Package ‘TSDFGS’

October 12, 2022

Type Package

Title Training Set Determination for Genomic Selection

Version 2.0

Date 2022-06-07

Description We propose an optimality criterion to determine the required training set, r-score, which is derived directly from Pearson's correlation between the genomic estimated breeding values and phenotypic values of the test set <doi:10.1007/s00122-019-03387-0>. This package provides two main functions to determine a good training set and its size.

License GPL (>= 3)

Encoding UTF-8

Imports dplyr, ggplot2, latex2exp, lifecycle, parallel, Rcpp (>= 1.0.8.3)

LinkingTo Rcpp, RcppEigen

RoxygenNote 7.2.0

URL https://github.com/oumarkme/TSDFGS

BugReports https://github.com/oumarkme/TSDFGS/issues

Depends R (>= 2.10)

LazyData true

NeedsCompilation yes

Author Jen-Hsiang Ou [aut, cre] (<https://orcid.org/0000-0001-9305-2931>),
Po-Ya Wu [aut] (<https://orcid.org/0000-0002-7342-2867>),
Chen-Tuo Liao [aut, ths] (<https://orcid.org/0000-0001-9777-3701>)

Maintainer Jen-Hsiang Ou <jen-hsiang.ou@imbim.uu.se>

Repository CRAN

Date/Publication 2022-06-07 14:00:11 UTC
cd_score

Description

This function calculates CD-score [10.1186/1297-9686-28-4-359](https://doi.org/10.1186/1297-9686-28-4-359) by given training set and test set.

Usage

```r
cd_score(X, X0)
```

Arguments

- **X**: A numeric matrix. The training set genotypic information matrix can be given as genotype matrix (coded as -1, 0, 1) or principle component matrix (row: sample; column: marker).

- **X0**: A numeric matrix. The test set genotypic information matrix can be given as genotype matrix (coded as -1, 0, 1) or principle component matrix (row: sample; column: marker).

Value

A floating-point number, CD score.

Author(s)

Jen-Hsiang Ou

Examples

```r
data(geno)
## Not run: cd_score(geno[1:50, ], geno[51:100])
```
Fit logistic growth curve model

Description
A function for fitting logisti growth model

Usage
FGCM(geno, nt = NULL, n_iter = NULL, multi.threads = TRUE)

Arguments
- geno: Genotype information saved as a dataframe. Columns represent variants (SNPs or PCs).
- nt: A numerical vector of training set sample size for estimating logistic growth curve parameters
- n_iter: Number of simulation of each training set size. Automatically gave a suitable number by default.
- multi.threads: Default: TRUE. Set as FALSE if you just want to run it by single thread.

Value
Estimation of parameters.

Examples
```r
data(geno)
## Not run: FGCM(geno)
```

Genotype information

Description
A PCA matrix of rice genotype information. This data was published by Zhao et al. (2011) doi: 10.1038/ncomms1467

Usage
geno

Format
A numeric matrix (PCA) with 404 rows (sample) and 404 columns (PCs).
nt2r

Simulate r-scores of each training set size

Description
Calculate r-scores (un-target) by in parallel.

Usage
nt2r(geno, nt, n_iter = 30, multi.threads = TRUE)

Arguments
genob A numeric dataframe of genotype, column represent sites (genotype coding as 1, 0, -1)
nt Numeric. Number of training set size
n_iter Times of iteration. (default = 30)
multi.threads Default: TRUE

Value
A vector of r-scores of each iteration

Examples
data(geno)
Not run: nt2r(geno, 50)
optTrain

Description

This function is designed for determining optimal training set.

