An Arimax object containing the model fit.

Author(s)

Original author of the arima function in R stats: Brian Ripley. The arimax function is based on the stats:::arima function, with modifications by Kung-Sik Chan.

See Also

arima

Examples

data(airmiles)
plot(log(airmiles), ylab='Log(airmiles)', xlab='Year', main='')
acf(diff(diff(window(log(airmiles), end=c(2001,8)),12)), lag.max=48, main='')
air.ml=arimax(log(airmiles), order=c(0,1,1), seasonal=list(order=c(0,1,1), period=12), xtransf=data.frame(1911=1*(seq(airmiles)==69),
1911=1*(seq(airmiles)==69)), transfer=list(c(0,0), c(1,0)), xreg=data.frame(Dec96=1*(seq(airmiles)==12),
Jan97=1*(seq(airmiles)==13), Dec02=1*(seq(airmiles)==84)), method='ML')
arma11.s

A Simulated ARMA(1,1) Series/ time series

Description
A simulated ARMA(1,1) series with the model given by: $y_t = 0.6 \times y_{t-1} + e_t + 0.3 \times e_{t-1}$ where the e’s are iid standard normal random variables.

Usage
data(arma11.s)

Format
The format is: Time-Series [1:100] from 1 to 100: -0.765 1.297 0.668 -1.607 -0.626 ...

Examples
data(arma11.s)
maybe str(arma11.s) ; plot(arma11.s) ...

ARMAspec

Theoretical spectral density function of a stationary ARMA model

Description
Computes and plots the theoretical spectral density function of a stationary ARMA model.

Usage
ARMAspec(model, freq = seq(0, 0.5, 0.001), plot = TRUE, ...)

Arguments
- model: an arma model
- freq: vector of frequency over which the spectral density is computed
- plot: if true, plot the spectral density function; default is true
- ...: other parameters to be passed to the plot function

Value
a list:
- spec: spectral density values
- freq: same as freq in the input
- model: the arma model
armasubsets

Author(s)
Kung-Sik Chan

See Also
spec

Examples

theta=.9 # Reset theta for other MA(1) plots
ARMAspec(model=list(ma=-theta))

Description
This function finds a number of subset ARMA models. A "long" AR model is fitted to the data \(y \) to compute the residuals which are taken as a proxy of the error process. Then, an ARMA model is approximated by a regression model with the the covariates being the lags of the time series and the lags of the error process. Subset ARMA models may then be selected using the subset regression technique by leaps and bounds, via the regsubsets function of the leaps package in R.

Usage

armasubsets(y, nar, nma, y.name = "y", ar.method = "ols", ...)

Arguments

- **y**
 time-series data
- **nar**
 maximum AR order
- **nma**
 maximum MA order
- **y.name**
 label of the time series
- **ar.method**
 method used for fitting the long AR model; default is ols with the AR order determined by AIC
- **...**
 arguments passed to the plot.armasubsets function

Value
An object of the armasubsets class to be processed by the plot.armasubsets function.

Author(s)
Kung-Sik Chan
beersales

Examples

set.seed(92397)
test=arima.sim(model=list(ar=c(rep(0,11),.8),ma=c(rep(0,11),.7)),n=120)
res=armaarunsets(y=test,nar=14,nma=14,y.name='test',ar.method='ols')
plot(res)

beersales Monthly beer sales / time series

Description

Monthly beer sales in millions of barrels, 01/1975 - 12/1990.

Usage

data(beersales)

Format

The format is: Time-Series [1:192] from 1975 to 1991: 11.12 9.84 11.57 13.01 13.42 ...

Source

Examples

data(beersales)
maybe str(beersales); plot(beersales) ...

bluebird

Blue Bird Potato Chip Data

Description

Weekly unit sales (log-transformed) of Bluebird standard potato chips (New Zealand) and their price for 104 weeks.

Usage

data(bluebird)

data(bluebird)

Format

The format is: mts [1:104, 1:2] 11.5 11.5 11.5 11.9 11.3 ... - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr [1:2] "log.sales" "price" - attr(*, "tsp")= num [1:3] 1 104 1 - attr(*, "class")= chr [1:2] "mts" "ts"
Source

www.stat.auckland.ac.nz/~balemi/Assn3.xls

Examples

data(bluebird)
maybe str(bluebird) ; plot(bluebird) ...

bluebirdlite Bluebird Lite potato chip data

Description

Weekly unit sales (log-transformed) of Bluebird Lite potato chips (New Zealand) and their price for 104 weeks.

Usage

data(bluebirdlite)

Format

A data frame with 104 observations on the following 2 variables.

log.sales a numeric vector
price a numeric vector

Source

www.stat.auckland.ac.nz/~balemi/Assn3.xls

Examples

data(bluebirdlite)
maybe str(bluebirdlite) ; plot(bluebirdlite) ...
boardings

Monthly public transit boardings and gasoline price in Denver

Description

Monthly public transit boardings (mostly buses and light rail) and gasoline price (both log-transformed), Denver, Colorado region, 08/2000 - 03/2006.

Source

Personal communication from Lee Cryer, Project Manager, Regional Transportation District, Denver, Colorado. Denver gasoline prices were obtained from the Energy Information Administration, U.S. Department of Energy, Washington, D.C. at www.eia.doe.gov

Examples

```r
data(boardings)
plot(boardings)
## maybe str(boardings) ; plot(boardings) ...
```

BoxCox.ar

Determine the power transformation for serially correlated data

Description

Determine the appropriate power transformation for time-series data. The objective is to estimate the power transformation so that the transformed time series is approximately a Gaussian AR process.

Usage

```r
BoxCox.ar(y, order, lambda = seq(-2, 2, 0.01), plotit = TRUE, method = c("mle", "yule-walker", "burg", "ols", "yw"), ...)
```

Arguments

- **y**: univariate time series (must be positive)
- **order**: AR order for the data; if missing, the order is determined by AIC for the log-transformed data
- **lambda**: a vector of candidate power transformation values; if missing, it is set to be from -2 to 2, with increment .01
- **plotit**: logical value, if true, plot the profile log-likelihood for the power estimator
- **method**: method of AR estimation; default is "mle"
- **...**: other parameters to be passed to the ar function
Value

A list that contains the following:

- lambda: candidate power transformation parameter values
- loglike: profile log-likelihood
- mle: maximum likelihood estimate of the power transformation value
- ci: 95% C.I. of the power transformation value

Note

The procedure is very computer intensive. Be patient for the outcome.

Author(s)

Kung-Sik Chan

Examples

data(hare)
hare.transf=BoxCox.ar(y=hare)
hare.transf$ci

doCoR
Levels of Carbon Dioxide at Alert, Canada / Time series

Description

Usage

data(co2)

Format

The format is: Time-Series [1:132] from 1994 to 2005: 363 364 365 364 364 ...

Source

http://cdiac.ornl.gov/trends/co2/sio-alt.htm

Examples

data(co2)
maybe str(co2); plot(co2) ...
color

Color property/time series

Description

Color property from 35 consecutive batches in an industrial process.

Usage

`data(color)`

Format

The format is: Time-Series [1:35] from 1 to 35: 67 63 76 66 69 71 72 71 72 72 ...

Source

Examples

```r
data(color)
## maybe str(color) ; plot(color) ...
```

CREF

Daily CREF Values

Description

Daily values of one unit of the CREF (College Retirement Equity Fund) Stock fund, 08/26/04 - 08/15/06.

Usage

`data(CREF)`

Format

The format is: Time-Series [1:501] from 1 to 501: 170 170 169 170 171 ...

Source

Examples

```r
data(CREF)
## maybe str(CREF) ; plot(CREF) ...
```
cref.bond
Daily CREF Bond Values

Description

Daily values of one unit of the CREF (College Retirement Equity Fund) Bond fund, 08/26/04 - 08/15/06.

Usage

```r
data(CREF)
```

Source

www.tiaa-cref.org/performance/retirement/data/index.html

Examples

```r
data(CREF)
## maybe str(CREF) ; plot(CREF) ...
```

days
Number of days between payment to Winegard Corp. / time series

Description

Accounts receivable data. Number of days until a distributor of Winegard Company products pays their account.

Usage

```r
data(days)
```

Format

The format is: Time-Series [1:130] from 1 to 130: 39 39 41 26 28 28 25 26 24 38 ...

Source

Personal communication from Mark Selergren, Vice President, Winegard, Inc., Burlington, Iowa.

Examples

```r
data(days)
## maybe str(days) ; plot(days) ...
```
Deviations of an industrial process at Deere & Co. – Series 1

Description
82 consecutive values for the amount of deviation (in 0.000025 inch units) from a specified target value in an industrial machining process at Deere & Co.

