Package ‘TSrepr’

October 12, 2022

Type Package
Title Time Series Representations
Version 1.1.0
Date 2020-07-12
Description Methods for representations (i.e. dimensionality reduction, preprocessing, feature extraction) of time series to help more accurate and effective time series data mining. Non-data adaptive, data adaptive, model-based and data dictated (clipped) representation methods are implemented. Also various normalisation methods (min-max, z-score, Box-Cox, Yeo-Johnson), and forecasting accuracy measures are implemented.
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
Imports Rcpp (>= 0.12.12), MASS, quantreg, wavelets, mgcv, dtt
LinkingTo Rcpp
RoxygenNote 7.1.0
BugReports https://github.com/PetoLau/TSrepr/issues
Suggests knitr, rmarkdown, ggplot2, data.table, moments, testthat
VignetteBuilder knitr
NeedsCompilation yes
Author Peter Laurinec [aut, cre] (<https://orcid.org/0000-0002-3501-8783>)
Maintainer Peter Laurinec <tsreprpackage@gmail.com>
Repository CRAN
Date/Publication 2020-07-13 06:50:15 UTC
R topics documented:

clipping .. 3
coefComp .. 4
denorm_atan .. 5
denorm_boxcox ... 5
denorm_min_max .. 6
denorm_yj ... 7
denorm_z .. 8
elec_load .. 9
fast_stat .. 9
maape ... 10
mae .. 11
mape .. 11
mase ... 12
mdae ... 13
mse .. 13
norm_atan .. 14
norm_boxcox .. 15
norm_min_max ... 15
norm_min_max_list 16
norm_min_max_params 17
norm_yj .. 18
norm_z .. 18
norm_z_list .. 19
norm_z_params .. 20
repr_dct ... 21
repr_dft ... 22
repr_dwt ... 23
repr_exp ... 24
repr_feaclip .. 25
repr_feacliptrend 26
repr_featrend .. 27
repr_gam .. 28
repr_list ... 29
repr_lm ... 31
repr_matrix ... 32
repr_paa ... 34
repr_pip ... 35
repr_pla ... 36
repr_sax ... 37
repr_seas_profile 38
repr_sma ... 39
repr_windowing .. 39
rleC .. 41
rmse .. 41
smape ... 42
trending ... 43
Description

The clipping computes bit-level (clipped representation) from a vector.

Usage

clipping(x)

Arguments

x the numeric vector (time series)

Details

Clipping transforms time series to bit-level representation.

It is defined as follows:

\[\text{repr}_t = \begin{cases} 1 & \text{if } x_t > \mu, \\ 0 & \text{otherwise}, \end{cases} \]

where \(x_t \) is a value of a time series and \(\mu \) is average of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

trending
Examples
clipping(rnorm(50))

design_matrix <- matrix(rnorm(10), ncol = 2)
lmCoef(design_matrix, rnorm(5))
rlmCoef(design_matrix, rnorm(5))
l1Coef(design_matrix, rnorm(5))
denorm_atan

Arctangent denormalisation

Description
The denorm_atan denormalises time series from Arctangent function.

Usage
denorm_atan(x)

Arguments
x the numeric vector (time series)

Value
the numeric vector of denormalised values

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

See Also
denorm_z, denorm_min_max

Examples
denorm_atan(runif(50))

denorm_boxcox

Two-parameter Box-Cox denormalisation

Description
The denorm_boxcox denormalises time series by two-parameter Box-Cox method.

Usage
denorm_boxcox(x, lambda = 0.1, gamma = 0)
denorm_min_max

Arguments

x the numeric vector (time series) to be denormalised

lambda the numeric value - power transformation parameter (default is 0.1)

gamma the non-negative numeric value - parameter for holding the time series positive (offset) (default is 0)

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also
denorm_z, denorm_min_max, denorm_atan

Examples
denorm_boxcox(runif(50))

denorm_min_max Min-Max denormalisation

Description

The denorm_min_max denormalises time series by min-max method.