Usage

optTrain(
 geno,
 cand,
 n.train,
 subpop = NULL,
 test = NULL,
 method = "rScore",
 min.iter = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>geno</td>
<td>A numeric matrix of principal components (rows: individuals; columns: PCs).</td>
</tr>
<tr>
<td>cand</td>
<td>An integer vector of which rows of individuals are candidates of the training set in the geno matrix.</td>
</tr>
<tr>
<td>n.train</td>
<td>The size of the target training set. This could be determined with the help of the ssdfgp function provided in this package.</td>
</tr>
<tr>
<td>subpop</td>
<td>A character vector of sub-population’s group name. The algorithm will ignore the population structure if it remains NULL.</td>
</tr>
<tr>
<td>test</td>
<td>An integer vector of which rows of individuals are in the test set in the geno matrix. The algorithm will use an un-target method if it remains NULL.</td>
</tr>
<tr>
<td>method</td>
<td>Choices are rScore, PEV and CD. rScore will be used by default.</td>
</tr>
<tr>
<td>min.iter</td>
<td>Minimum iteration of all methods can be appointed. One should always check if the algorithm is converged or not. A minimum iteration will set by considering the candidate and test set size if it remains NULL.</td>
</tr>
</tbody>
</table>

Value

This function will return 3 information including OPTtrain (a vector of chosen optimal training set), TOPscore (highest scores of before iteration), and ITERscore (criteria scores of each iteration).

Author(s)

Jen-Hsiang Ou
Examples

data(geno)
Not run: optTrain(geno, cand = 1:404, n.train = 100)

<table>
<thead>
<tr>
<th>pev_score</th>
<th>PEV score</th>
</tr>
</thead>
</table>

Description

Usage

```r
pev_score(X, X0)
```

Arguments

- `X`: A numeric matrix. The training set genotypic information matrix can be given as genotype matrix (coded as -1, 0, 1) or principle component matrix (row: sample; column: marker).
- `X0`: A numeric matrix. The test set genotypic information matrix can be given as genotype matrix (coded as -1, 0, 1) or principle component matrix (row: sample; column: marker).

Value

A floating-point number, PEV score.

Author(s)

Jen-Hsiang Ou

Examples

```r
data(geno)
## Not run: pev_score(geno[1:50, ], geno[51:100])
```
r_score

Description

This function calculate r-score doi:10.1007/s00122-019-03387-0 by given training set and test set.

Usage

```
r_score(X, X0)
```

Arguments

- **X**: A numeric matrix. The training set genotypic information matrix can be given as genotype matrix (coded as -1, 0, 1) or principle component matrix (row: sample; column: marker).
- **X0**: A numeric matrix. The test set genotypic information matrix can be given as genotype matrix (coded as -1, 0, 1) or principle component matrix (row: sample; column: marker).

Value

A floating-point number, r-score.

Author(s)

Jen-Hsiang Ou

Examples

```
data(geno)
## Not run: r_score(geno[1:50, ], geno[51:100])
```

SSDFGS

Sample size determination for genomic selection

Description

This function is designed to generate an operating curve for sample size determination.

Usage

```
SSDFGS(geno, nt = NULL, n_iter = NULL, multi.threads = TRUE)
```
Arguments

- **geno**: A numeric data frame carried genotype information (column: PCs, row: sample)
- **nt**: A numeric vector carried training set sizes for r-score simulation.
- **n_iter**: Number of iterations for estimating parameters.
- **multi.threads**: Default (multi.threads = TRUE) use 75% of threads if the computer has more than 4 threads.

Value

An operating curve and its information.

Author(s)

Jen-Hsiang Ou & Po-Ya Wu

Examples

```r
data(geno)
## Not run: SSDFGS(geno)
```

subpop

Sub-population information

Description

Sub-population information of samples. This data was published by Zhao et al. (2011) [doi:10.1038/ncomms1467](https://doi.org/10.1038/ncomms1467)

Usage

subpop

Format

A character vector.

Source

Examples

```r
data(subpop)
```
Index

* datasets
 geno, 3
 subpop, 8

cd_score, 2

FGCM, 3
geno, 3
nt2r, 4
optTrain, 5
pev_score, 6
r_score, 7
SSDFGS, 7
subpop, 8