Usage
data(deere1)

Format
The format is: Time-Series [1:82] from 1 to 82: 3 0 -1 -4 7 3 7 3 3 -1 ...

Source
Personal communication from William F. Fulkerson, Deere & Co. Technical Center, Moline, Illinois.

Examples

data(deere1)
maybe str(deere1) ; plot(deere1)

Deviations of an industrial process at Deere & Co. – Series 2

Description
102 consecutive values for the deviation (in 0.0000025 inch units) from a specified target value.

Usage
data(deere2)

Format
The format is: Time-Series [1:102] from 1 to 102: -18 -24 -17 -27 -37 -34 -8 14 18 7 ...

Source
Personal communication from William F. Fulkerson, Deere & Co. Technical Center, Moline, Illinois.
Examples

data(deere2)
 ## maybe str(deere2) ; plot(deere2) ...

deere3

Deviations of an industrial process at Deere & Co. – Series 3

Description

Fifty seven consecutive values for the deviation (in 0.0000025 inch units) from a specified target value.

Usage

data(deere3)

Format

The format is: Time-Series [1:57] from 1 to 57: -500 -1250 -500 -3000 -2375 ...

Source

Personal communication from William F. Fulkerson, Deere & Co. Technical Center, Moline, Illinois.

Examples

data(deere3)
 ## maybe str(deere3) ; plot(deere3) ...

detectAO

Additive Outlier Detection

Description

This function serves to detect whether there are any additive outliers (AO). It implements the test statistic $\lambda_{AO,t}$ proposed by Chang, Chen and Tiao (1988).

Usage

detectAO(object, alpha = 0.05, robust = TRUE)
Arguments

object a fitted ARIMA model
alpha family significance level (5% is the default) Bonferroni rule is used to control the family error rate.
robust if true, the noise standard deviation is estimated by mean absolute residuals times sqrt(pi/2). Otherwise, it is the estimated by sqrt(sigma2) from the arima fit.

Value

A list containing the following components:

ind the time indices of potential AO
lambda2 the corresponding test statistics

Author(s)

Kung-Sik Chan

References

See Also

detectIO

Examples

set.seed(12345)
y=arima.sim(model=list(ar=.8,ma=.5),n.start=158,n=100)
y[10]
y[10]=10
y=ts(y,freq=1,start=1)
plot(y,type='o')
acf(y)
pacf(y)
eacf(y)
m1=arima(y,order=c(1,0,0))
m1
detectAO(m1)
detectAO(m1, robust=FALSE)
detectIO(m1)
Innovative Outlier Detection

Description

This function serves to detect whether there are any innovative outliers (IO). It implements the test statistic $\lambda_{2,t}$ proposed by Chang, Chen and Tiao (1988).

Usage

```r
detectIO(object, alpha = 0.05, robust = TRUE)
```

Arguments

- `object` - a fitted ARIMA model
- `alpha` - family significance level (5% is the default) Bonferroni rule is used to control the family error rate.
- `robust` - if true, the noise standard deviation is estimated by mean absolute residuals times $\sqrt{\pi/2}$. Otherwise, it is estimated by $\sqrt{\text{sigma2}}$ from the arima fit.

Value

A list containing the following components:

- `ind` - the time indices of potential AO
- `lambda1` - the corresponding test statistics

Author(s)

Kung-Sik Chan

References

See Also

`detectIO`
Examples

```r
set.seed(12345)
y=arima.sim(model=list(ar=.8,ma=.5),n.start=158,n=100)
y[10]=10
y=ts(y,freq=1,start=1)
plot(y,type='o')
acf(y)
pacf(y)
eacf(y)
m1=arima(y,order=c(1,0,0))
m1
detectAO(m1)
detectAO(m1, robust=FALSE)
detectIO(m1)
```

Description

Computes the sample extended acf (ESACF) for the time series stored in `z`. The matrix of ESACF with the AR order up to `ar.max` and the MA order up to `ma.max` is stored in the matrix `EACFM`.

Usage

```r
eacf(z, ar.max = 7, ma.max = 13)
```

Arguments

- `z` the time series data
- `ar.max` maximum AR order; default=7
- `ma.max` maximum MA order; default=13

Value

A list containing the following two components:

- `eacf` a matrix of sample extended ACF
- `symbol` corresponding matrix of symbols indicating the significance of the ESACF

Side effect of the `eacf` function: The function prints a coded ESACF table with significant values denoted by * and nonsignificant values by 0.

Author(s)

Kung-Sik Chan
References

Examples

data(arma11.s)
eacf(arma11.s)

eeg

EEG Data

Description

An electroencephalogram (EEG) is a noninvasive test used to detect and record the electrical activity generated in the brain. These data were measured at a frequency of 256 per second and came from a patient suffering a seizure. This a portion of a series on the website of Professor Richard Smith, University of North Carolina. His source: Professors Mike West and Andrew Krystal, Duke University.

Usage

data(eeg)

Format

The format is: ts [1:13000, 1] -3.08 -20.15 -45.05 -69.95 -94.57 ... - attr(*, "dimnames")=List of 2
..$: NULL ..$: chr "eeg" - attr(*, "tsp")= num [1:3] 2001 15000 1

Source

http://www.stat.unc.edu/faculty/rs/s133/Data/datadoc.html

Examples

data(eeg)

maybe str(eeg) ; plot(eeg) ...
electricity

Monthly US electricity production / time series

Description

Usage
data(electricity)

Format
The format is: 'ts' int [1:396, 1] 160218 143539 148158 139589 147395 161244 173733 177365 156875 154197 ... - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr "electricity" - attr(*, "tsp")=num [1:3] 1973 2006 12

Source
Source: www.eia.doe.gov/emeu/mer/elect.html

Examples
data(electricity)
maybe str(electricity) ; plot(electricity) ...

euph

A digitized sound file of a B flat played on a euphonium

Description
A digitized sound file of about 0.4 seconds of a B flat just below middle C played on a euphonium by one of the authors (JDC), a member of the group Tempered Brass.

Usage
data(euph)

Format
The format is: Time-Series [1:1105] from 1 to 1105: 0.244 0.635 0.712 0.608 0.317 ...

Examples
data(euph)
maybe str(euph) ; plot(euph) ...
explode.s

A simulated explosive AR(1) series

Description

A simulated AR(1) series with the AR(1) coefficient being 3.

Usage

```r
data(explode.s)
```

Format

The format is: Time-Series [1:8] from 1 to 8: 0.63 0.64 3.72 12.67 39.57 ...

Examples

```r
data(explode.s)
## maybe str(explode.s) ; plot(explode.s) ...
```

fitted.Arima

Fitted values of an arima model.

Description

Computes the fitted values of an arima model.

Usage

```r
## S3 method for class 'Arima'
fitted(object,...)
```

Arguments

- `object` a fitted model from the arima function.
- `...` other arguments; not used here but kept to be consistent with the generic method

Value

fitted values

Author(s)

Kung-Sik Chan
flow

See Also

arima

Examples

```r
data(hare)
hare.m1=arima(sqrt(hare),order=c(3,0,0))
fitted(hare.m1)
```

flow

Monthly River Flow for the Iowa River

Description

Flow data (in cubic feet per second) for the Iowa river measured at Wapello, Iowa for the period 09/1958 - 08/2006.

Usage

```r
data(flow)
```

Source

http://waterdata.usgs.gov/ia/nwis/sw

Examples

```r
data(flow)
## maybe str(flow) ; plot(flow) ...
```

garch.sim

Simulate a GARCH process

Description

Simulate a GARCH process.

Usage

```r
garch.sim(alpha, beta, n = 100, rnd = rnorm, ntrans = 100,...)
```
Arguments

alpha The vector of ARCH coefficients including the intercept term as the first element
beta The vector of GARCH coefficients
n sample size
Rnd random number generator for the noise; default is normal
ntrans burn-in size, i.e. number of initial simulated data to be discarded
... parameters to be passed to the random number generator

Details

Simulate data from the GARCH(p,q) model: $x_t = \sigma_{t|t-1} e_t$ where $\{e_t\}$ is iid, e_t independent of past $x_{t-s}, s = 1, 2, \ldots$, and

$$\sigma_{t|t-1} = \sum_{j=1}^{p} \beta_j \sigma_{t-j|t-1} + \alpha_0 + \sum_{j=1}^{q} \alpha_j x_{t-j}^2$$

Value

simulated GARCH time series of size n.