Usage
denorm_min_max(x, min, max)

Arguments

x the numeric vector (time series)

min the minimum value

max the maximal value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>
denorm_yj

References

See Also
norm_min_max, norm_min_max_list

Examples
Normalise values and save normalisation parameters:
norm_res <- norm_min_max_list(rnorm(50, 5, 2))
Denormalise new data with previous computed parameters:
denorm_min_max(rnorm(50, 4, 2), min = norm_res$min, max = norm_res$max)

denorm_yj

Yeo-Johnson denormalisation

Description
The denorm_yj denormalises time series by Yeo-Johnson method

Usage
denorm_yj(x, lambda = 0.1)

Arguments
x the numeric vector (time series) to be denormalised
lambda the numeric value - power transformation parameter (default is 0.1)

Value
the numeric vector of denormalised values

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

See Also
denorm_z, denorm_min_max, denorm_boxcox

Examples
denorm_yj(runif(50))
denorm_z

Z-score denormalisation

Description
The `denorm_z` denormalises time series by z-score method.

Usage
`denorm_z(x, mean, sd)`

Arguments
- `x`: the numeric vector (time series)
- `mean`: the mean value
- `sd`: the standard deviation value

Value
the numeric vector of denormalised values

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also
`norm_z`, `norm_z_list`

Examples
```r
# Normalise values and save normalisation parameters:
norm_res <- norm_z_list(rnorm(50, 5, 2))
# Denormalise new data with previous computed parameters:
denorm_z(rnorm(50, 4, 2), mean = norm_res$mean, sd = norm_res$sd)
```
elec_load

2 weeks of electricity load data from 50 consumers.

Description

A dataset containing the electricity consumption time series from 50 consumers of the length of 2 weeks. Every day is 48 measurements (half-hourly data). Each row represents one consumers time series.

Usage

elec_load

Format

A data frame with 50 rows and 672 variables.

Source

Anonymized.

fast_stat

Fast statistic functions (helpers)

Description

Fast statistic functions (helpers) for representations computation.

Usage

`maxC(x)`
`minC(x)`
`meanC(x)`
`sumC(x)`
`medianC(x)`

Arguments

- `x` the numeric vector

Value

the numeric value
Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

``` R
maxC(rnorm(50))
minC(rnorm(50))
meanC(rnorm(50))
sumC(rnorm(50))
medianC(rnorm(50))
```

maape

MAAPE

Description

The `maape` computes MAAPE (Mean Arctangent Absolute Percentage Error) of a forecast.

Usage

``` R
maape(x, y)
```

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Examples

``` R
maape(runif(50), runif(50))
```
mae

Description

The `mae` computes MAE (Mean Absolute Error) of a forecast.

Usage

```r
mae(x, y)
```

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```r
mae(runif(50), runif(50))
```

mape

Description

The `mape` computes MAPE (Mean Absolute Percentage Error) of a forecast.

Usage

```r
mape(x, y)
```

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mase(runif(50), runif(50))

Description

The `mase` computes MASE (Mean Absolute Scaled Error) of a forecast.

Usage

mase(real, forecast, naive)

Arguments

real the numeric vector of real values
forecast the numeric vector of forecasted values
naive the numeric vector of naive forecast

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mase(rnorm(50), rnorm(50), rnorm(50))
mdae

| mdae | MdAE |

Description

The `mdae` computes MdAE (Median Absolute Error) of a forecast.

Usage

```r
mdae(x, y)
```

Arguments

- `x`: the numeric vector of real values
- `y`: the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```r
mdae(runif(50), runif(50))
```

mse

| mse | MSE |

Description

The `mse` computes MSE (Mean Squared Error) of a forecast.

Usage

```r
mse(x, y)
```

Arguments

- `x`: the numeric vector of real values
- `y`: the numeric vector of forecasted values
Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mse(runif(50), runif(50))

Description

The `norm_atan` normalises time series by Arctangent to max (-1,1) range.

Usage

```r
norm_atan(x)
```

Arguments

- `x` the numeric vector (time series)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`norm_z`, `norm_min_max`

Examples

```r
norm_atan(rnorm(50))
```
norm_boxcox

Two-parameter Box-Cox normalisation

Description

The `norm_boxcox` normalises time series by two-parameter Box-Cox normalisation.

Usage

```
norm_boxcox(x, lambda = 0.1, gamma = 0)
```

Arguments

- `x`: the numeric vector (time series)
- `lambda`: the numeric value - power transformation parameter (default is 0.1)
- `gamma`: the non-negative numeric value - parameter for holding the time series positive (offset) (default is 0)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`norm_z`, `norm_min_max`, `norm_atan`

Examples

```
norm_boxcox(runif(50))
```

norm_min_max

Min-Max normalisation

Description

The `norm_min_max` normalises time series by min-max method.