Author(s)

Kung-Sik Chan

Examples

```r
set.seed(1235678)
garchP1Nsim$garchP1Nsim(alpha=c(.01,.9),n=500)
plot(garchP1Nsim,type='l', main='',ylab=expression(r[t]),xlab='t')
```

gBox

Generalized Portmanteau Tests for GARCH Models

Description

Perform a goodness-of-fit test for the GARCH model by checking whether the standardized residuals are iid based on the ACF of the absolute residuals or squared residuals.

Usage

```r
gBox(model, lags = 1:20, x, method = c("squared", "absolute")[1], plot = TRUE)
```
Arguments

- **model**: fitted model from the garch function of the tseries library
- **lags**: a vector of maximum ACF lags to be used in the test
- **x**: time series data to which the GARCH model is fitted
- **method**: "squared": test is based on squared residuals; "absolute": test is based on absolute residuals
- **plot**: logical variable, if TRUE, the p-values of the tests are plotted

Value

- **lags**: lags in the input
- **pvalue**: a vector of p-values of the tests
- **method**: method used
- **x**: x

Author(s)

Kung-Sik Chan

References

"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan

Examples

```r
# library(tseries) # need to uncomment this line when running the example
data(gold)
r.cref=diff(log(CREF))*100
ml=garch(x=r.cref,order=c(1,1))
summary(ml)
#gBox(ml,x=r.cref,method='squared')
```

gold

Gold Price / time series

Description

Daily price of gold (in \$ per troy ounce) for the 252 trading days of 2005

Usage

```r
data(gold)
```
Format

The format is: Time-Series [1:252] from 1 to 252: 427 426 426 423 421 ...

Source

www.lbma.org.uk/2005dailygold.htm

Examples

data(gold)
maybe str(gold) ; plot(gold) ...

google Daily returns of the google stock

description

Daily returns of the google stock from 08/20/04 - 09/13/06.

Usage
data(google)

Format

The format is: Time-Series [1:521] from 1 to 521: 0.0764 0.0100 -0.0423 0.0107 0.0179 ...

Source

http://finance.yahoo.com/q/hp?s=GOOG

Examples

data(google)
maybe str(google) ; plot(google) ...
hare

Canadian hare data/time series

Description

Annual number of hare data.

Usage

```r
data(hare)
```

Format

The format is: Time-Series [1:31] from 1905 to 1935: 50 20 20 22 27 50 55 78 70 59 ...

Details

These are yearly hare abundances for the main drainage of the Hudson Bay, based on trapper questionnaires.

Source

MacLulich, D. A. (1937) Fluctuations in the Number of the Varying Hare (Lepus americanus) (Univ. of Toronto Press, Toronto)

References

Examples

```r
data(hare)
```

harmonic

Construct harmonic functions for fitting harmonic trend model

Description

The function creates a matrix of the first m pairs of harmonic functions for fitting a harmonic trend (cosine-sine trend, Fourier regression) models with the response being x, a time series.

Usage

```r
harmonic(x, m = 1)
```
Arguments

x : a time series
m : the number of pairs of harmonic functions to be created; 2m must be less than or equal to the frequency of x

Value

A matrix consisting of $\cos(2k\pi t)$, $\sin(2k\pi t)$, $k = 1, 2, ..., m$, excluding any zero functions.

Author(s)

Kung-Sik Chan

See Also

season

Examples

data(tempdub)
first creates the first pair of harmonic functions and then fit the model
har.=harmonic(tempdub,1)
model4=lm(tempdub~har.)
summary(model4)

Description

Average hours worked in US manufacturing sector / time series

Usage

data(hours)

Format

The format is: Time-Series [1:60] from 1983 to 1987: 389 390 389 390 393 397 392 388 396 398 ...

Source

Examples

data(hours)
maybe str(hours) ; plot(hours) ...
ima22.s

Simulated IMA(2,2) series / time series

Description
A simulated IMA(2,2) series with theta1=1 and theta2=-0.6

Usage
data(ima22.s)

Format
The format is: Time-Series [1:62] from 1 to 62: 0.00000 0.00000 -0.00569 2.12404 2.15337 ...

Examples
data(ima22.s)
maybe str(ima22.s) ; plot(ima22.s) ...

JJ
Quarterly earnings per share for the Johnson & Johnson Company

Description
Quarterly earnings per share for 1960Q1 to 1980Q4 of the U.S. company, Johnson & Johnson, Inc.

Usage
data(JJ)

Format
The format is: Time-Series [1:84] from 1960 to 1981: 0.71 0.63 0.85 0.44 0.61 0.69 0.92 0.55 0.72 0.77 ...

Source
http://www.stat.pitt.edu/stoffer/tsa2/

Examples
data(JJ)
maybe str(JJ) ; plot(JJ) ...
Keenan.test

Keenan’s one-degree test for nonlinearity

Description

Carry out Keenan’s 1-degree test for nonlinearity against the null hypothesis that the time series follows some AR process.

Usage

Keenan.test(x, order, ...)

Arguments

x
time series

order
working AR order; if missing, it is estimated by minimizing AIC via the ar function.

...
user-supplied options to the ar function.

Details

The test is designed to have optimal local power against departure from the linear autoregressive function in the direction of the square of the linear autoregressive function.

Value

A list containing the following components

test.stat
The observed test statistic

p.value
p-value of the test

order
working AR order

Author(s)

Kung-Sik Chan

References

See Also

Tsay.test,tlrt

Examples

data(spots)
Keenan.test(sqrt(spots))
kurtosis

Description

Computes the Kurtosis.

Usage

kurtosis(x, na.rm = FALSE)

Arguments

x
data
na.rm
logical variable, if true, missing values are excluded from analysis

Details

Given data \(x_1, x_2, \ldots, x_n \), the sample kurtosis is defined by the formula:

\[
\frac{\sum_{i=1}^{n} (x_i - \bar{x})^4 / n}{(\sum_{i=1}^{n} (x_i - \bar{x})^2 / n)^2} - 3.
\]

Value

The function returns the kurtosis of the data.

Author(s)

Kung-Sik Chan

Examples

data(CREF)

r.cref=diff(log(CREF))*100

kurtosis(r.cref)
Description
Computes and plots the nonparametric regression function of a time series against its various lags.

Usage
lagplot(x, lag.max = 6, deg = 1, nn = 0.7, method = c("locfit", "gam", "both")[1])

Arguments
x time series
lag.max maximum lag
deg degree of local polynomial, needed only for the locfit method
nn fraction of nearest data contained in a window, needed only for the locfit method
method Two methods for nonparametric estimation: "locfit" is the default which uses
 the local polynomial approach via the locfit library to estimate the conditional
 mean function of $E(X_t | X_{t-k} = x)$ for $1 \leq k \leq lag.max$; Another method is
 GAM, via the mgcv library.

Value
Side effects: The nonparametric lagged regression functions are plotted lag by lag, with the raw
data superimposed on the plots.

Author(s)
Kung-Sik Chan

References
"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan

Examples
set.seed(2534567)
par(mfrow=c(3,2))
y=arima.sim(n=61,model=list(ar=c(1.6,-0.94),ma=-0.64))
lagplot(y)
larain

Annual rainfall in Los Angeles / time series

Description

Usage
data(larain)

Format
The format is: Time-Series [1:115] from 1778 to 1892: 20.86 17.41 18.65 5.53 10.74 ...

Source
Personal communication from Professor Donald Bentley, Pomona College, Claremont, California. For more data see http://www.wrh.noaa.gov/lox/climate/cvc.php

Examples
data(larain)
maybe str(larain) ; plot(larain) ...

LB.test
Portmanteau Tests for Fitted ARIMA models

Description
This function modifies the Box.test function in the stats package, and it computes the Ljung-Box or Box-Pierce tests checking whether or not the residuals appear to be white noise.

Usage
LB.test(model, lag = 12, type = c("Ljung-Box", "Box-Pierce"), no.error = FALSE, omit.initial = TRUE)

Arguments
model model fit from the arima function
lag number of lags of the autocorrelation of the residuals to be included in the test statistic. (default=12)
type either Ljung-Box or Box-Pierce
no.error a system variable; normally it is not changed
omit.initial if true, (d+Ds) initial residuals are omitted from the test
Value

a list:

- statistics: test statistic
- p.value: p-value
- parameter: d.f. of the Chi-square test
- lag: no of lags

Author(s)

Kung-Sik Chan, based on A. Trapletti’s work on the Box.test function in the stats package

References

Examples

data(ma1.1.s)
m1.color=arima(color,order=c(1,0,0))
LB.test(m1.color)

ma1.1.s A simulated MA(1) series / time series

Description

A simulated MA(1) series with the MA(1) coefficient equal to 0.9.

Usage

data(ma1.1.s)

Format

The format is: Time-Series [1:120] from 1 to 120: 0.182 -0.748 -0.355 1.014 -2.363 ...

Details

The model is \(Y(t) = e(t) - 0.9e(t - 1) \) where the e’s are iid standard normal.

Examples

data(ma1.1.s)
maybe str(ma1.1.s) ; plot(ma1.1.s) ...
ma1.2.s

A simulated MA(1) series / time series

Description
A simulated MA(1) series with the MA(1) coefficient equal to -0.9.

Usage
data(ma1.2.s)

Format
The format is: Time-Series [1:120] from 1 to 120: 1.511 1.821 0.957 -1.538 -2.888 ...

Details
The model is \(Y(t) = e(t) + 0.9e(t-1) \) where the e’s are iid standard normal.

Examples
data(ma1.2.s)
 ## maybe str(ma1.2.s) ; plot(ma1.2.s) ...

ma2.s

A simulated MA(2) series

Description
A simulated MA(2) series with MA coefficients being 1 and -0.6.

Usage
data(ma2.s)

Format
The format is: Time-Series [1:120] from 1 to 120: -0.4675 0.0815 0.9938 -2.6959 2.8116 ...

Details
The model is \(Y(t) = e(t) - e(t-1) + 0.6 * e(t-2) \) where the e’s are iid standard normal random variables.

Examples
data(ma2.s)
 ## maybe str(ma2.s) ; plot(ma2) ...
McLeod.Li.test McLeod-Li test

Description

Perform the McLeod-Li test for conditional heteroscedascity (ARCH).

Usage

McLeod.Li.test(object, y, gof.lag, col = "red", omit.initial = TRUE, plot = TRUE, ...)

Arguments

 object a fitted Arima model, usually the output from the arima function. If supplied, then the Mcleod-Li test is applied to the residuals of the model, and the y-argument is ignored.
 y time series data with which one wants to test for the presence of conditional heteroscedascity
 gof.lag maximum number of lags for which the test is carried out.
 col color of the reference line
 omit.initial suppress the initial (d+Ds) residuals if set to be TRUE
 plot suppress plotting if set to be FALSE
 ... other arguments to be passed to the plot function

Details

The test checks for the presence of conditional heteroscedascity by computing the Ljung-Box (portmanteau) test with the squared data (if y is supplied and object suppressed) or with the squared residuals from an arima model (if an arima model is passed to the function via the object argument.)

Value

 pvlaues the vector of p-values for the Ljung-Box test statistics computed using the first m lags of the ACF of the squared data or residuals, for m ranging from 1 to gof.lag.

Author(s)

 Kung-Sik Chan

References

Examples

```r
data(CREF)
r.cref=diff(log(CREF))*100
McLeod.Li.test(y=r.cref)
```

milk
Monthly Milk Production

Description

Average monthly milk production per cow in the US, 01/1994 - 12/2005

Usage

```r
data(milk)
```

Format

The format is: 'ts' int [1:144, 1] 1343 1236 1401 1396 1457 1389 1369 1318 1354 ... - attr(*,

Examples

```r
data(milk)
str(milk)
plot(milk)
```

oil.price
Monthly Oil Price / time series

Description

Usage

```r
data(oil.price)
```

Format

The format is: Time-Series [1:241] from 1986 to 2006: 22.9 15.4 12.6 12.8 15.4 ...

Source

tonto.eia.doe.gov/dnav/pet/hist/rwtcM.htm
Examples

```r
data(oil.price)
## maybe str(oil.price) ; plot(oil.price) ...
```

oilfilters

Monthly sales to dealers of a specialty oil filter/time series

Description

Usage

```r
data(oilfilters)
```

Format

Source

Examples

```r
data(oilfilters)
## maybe str(oilfilters) ; plot(oilfilters) ...
```

periodogram

Computing the periodogram

Description

This is a wrapper that computes the periodogram

Usage

```r
periodogram(y,log='no',plot=TRUE,ylab="Periodogram", xlab="Frequency",lwd=2,...)
```
plot.Arima

Arguments

- **y**: A univariate time series
- **log**: if set to "yes", the periodogram is plotted on the log-scale; default="no"
- **plot**: The periodogram is plotted if it is set to be TRUE which is the default
- **ylab**: label on the y-axis
- **xlab**: label on the x-axis
- **lwd**: thickness of the periodogram lines
- **...**: other arguments to be passed to the plot function

Value

A list that contains the following elements:

- **freq**: Vector of frequencies at which the spectral density is estimated. (Possibly approximate Fourier frequencies.
- **spec**: Vector of estimates of the periodogram at frequencies corresponding to freq.

References

Examples

```r
data(star)
plot(star, xlab='Day', ylab='Brightness')
periodogram(star, ylab='Variable Star Periodogram'); abline(h=0)
```

plot.Arima Compute and Plot the Forecasts Based on a Fitted Time Series Model

Description

Plots the time series data and its predictions with 95% prediction bounds.

Usage

```r
## S3 method for class 'Arima'
plot(x, n.ahead = 12, col = "black", ylab = object$series,
     lty = 2, n1, newxreg, transform, Plot=TRUE, ...)
```
Arguments

- **x**: a fitted arima model
- **n.ahead**: number of prediction steps ahead (default=12)
- **col**: color of the prediction bounds
- **ylab**: label of the y-axis
- **lty**: line type of the point predictor; default=dashed lines
- **n1**: starting time point of the plot (default=earliest time point)
- **newxreg**: a matrix of covariate(s) over the period of prediction
- **transform**: function used to transform the forecasts and their prediction bounds; if missing, no transformation will be carried out. This option is useful if the model was fitted to the transformed data and it is desirable to obtain the forecasts on the original scale. For example, if the model was fitted with the logarithm of the data, then `transform = exp` will plot the forecasts and their prediction bounds on the original scale.
- **Plot**: Plotting will be suppressed if `Plot` is set to be `FALSE`; default is `TRUE`
- **...**: additional parameters passed to the plot function

Value

Side effects of the function: plot the forecasts and their 95% prediction bounds, unless `Plot` is set to be `FALSE`. The part of the observed series is plotted with all data plotted as open circles and linked by a smooth line. By default the predicted values are plotted as open circles joined up by a dashed line. The plotting style of the predicted values can be altered by supplying relevant plotting options, e.g specifying the options `type='o', pch=19` and `lty=1` will plot the predicted values as solid circles that are overlaid on the connecting smooth solid line. The prediction limits are plotted as dotted lines, with default color being black. However, the prediction limits can be drawn in other colors. For example, setting `col='red'` paints the prediction limits in red. An interesting use of the `col` argument is setting `col=NULL` which has the effect of not drawing the prediction limits.

The function returns an invisible list containing the following components.

- **pred**: the time series of predicted values
- **lpi**: the corresponding lower 95% prediction limits
- **upi**: the corresponding upper 95% prediction limits

Author(s)

Kung-Sik Chan

Examples

```r
data(oil.price)
oi1.IMA1alt=arima(log(oil.price),order=c(0,1,1),
# create the design matrix of the covariate for prediction
xreg=data.frame(constant=seq(oil_price)))
n=length(oil.price)
n.ahead=24
```
newxreg=data.frame(constant=(n+1):(n+n.ahead))
do the prediction and plot the results
plot(oil.IMA11alt,n.ahead=n.ahead,newxreg=newxreg,
ylab='Log(Oil Price)',xlab='Year',n1=c(2000,1))
do the same thing but on the original scale
plot(oil.IMA11alt,n.ahead=n.ahead,newxreg=newxreg,
ylab='Oil Price',xlab='Year',n1=c(2000,1),transform=exp,pch=19, lty=1,type='o')
Setting pch=19 plots the predicted values as solid circles.
res=plot(oil.IMA11alt,n.ahead=n.ahead,newxreg=newxreg,
ylab='Oil Price',xlab='Year',n1=c(2000,1),transform=exp,pch=19,col=NULL)
Setting col=NULL will make the prediction bands invisible. Try col='red'.
res
prints the predicted values and their 95% prediction limits.

plot.armasubsets

Plot the Best Subset ARMA models

Description
This function is adapted from the plot.regsubsets function of the leaps package, and its main use is to plot the output from the armasubsets function.