Usage

```
norm_min_max(x)
```
norm_min_max_list

Description

The `norm_min_max_list` normalises time series by min-max method and returns normalization parameters (min and max).

Usage

`norm_min_max_list(x)`

Arguments

`x`
the numeric vector (time series)

Value

the list composed of:

- `norm_values`
the numeric vector of normalised values of time series
- `min`
the min value
- `max`
the max value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```r
norm_min_max(rnorm(50))
```
norm_min_max_params

See Also

norm_z_list

Examples

norm_min_max_list(rnorm(50))

norm_min_max_params
Min-Max normalisation with parameters

Description

The `norm_min_max_params` normalises time series by min-max method with defined parameters.

Usage

```r
norm_min_max_params(x, min, max)
```

Arguments

- `x`
 the numeric vector (time series)
- `min`
 the numeric value
- `max`
 the numeric value

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

- `norm_z_params`

Examples

```r
norm_min_max_params(rnorm(50), 0, 1)
```
norm_yj

| norm_yj | Yeo-Johnson normalisation |

Description

The norm_yj normalises time series by Yeo-Johnson normalisation.

Usage

\[
\text{norm_yj}(x, \lambda = 0.1)
\]

Arguments

- \(x \) the numeric vector (time series)
- \(\lambda \) the numeric value - power transformation parameter (default is 0.1)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_z, norm_min_max, norm_boxcox

Examples

\[
\text{norm_yj}(\text{runif}(50))
\]

norm_z

| norm_z | Z-score normalisation |

Description

The norm_z normalises time series by z-score.

Usage

\[
\text{norm_z}(x)
\]

Arguments

- \(x \) the numeric vector (time series)
norm_z_list

Value
the numeric vector of normalised values

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_min_max

Examples

```r
norm_z(runif(50))
```

Description

The `norm_z_list` normalizes time series by z-score and returns normalization parameters (mean and standard deviation).

Usage

```r
norm_z_list(x)
```

Arguments

- `x` the numeric vector (time series)

Value

the list composed of:

- `norm_values` the numeric vector of normalised values of time series
- `mean` the mean value
- `sd` the standard deviation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

norm_min_max_list
norm_z_params

Examples

```r
norm_z_list(runif(50))
```

Description

The `norm_z_params` normalises time series by z-score with defined mean and standard deviation.

Usage

```r
norm_z_params(x, mean, sd)
```

Arguments

- `x`: the numeric vector (time series)
- `mean`: the numeric value
- `sd`: the numeric value - standard deviation

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`norm_min_max_params`

Examples

```r
norm_z_params(runif(50), 0.5, 1)
```
repr_dct

repr_dct

* DCT representation

Description

The `repr_dct` computes DCT (Discrete Cosine Transform) representation from a time series.

Usage

```
repr_dct(x, coef = 10)
```

Arguments

- **x**: the numeric vector (time series)
- **coef**: the number of coefficients to extract from DCT

Details

The length of the final time series representation is equal to set coef parameter.

Value

the numeric vector of DCT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`repr_dft`, `repr_dwt`, `dtt`

Examples

```
repr_dct(rnorm(50), coef = 4)
```
The `repr_dft` computes DFT (Discrete Fourier Transform) representation from a time series by FFT (Fast Fourier Transform).

Usage

```r
repr_dft(x, coef = 10)
```

Arguments

- `x`: the numeric vector (time series)
- `coef`: the number of coefficients to extract from FFT

Details

The length of the final time series representation is equal to set `coef` parameter.

Value

the numeric vector of DFT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`repr_dwt`, `repr_dct`, `fft`

Examples

```r
repr_dft(rnorm(50), coef = 4)
```
repr_dwt

repr_dwt
DWT representation

Description

The `repr_dwt` computes DWT (Discrete Wavelet Transform) representation (coefficients) from a time series.

Usage