Usage
```r
## S3 method for class 'armasubsets'
plot(x, labels = obj$names, main = NULL,
scale = c("BIC", "AICc", "AIC", "Cp", "adjR2", "R2"),
col = gray(c(seq(0.4, 0.7, length = 10), 0.9)), draw.grid = TRUE,
axis.at.3 = TRUE, ...)
```

Arguments
- `x`: an object of class armasubsets
- `labels`: variable names
- `main`: title for plot
- `scale`: which summary statistic to use for ordering plots
- `col`: the last color should be close to but distinct from white
- `draw.grid`: a logical argument; if it is true (default), gray grid lines are superimposed on the graph.
- `axis.at.3`: a logical argument; if it is true (default), the x-labels are drawn on the upper horizontal axis.
- `...`: other arguments

Value
Plot the few best subset ARMA models.
Author(s)
Kung-Sik Chan, based on previous work by Thomas Lumley and Merlise Clyde

See Also
armasubsets

Examples

```r
set.seed(53331)
test=arima.sim(model=list(ar=c(rep(0,11),.8),ma=c(rep(0,11),.7)),n=120)
res=armasubsets(y=test,nar=14,nma=14,y.name='test',ar.method='ols')
plot(res)
```

Description
A workhorse function for the acf function in the TSA package.

Author(s)
Kung-Sik Chan

predict.TAR
Prediction based on a fitted TAR model

Description
Predictions based on a fitted TAR model. The errors are assumed to be normally distributed. The predictive distributions are approximated by simulation.

Usage
```r
## S3 method for class 'TAR'
predict(object, n.ahead = 1, n.sim = 1000,...)
```

Arguments
- **object**: a fitted TAR model from the tar function
- **n.ahead**: number of prediction steps ahead
- **n.sim**: simulation size
- **...**: other arguments; not used here but kept for consistency with the generic method
Value

fit a vector of medians of the 1-step to n.ahead-step predictive distributions
pred.interval a matrix whose i-th row consists of the 2.5 and 97.5 precentiles of the i-step predictive distribution
pred.matrix a matrix whose j-th column consists of all simulated values from the j-step predictive distribution

Author(s)

Kung-Sik Chan

References

"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan

See Also

tar

Examples

data(prey.eq)
prey.tar.1=tar(y=log(prey.eq),p1=4,p2=4,d=3,a=.1,b=.9,print=TRUE)
set.seed(2357125)
pred.prey=predict(prey.tar.1,n.ahead=60,n.sim=1000)
yy=ts(c(log(prey.eq),pred.prey$fit),frequency=1,start=1)
plot(yy,type='n',ylim=range(c(yy,pred.prey$pred.interval)),ylab='Log Prey',xlab=expression(t))
lines(log(prey.eq))
lines(window(yy, start=end(prey.eq)[1]+1),lty=2)
lines(ts(pred.prey$pred.interval[2,],start=end(prey.eq)[1]+1),lty=2)
lines(ts(pred.prey$pred.interval[1,],start=end(prey.eq)[1]+1),lty=2)

prescrip

Cost per prescription / time series

Description

Usage

data(prescrip)

Format

The format is: Time-Series [1:68] from 1987 to 1992: 14.5 14.7 14.8 14.6 14.3 ...
prewhiten

Source

Examples

data(prescrip)
maybe str(prescrip); plot(prescrip) ...

prewhiten

Prewhiten a Bivariate Time Series, and Compute and Plot Their Sample Cross-Correlation Function

Description
The bivariate time series are prewhitened according to an AR model fitted to the x-component of the bivariate series. Alternatively, if an ARIMA model is provided, it will be used to prewhiten both series. The CCF of the prewhitened bivariate series is then computed and plotted.

Usage

prewhiten(x, y, x.model = ar.res, ylab="CCF", ...)

Arguments

x first component series
y second component series
x.model an ARIMA model; if provided, it is used to prewhiten both series. Otherwise, an AR model is fitted to the x-series and used to prewhiten both series. The AR order is chosen by minimizing the AIC and the fit carried out by the ar.ols function.
ylab label of y-axis; default is "CCF"
... additional parameters to be passed to the ar.ols and the ccf function.

Value
A list containing the following components:

ccf Output from the ccf function on the prewhitened data.
ar The AR model fit to the x-series, or x.model if it is provided.

Author(s)
Kung-Sik Chan
Examples

data(milk)
data(electricity)
milk.electricity=ts.intersect(milk,log(electricity))
plot(milk.electricity,yax.flip=TRUE,main='')
ccf(as.numeric(milk.electricity[,1]),as.numeric(milk.electricity[,2]),
 main='milk & electricity',ylab='CCF')
me.dif=ts.intersect(diff(diff(milk[,12]),diff(diff(log(electricity),12))))
prewhiten(as.numeric(me.dif[,1]),as.numeric(me.dif[,2]),
 ylab='CCF')

Prey series / time series

Description

The stationary part of the Didinium series in the veilleux data frame.

Usage

data(prey.eq)

Format

The format is: Time-Series [1:57] from 7 to 35: 26.9 53.2 65.6 81.2 143.9 ...

See Also

veilleux

Examples

data(prey.eq)
maybe str(prey.eq) ; plot(prey.eq) ...

Simulate a first-order quadratic AR model

Description

Simulates a first-order quadratic AR model with normally distributed noise.

Usage

qar.sim(const = 0, phi0 = 0, phi1 = 0.5, sigma = 1, n = 20, init = 0)
Arguments

const | intercept
phi0 | coefficient of the lag 1
phi1 | coefficient of the squared lag 1
sigma | noise standard deviation
n | sample size
init | number of burn-in values

Details

The quadratic AR(1) model specifies that

\[Y_t = \text{const} + \phi_0 Y_{t-1} + \phi_1 Y_{t-1}^2 + e_t \]

where \(e_t\) are iid normally distributed with zero mean and standard deviation \(\sigma\). If \(\sigma = 0\), the model is deterministic.

Value

A simulated series from the quadratic AR(1) model, as a vector

Author(s)

Kung-Sik Chan

See Also

tar.sim

Examples

```r
set.seed(1234567)
plot(y=qar.sim(n=15,phi=.5,sigma=1),x=1:15,type='l',ylab=expression(Y[t]),xlab='t')
y=qar.sim(n=100,const=0.0,phi0=3.97, phi1=-3.97,sigma=0,init=.377)
plot(y,x=1:100,type='l',ylab=expression(Y[t]),xlab='t')
acf(y,main='')
```

Description

Monthly total UK (United Kingdom) retail sales (non-food stores in billions of pounds), 01/1983 - 12/1987.

Usage

data(retail)
robot

Format

The format is: Time-Series [1:60] from 1983 to 1988: 81.3 78.9 93.8 94 97.8 1.6 99.6 1.2 98 1.7 ...

Source

www.statistics.gov.uk/statbase/TSDdownload1.asp

Examples

```r
data(retail)
## maybe str(retail) ; plot(retail) ...
```

Description

Final position in the x direction of an industrial robot put through a series of planned exercises many times.

Usage

```r
data(robot)
```

Format

The format is: Time-Series [1:324] from 1 to 324: 0.0011 0.0011 0.0024 0 -0.0018 0.0055 0.0055 -0.0015 0.0047 -1e-04 ...

Source

Personal communication from William F. Fulkerson, Deere \\& Co. Technical Center, Moline, Illinois.

Examples

```r
data(robot)
## maybe str(robot) ; plot(robot) ...
```
rstandard.Arima \hspace{1cm} \textit{Compute the Standardized Residuals from a Fitted ARIMA Model}

\textbf{Description}

Computes the internally standardized residuals from a fitted ARIMA model.

\textbf{Usage}

\texttt{## S3 method for class 'Arima'

\texttt{rstandard(model,...)\n
\textbf{Arguments}

model \hspace{1cm} \texttt{model fitted by the arima function

... \hspace{1cm} \texttt{not used; kept here for consistency with the generic method

\textbf{Details}

residuals/(error std. dev.)

\textbf{Value}

time series of standarized residuals

\textbf{Examples}

data(oil.price)
\texttt{m1.oil=arima(log(oil.price),order=c(0,1,1))}
\texttt{plot(rstandard(m1.oil),ylab='Standardized residuals',type='l')
abline(h=0)

\textbf{runs} \hspace{1cm} \textit{Runs test}

\textbf{Description}

Test the independence of a sequence of random variables by checking whether there are too many or too few runs above (or below) the median.

\textbf{Usage}

\texttt{runs(x,k=0)
Arguments

x time series
k the value above or below which runs are counted; default is zero, so data is assumed to have zero median

Details

The runs test examines the data in sequence to look for patterns that would give evidence against independence. Runs above or below k are counted. A small number of runs would indicate that neighboring values are positively dependent and tend to hang together over time. On the other hand, too many runs would indicate that the data oscillate back and forth across their median of zero. Then neighboring residuals are negatively dependent. So either too few or too many runs lead us to reject independence. When applied to residuals, the runs test is useful for model diagnostics.

Value

pvalue p-value of the test
observed.runs observed number of runs
expected.runs expected number of runs
n1 number of data less than or equal to k
n2 number of data above k

Author(s)

Kung-Sik Chan

Examples

data(tempdub)
month.=season(tempdub) # the period sign is included to make the printout from # the following command clearer.
model3=lm(tempdub-month.) # intercept is automatically included so one month (Jan) is dropped
summary(model3)
runs(rstudent(model3))

rwalk

A simulated random walk / Time series

Description

A simulated random walk with standard normal increments

Usage

data(rwalk)
season

Extract the season info from a time series

Description

Extract the season info from a equally spaced time series and create a vector of the season info. For example for monthly data, the function outputs a vector containing the months of the data.

Usage

season(x, labels)

Arguments

x

a time series

labels

the user supplied labels for the seasons

Details

The time series must have frequency greater than 1, otherwise the function will stop and issue an error message. If labels is missing, labels will be set as follows: It is set to be c("1Q","2Q","3Q","4Q") if the frequency of x equals 4, c("January","December") if the frequency equals 12, and c("Monday","Sunday") if frequency equals 7. Otherwise, it is set to be c("S1",...)

Value

An invisible vector containing the seasons of the data

Author(s)

Kung-Sik Chan

See Also

harmonic

Examples

data(tempdub)
month=season(tempdub) # the period sign is included to make the printout from # the commands two line below clearer; ditto below.
model2=lm(tempdub-month.-1) # -1 removes the intercept term
summary(model2)
Description

Computes the skewness of the data

Usage

```r
skewness(x, na.rm = FALSE)
```

Arguments

- `x`: data
- `na.rm`: logical variable, if true, missing values are excluded from analysis

Details

Given data \(x_1, x_2, \ldots, x_n\), the sample skewness is defined by the formula:

\[
\frac{\sum_{i=1}^{n} (x_i - \bar{x})^3 / n}{(\sum_{i=1}^{n} (x_i - \bar{x})^2 / n)^{3/2}}.
\]

Value

The function returns the skewness of the data.

Author(s)

Kung-Sik Chan

Examples

```r
data(CREF)
r.cref=diff(log(CREF))*100
skewness(r.cref)
```
SP

Quarterly Standard & Poor's Composite Index of stock price values / time series

Description

Usage

data(SP)

Format

The format is: Time-Series [1:168] from 1936 to 1978: 149 148 160 172 179 ...

Source

Examples

data(SP)
maybe str(SP) ; plot(SP) ...

spec

Computing the spectrum

Description

This is a wrapper that allows the user to invoke either the spec.pgram function or the spec.ar function in the stats package. Note that the seasonal attribute of the data, if it exists, will be removed, for our preferred way of presenting the output.

Usage

spec(x, taper = 0, detrend = FALSE, demean = TRUE, method = c("pgram", "ar"), ci.plot = FALSE, ylim = range(c(lower.conf.band, upper.conf.band)), ...)
Arguments

A list that contains the following:

- A univariate or multivariate time series
- `x taper` amount of taper; 0 is the default
- `detrend` logical; if True, the data are detrended; default is False
- `demean` logical; if True, the data are centered; default is True
- `method` String specifying the method used to estimate the spectral density. Allowed methods are "pgram" (the default) and "ar".
- `ci.plot` logical; if True, the 95% confidence band will be plotted.
- `ylim` Plotting parameter vector specifying the minimum and maximum of the y-axis.
- `...` other arguments

Value

The output is from the `spec.pgram` function or `spec.ar` function, and the following description of the output is taken from the help manual of the spec function in the stats package. An object of class "spec", which is a list containing at least the following components:

- `freq` Vector of frequencies at which the spectral density is estimated. (Possibly approximate Fourier frequencies.) The units are the reciprocal of cycles per unit time (and not per observation spacing): see Details below.
- `spec` Vector (for univariate series) or matrix (for multivariate series) of estimates of the spectral density at frequencies corresponding to `freq`. `coh` NULL for univariate series. For multivariate time series, a matrix containing the squared coherency between different series. Column \(i + (j - 1) \times (j - 2)/2 \) of `coh` contains the squared coherency between columns \(i \) and \(j \) of \(x \), where \(i < j \).
- `phase` NULL for univariate series. For multivariate time series a matrix containing the cross-spectrum phase between different series. The format is the same as `coh`.
- `series` The name of the time series.
- `snames` For multivariate input, the names of the component series.
- `method` The method used to calculate the spectrum.

The result is returned invisibly if `plot` is true.

References

Examples

```r
set.seed(271435); n=200; phi=-0.6
y=arima.sim(model=list(ar=phi),n=n)
k=kernel('daniell',m=15)
sp=spec(y,kernel=k,main='',sub='',xlab='Frequency',
ylab='Log(Smoothed Sample Spectrum)',ci.plot=TRUE,ci.col='black')
lines(sp$freq,ARMAspec(model=list(ar=phi),sp$freq,plot=FALSE)$spec,lty=4)
abline(h=0)
```

Description

Annual American (relative) sunspot numbers collected from 1945 to 2007. The annual (relative) sunspot number is a weighted average of solar activities measured from a network of observatories.

Usage

data(spots)

Format

The format is: Time-Series [1:61] from 1945 to 2005: 32.3 99.9 170.9 166.6 174.1 ...

Source

http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html#american

References

"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan

Examples

data(spots)
maybe str(spots); plot(spots) ...
Description
Annual international sunspot numbers, NOAA National Geophysical Data Center, 1700 - 2005.

Usage
data(spots1)

Format
The format is: ts [1:306, 1] 5 11 16 23 36 58 29 20 10 8 ... - attr(*, "dimnames")=List of 2 ..$: chr "spots" - attr(*, "tsp")= num [1:3] 1700 2005 1

Source

Examples
data(spots1)
maybe str(spots1) ; plot(spots1) ...

Description
Star Brightness
Brightness (magnitude) of a particular star at midnight on 600 consecutive nights.

Usage
data(star)

Source

Examples
data(star)
maybe str(star) ; plot(star) ...
data(star)
plot(star,xlab='Day',ylab='Brightness')
summary.armasubsets
Summary of output from the armasubsets function

Description

Add the calculation of AIC and AICc. See the help manual of regsubsets function of the leaps package.

Usage

```r
## S3 method for class 'armasubsets'
summary(object, all.best = TRUE, matrix = TRUE, matrix.logical = FALSE, df = NULL, ...)
```

Arguments

- `object`: armasubsets object
- `all.best`: Show all the best subsets or just one of each size
- `matrix`: Show a matrix of the variables in each model or just summary statistics
- `matrix.logical`: With matrix=TRUE, the matrix is logical TRUE/FALSE or string "*/code" "
- `df`: Specify a number of degrees of freedom for the summary statistics. The default is n-1
- `...`: Other arguments for future methods

Author(s)

Kung-Sik Chan, based on previous work of Thomas Lumley

tar

Estimation of a TAR model

Description

Estimation of a two-regime TAR model.

Usage

```r
tar(y, p1, p2, d, is.constant1 = TRUE, is.constant2 = TRUE, transform = "no",
center = FALSE, standard = FALSE, estimate.thd = TRUE, threshold,
method = c("MAIC", "CLS")[1], a = 0.05, b = 0.95, order.select = TRUE, print = FALSE)
```
Arguments

- **y**
 time series

- **p1**
 AR order of the lower regime

- **p2**
 AR order of the upper regime

- **d**
 delay parameter

- **is.constant1**
 if True, intercept included in the lower regime, otherwise the intercept is fixed at zero

- **is.constant2**
 similar to is.constant1 but for the upper regime

- **transform**
 available transformations: "no" (i.e. use raw data), "log", "log10" and "sqrt"

- **center**
 if set to be True, data are centered before analysis

- **standard**
 if set to be True, data are standardized before analysis

- **estimate.thd**
 if True, threshold parameter is estimated, otherwise it is fixed at the value supplied by threshold

- **threshold**
 known threshold value, only needed to be supplied if estimate.thd is set to be False.

- **method**
 "MAIC": estimate the TAR model by minimizing the AIC; "CLS": estimate the TAR model by the method of Conditional Least Squares.

- **a**
 lower percent; the threshold is searched over the interval defined by the a*100 percentile to the b*100 percentile of the time-series variable

- **b**
 upper percent

- **order.select**
 If method is "MAIC", setting order.select to True will enable the function to further select the AR order in each regime by minimizing AIC

- **print**
 if True, the estimated model will be printed

Details

The two-regime Threshold Autoregressive (TAR) model is given by the following formula:

\[Y_t = \phi_{1,0} + \phi_{1,1} Y_{t-1} + \ldots + \phi_{1,p} Y_{t-p} + \sigma_1 \epsilon_t, \text{ if } Y_{t-d} \leq r \]

\[Y_t = \phi_{2,0} + \phi_{2,1} Y_{t-1} + \ldots + \phi_{2,p} Y_{t-p} + \sigma_2 \epsilon_t, \text{ if } Y_{t-d} > r. \]

where \(r \) is the threshold and \(d \) the delay.

Value

A list of class "TAR" which can be further processed by the by the predict and tsdiag functions.

Author(s)

Kung-Sik Chan

References

"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan
See Also

predict.TAR, tsdiag.TAR, tar.sim, tar.skeleton

Examples

data(prey.eq)
prey.tar.1 = tar(y = log(prey.eq), p1 = 4, p2 = 4, d = 3, a = .1, b = .9, print = TRUE)

Description

Simulate a two-regime TAR model.

Usage

tar.sim(object, ntransient = 500, n = 500, Phi1, Phi2, thd, d, p, sigma1, sigma2, xstart = rep(0, max(p, d)), e)

Arguments

object a TAR model fitted by the tar function; if it is supplied, the model parameters and initial values are extracted from it
ntransient the burn-in size
n sample size of the simulated series
Phi1 the coefficient vector of the lower-regime model
Phi2 the coefficient vector of the upper-regime model
thd threshold
d delay
p maximum autoregressive order
sigma1 noise std. dev. in the lower regime
sigma2 noise std. dev. in the upper regime
xstart initial values for the simulation
e standardized noise series of size equal to length(xstart) + ntransient + n; if missing, it will be generated as some normally distributed errors

Details

The two-regime Threshold Autoregressive (TAR) model is given by the following formula:

\[Y_t = \phi_{1,0} + \phi_{1,1}Y_{t-1} + \ldots + \phi_{1,p}Y_{t-p} + \sigma_1 e_t, \text{ if } Y_{t-d} \leq r \]
\[Y_t = \phi_{2,0} + \phi_{2,1}Y_{t-1} + \ldots + \phi_{2,p}Y_{t-p} + \sigma_2 e_t, \text{ if } Y_{t-d} > r. \]

where \(r \) is the threshold and \(d \) the delay.
Value

A list containing the following components:

- y: simulated TAR series
- e: the standardized errors

...

Author(s)

Kung-Sik Chan

References

"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan

See Also

- `tar`

Examples

```r
set.seed(1234579)
y = tar.sim(n=100, Phi1=c(0, 0.5), Phi2=c(0, -1.8), p=1, d=1, sigma1=1, thd=-1, sigma2=2)
y
plot(y=y, x=1:100, type='b', xlab="t", ylab=expression(Y[t]))
```

tar.skeleton

Find the asymptotic behavior of the skeleton of a TAR model

Description

The skeleton of a TAR model is obtained by suppressing the noise term from the TAR model.

Usage

```r
tar.skeleton(object, Phi1, Phi2, thd, d, p, ntransient = 500, n = 500, xstart, plot = TRUE, n.skeleton = 50)
```
Arguments

object a TAR model fitted by the tar function; if it is supplied, the model parameters and initial values are extracted from it
n.transient the burn-in size
n sample size of the skeleton trajectory
phi1 the coefficient vector of the lower-regime model
phi2 the coefficient vector of the upper-regime model
thd threshold
d delay
p maximum autoregressive order
xstart initial values for the iteration of the skeleton
plot if True, the time series plot of the skeleton is drawn
n.skeleton number of last n.skeleton points of the skeleton to be plotted

Details

The two-regime Threshold Autoregressive (TAR) model is given by the following formula:

\[Y_t = \phi_{1,0} + \phi_{1,1}Y_{t-1} + \ldots + \phi_{1,p}Y_{t-p} + \sigma_1 e_t, \] if \(Y_{t-d} \leq r \)

\[Y_t = \phi_{2,0} + \phi_{2,1}Y_{t-1} + \ldots + \phi_{2,p_2}Y_{t-p_2} + \sigma_2 e_t, \] if \(Y_{t-d} > r \).

where \(r \) is the threshold and \(d \) the delay.

Value

A vector that contains the trajectory of the skeleton, with the burn-in discarded.

Author(s)

Kung-Sik Chan

References

See Also

tar

Examples

data(prey.eq)
prey.tar.1=tar(y=log(prey.eq),p1=4,p2=4,d=3,a=.1,b=.9,print=TRUE)
tar.skeleton(prey.tar.1)
tbone

A digitized sound file of a B flat played on a tenor trombone

Description

A digitized sound file of about 0.4 seconds of a B flat just below middle C played on a tenor trombone by Chuck Kreeb, a member of Tempered Brass and a friend of one of the authors.

Usage

```r
data(tbone)
```

Format

The format is: Time-Series [1:17689] from 1 to 17689: 0.0769 0.0862 0.0961 0.1050 0.1129 ...

Examples

```r
data(tbone)
## maybe str(tbone); plot(tbone) ...```

---

**tempdub**

Monthly average temperature in Dubuque/time series

**Description**

Monthly average temperature (in degrees Fahrenheit) recorded in Dubuque 1/1964 - 12/1975.

**Usage**

```r
data(tempdub)
```

**Format**

The format is: Time-Series [1:144] from 1964 to 1976: 24.7 25.7 30.6 47.5 62.9 68.5 73.7 67.9 61.1 48.5 ...

**Source**

http://mesonet.agron.iastate.edu/climodat/index.php?station=ia2364&report=16

**Examples**

```r
data(tempdub)
maybe str(tempdub); plot(tempdub) ...```
Description

Carry out the likelihood ratio test for threshold nonlinearity, with the null hypothesis being a normal AR process and the alternative hypothesis being a TAR model with homogeneous, normally distributed errors.

Usage

tlrt(y, p, d = 1, transform = "no", a = 0.25, b = 0.75,...)

Arguments

y time series
p working AR order
d delay
transform available transformations: "no" (i.e. use raw data), "log", "log10" and "sqrt"
a lower percent; the threshold is searched over the interval defined by the a*100 percentile to the b*100 percentile of the time-series variable
b upper percent
... other arguments to be passed to the ar function which determines the Ar order, if p is missing

Details

The search for the threshold parameter may be narrower than that defined by the user as the function attempts to ensure adequate sample size in each regime of the TAR model. The p-value of the test is based on large-sample approximation and also is more reliable for small p-values.

Value

p.value p-value of the test
test.statistic likelihood ratio test statistic
a the actual lower fraction that defines the interval of search for the threshold; it may differ from the a specified by the user
b the actual upper fraction that defines the interval of search for the threshold

Author(s)

Kung-Sik Chan
References

See Also

Keenan.test, Tsay.test

Examples

data(spots)
pvalueum=NULL
for (d in 1:5){
 res=lrtsqrt(spots),p=5,d=d,a=0.25,b=0.75)
pvalueum= cbind(pvalueum, round(c(d,signif(c(res$test.statistic,
 res$p.value))),3))
}
rownames(pvalueum)=c('d','test statistic','p-value')
pvalueum

Tsay.test Tsay’s Test for nonlinearity

Description

Carry out Tsay’s test for quadratic nonlinearity in a time series.

Usage

Tsay.test(x, order, ...)

Arguments

x time series
order working linear AR order; if missing, it will be estimated via the ar function by minimizing AIC
... options to be passed to the ar function

Details

The null hypothesis is that the true model is an AR process. The AR order, if missing, is estimated by minimizing AIC via the ar function, i.e. fitting autoregressive model to the data. The default fitting method of the ar function is "yule-walker."
Value
A list containing the following components

- `test.stat` The observed test statistic
- `p.value` p-value of the test
- `order` working AR order

Author(s)
Kung-Sik Chan

References
Tsay, R. S. (1986), Nonlinearity test for time series, Biometrika, 73, 461-466.

See Also
- `Tsay.test`, `tlrt`

Examples
```r
data(spots)
Tsay.test(sqrt(spots))
```

tsdiag.Arimax

Model Diagnostics for a Fitted ARIMAX Model

This function is modified from the `tsdiag` function of the `stats` package.

Usage
```r
## S3 method for class 'Arimax'
tsdiag(object, gof.lag, tol = 0.1, col = "red", omit.initial = TRUE, ...)
```

Arguments
- `object` a fitted ARIMAX model
- `gof.lag` maximum lag used in ACF and Ljung-Box tests for the residuals
- `tol` tolerance (default=0.1); see below
- `col` color of some warning lines in the figures (default=red)
- `omit.initial` suppress the initial (d+D) residuals if true
- `...` other arguments to be passed to the `acf` function
Model diagnostics for a fitted TAR model

The time series plot and the sample ACF of the standardized residuals are plotted. Also, a portmanteau test for detecting residual correlations in the standardized residuals are carried out.

Usage

```r
## S3 method for class 'TAR'
## tsdiag(object, gof.lag, col = "red", xlab = "t", ...)```

### Arguments

- `object`: a fitted TAR model output from the `tar` function
- `gof.lag`: number of lags of ACF to be examined
- `col`: color of the lines flagging outliers, etc.
- `xlab`: x labels for the plots
- `...`: any additional user-supplied options to be passed to the `acf` function

### Value

Side effects: plot the time-series plot of the standardized residuals, their sample ACF and portmanteau test for residual autocorrelations in the standardized errors.

### Author(s)

Kung-Sik Chan
References

"Time Series Analysis, with Applications in R" by J.D. Cryer and K.S. Chan

See Also
tar

Examples

data(prey.eq)
prey.tar.1=tar(y=log(prey.eq),p1=4,p2=4,d=3,a=.1,b=.9,print=TRUE)
tsdiag(prey.tar.1)

tuba

A digitized sound file of a B flat played on a BB flat tuba

Description

A digitized sound file of about 0.4 seconds of a B flat an octave and one whole step below middle C played on a BB flat tuba by Linda Fisher, a member of Tempered Brass and a friend one of the authors.

Usage
data(tuba)

Format

The format is: Time-Series [1:4402] from 1 to 4402: 0.217 0.209 0.200 0.195 0.196 ...  

Examples

data(tuba)
## maybe str(tuba) ; plot(tuba) ...
Annual sales of certain large equipment, 1983 - 2005.

Usage

data(units)

Format

The format is: ts [1:24, 1] 71.7 78.6 111.1 125.6 133.0 ... - attr(*, "tsp")= num [1:3] 1982 2005 1 - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr "Units"

Source

Proprietary sales data from a large international company

Examples

data(units)

## maybe str(units); plot(units) ...

usd.hkd

Daily US Dollar to Hong Kong Dollar Exchange Rates

Description

Daily USD/HKD (US dollar to Hong Kong dollar) exchange rate from January 1, 2005 to March 7, 2006

Usage

data(usd.hkd)

Format

A data frame with 431 observations on the following 6 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>daily returns of USD/HKD exchange rates</td>
</tr>
<tr>
<td>v</td>
<td>estimated conditional variances based on an AR(1)+GARCH(3,1) model</td>
</tr>
<tr>
<td>hkrate</td>
<td>daily USD/HKD exchange rates</td>
</tr>
<tr>
<td>outlier1</td>
<td>dummy variable of day 203, corresponding to July 22, 2005</td>
</tr>
<tr>
<td>outlier2</td>
<td>dummy variable of day 290, another possible outlier</td>
</tr>
<tr>
<td>day</td>
<td>calendar day</td>
</tr>
</tbody>
</table>
An experimental prey-predator time series

Description

A data frame consisting of bivariate time series from an experiment for studying prey-predator dynamics. The first time series consists of the numbers of prey individuals (Didinium natsutum) per ml measured every twelve hours over a period of 35 days; the second time series consists of the corresponding number of predators (Paramecium aurelia) per ml.

Usage

data(veilleux)

Format

The format is: mts [1:71, 1:2] 15.7 53.6 73.3 93.9 115.4 ... - attr(*, "dimnames")=List of 2 ..$ : NULL ..$ : chr [1:2] "Didinium" "Paramecium" - attr(*, "tsp")= num [1:3] 0 35 2 - attr(*, "class")= chr [1:2] "mts" "ts"

Source


References


Examples

data(veilleux)
## maybe str(veilleux) ; plot(veilleux) ...

wages

Average hourly wages in the apparel industry / time series

Description

Average hourly wages in the apparel industry, from 07/1981 - 06/1987.

Usage

data(wages)

Format

The format is: Time-Series [1:72] from 1982 to 1987: 4.92 4.96 5.04 5.05 5.04 5.04 5.18 5.13 5.15 5.18 ...

Source


Examples

data(wages)
  ## maybe str(wages) ; plot(wages) ...

winnebago

Monthly unit sales of recreational vehicles / time series

Description


Usage

data(winnebago)

Format

The format is: Time-Series [1:64] from 1967 to 1972: 61 48 53 78 75 58 146 193 124 120 ...

Source

Examples

```r
data(winnebago) # maybe str(winnebago); plot(winnebago) ...
```

zlag

*Compute the lag of a vector.*

Description

Computes the lag of a vector, with missing elements replaced by NA.

Usage

```r
zlag(x, d = 1)
```

Arguments

- `x`: vector
- `d`: compute the lag `d` of `x`

Value

A vector whose `k`-th element equals `x[k-d]` with `x[t]=NA` for `t<=0`

Author(s)

Kung-Sik Chan

Examples

```r
##--- Should be DIRECTLY executable !! ----
##--- => Define data, use random,
##---or do help(data=index) for the standard data sets.
x=1:5
zlag(x,2)
```
Index

*Topic datasets
airmiles, 5
airpass, 6
arl.2.s, 6
arl.s, 7
ar2.s, 8
arma11.s, 13
beersales, 15
bluebird, 15
bluebirdlite, 16
boardings, 17
c02, 18
color, 19
CREF, 19
cref.bond, 20
days, 20
deere1, 21
deere2, 21
deere3, 22
eeg, 26
electricity, 27
euph, 27
explode.s, 28
flow, 29
gold, 31
google, 32
hare, 33
hours, 34
ima22.s, 35
JJ, 35
larain, 39
mal.1.s, 40
mal.2.s, 41
ma2.s, 41
milk, 43
oil.price, 43
oilfilters, 44
prescrip, 49
prey.eq, 51
retail, 52
robot, 53
rwalk, 55
SP, 58
spots, 60
spots1, 61
star, 61
tbone, 67
tempdub, 67
tuba, 72
units, 73
usd.hkd, 73
veilleux, 74
wages, 75
winnebago, 75
*Topic methods
acf, 4
arima, 8
arima.boot, 10
arimax, 11
ARMAspec, 13
armasubsets, 14
BoxCox.ar, 17
detectAQ, 22
detectIO, 24
eacf, 25
fitted.Arima, 28
garch.sim, 29
gBox, 30
harmonic, 33
Keenan.test, 36
kurtosis, 37
lagplot, 38
LB.test, 39
McLeod.Li.test, 42
periodogram, 44
plot.Arima, 45
plot.armasubsets, 47
predict.TAR, 48
prewhiten, 50
detectAO, 22
detectIO, 23, 24, 24
eacf, 25
eeg, 26
electricity, 27
euph, 27
explore.s, 28
fitted.Arima, 28
flow, 29
garch.sim, 29
gBox, 30
gold, 31
googel, 32
hare, 33
harmonic, 33, 56
hours, 34
ima22.s, 35
JJ, 35
Keenan.test, 36, 69
kurtosis, 37
lagplot, 38
larain, 39
LB.test, 39
ma1.1.s, 40
ma1.2.s, 41
ma2.s, 41
McLeod.Li.test, 42
milk, 43
oil.price, 43
oilfilters, 44
periodogram, 44
plot.acf, 5
plot.Arima, 45
plot arma subsets, 47
plot1.acf, 48
predict.TAR, 48, 64
prescrip, 49
prewhiten, 50
prey.eq, 51

Topic misc
plot1.acf, 48

Topic package
TSA-package, 3

acf, 4
airmiles, 5
airpass, 6
ar1.2.s, 6
ar1.s, 7
ar2.s, 8
arima, 8, 9, /2, 29
arima.boot, 10
arimax, 11
arma11.s, 13
ARMAacf, 5
ARMA spec, 13
armasubsets, 14

beersales, 15
bluebird, 15
bluebirdlite, 16
boardings, 17
BoxCox.ar, 17

c02, 18
color, 19
CREF, 19
cref.bond, 20

days, 20
deere1, 21
deere2, 21
INDEX

qar.sim, 51
retail, 52
robot, 53
rstandard.Arima, 54
runs, 54
rwalk, 55
season, 34, 56
skewness, 57
SP, 58
spec, 14, 58
spots, 60
spots1, 61
star, 61
summary.aramasubsets, 62
tar, 49, 62, 65, 66, 72
tar.sim, 52, 64, 64
tar.skeleton, 64, 65
tbone, 67
tempdub, 67
tlirt, 36, 68, 70
TSA (TSA-package), 3
TSA-package, 3
Tsay.test, 36, 69, 69, 70
tsdiaq.Arimax, 70
tsdiaq.TAR, 64, 71
tuba, 72
units, 73
usd.hkd, 73
veilleux, 51, 74
wages, 75
winnebago, 75
zlag, 76