```r
repr_dwt(x, level = 4, filter = "d4")
```

Arguments

- **x**: the numeric vector (time series)
- **level**: the level of DWT transformation (default is 4)
- **filter**: the filter name (default is "d6"). Can be: "haar", "d4", "d6", ..., "d20", "la8", "la10", ..., "la20", "bl14", "bl18", "bl20", "c6", "c12", ..., "c30". See more info at `wt.filter`.

Details

This function extracts DWT coefficients. You can use various wavelet filters, see all of them here `wt.filter`. The number of extracted coefficients depends on the `level` selected. The final representation has length equal to `floor(n / 2^level)`, where `n` is a length of original time series.

Value

the numeric vector of DWT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`repr_dft`, `repr_dct`, `dwt`
Examples

Interpretation: DWT with Daubechies filter of length 4 and
3rd level of DWT coefficients extracted.
repr_dwt(rnorm(50), filter = "d4", level = 3)

repr_exp

Description

The `repr_exp` computes exponential smoothing seasonal coefficients.

Usage

`repr_exp(x, freq, alpha = TRUE, gamma = TRUE)`

Arguments

- `x` the numeric vector (time series)
- `freq` the frequency of the time series
- `alpha` the smoothing factor (default is TRUE - automatic determination of smoothing factor), or number between 0 to 1
- `gamma` the seasonal smoothing factor (default is TRUE - automatic determination of seasonal smoothing factor), or number between 0 to 1

Details

This function extracts exponential smoothing seasonal coefficients and uses them as time series representation. You can set smoothing factors (`alpha, gamma`) manually, but recommended is automatic method (set to TRUE). The trend component is not included in computations.

Value

the numeric vector of seasonal coefficients

Author(s)

Peter Laurinec, <tsreppackage@gmail.com>

References

repr_feaclip

See Also
repr_lm, repr_gam, repr_seas_profile, HoltWinters

Examples
repr_exp(rnorm(96), freq = 24)

repr_feaclip FeaClip representation of time series

Description
The repr_feaclip computes representation of time series based on feature extraction from bit-level (clipped) representation.

Usage
repr_feaclip(x)

Arguments
x the numeric vector (time series)

Details
FeaClip is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (clipped) representation. It extracts 8 key features from clipped representation. There are as follows:

\[
\text{repr} = \{\text{max}_1 - \text{max.fromrunlengthsofones}, \\
\text{sum}_1 - \text{sumofrunlengthsofones}, \\
\text{max}_0 - \text{max.fromrunlengthsofzeros}, \\
\text{crossings} - \text{lengthofRLEencoding} - 1, \\
f_0 - \text{numberoffirstzeros}, \\
l_0 - \text{numberoflastzeros}, \\
f_1 - \text{numberoffirstones}, \\
l_1 - \text{numberoflastones}\}.
\]

Value
the numeric vector of length 8
Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also
repr_feaclip, repr_feacliptrend

Examples
repr_feacliptrend(rnorm(50))

repr_feacliptrend FeaClipTrend representation of time series

Description
The `repr_feacliptrend` computes representation of time series based on feature extraction from bit-level representations (clipping and trending).

Usage
`repr_feacliptrend(x, func, pieces = 2L, order = 4L)`

Arguments
- `x` the numeric vector (time series)
- `func` the aggregation function for FeaTrend procedure (sumC or maxC)
- `pieces` the number of parts of time series to split
- `order` the order of simple moving average

Details
FeaClipTrend combines FeaClip and FeaTrend representation methods. See documentation of these two methods (check See Also section).

Value
the numeric vector of frequencies of features
repr_featrend

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also
repr_featrend, repr_feaclip

Examples
repr_feacliptrend(rnorm(50), maxC, 2, 4)

repr_featrend
FeaTrend representation of time series

Description
The repr_featrend computes representation of time series based on feature extraction from bit-level (trending) representation.

Usage
repr_featrend(x, func, pieces = 2L, order = 4L)

Arguments
- `x` the numeric vector (time series)
- `func` the function of aggregation, can be sumC or maxC or similar aggregation function
- `pieces` the number of parts of time series to split (default to 2)
- `order` the order of simple moving average (default to 4)

Details
FeaTrend is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (trending) representation. It extracts number of features from trending representation based on number of pieces defined. From every piece, 2 features are extracted. You can define what feature will be extracted, recommended functions are max and sum. For example if max is selected, then maximum value of run lengths of ones and zeros are extracted.
repr_gam

Value
the numeric vector of the length pieces

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

See Also
repr_feaclip, repr_feacliptrend

Examples
default settings
repr_featrend(rnorm(50), maxC)

compute FeaTrend for 4 pieces and make more smoothed ts by order = 8
repr_featrend(rnorm(50), sumC, 4, 8)

repr_gam

GAM regression coefficients as representation

Description
The repr_gam computes seasonal GAM regression coefficients. Additional exogenous variables
can be also added.

Usage
repr_gam(x, freq = NULL, xreg = NULL)

Arguments
x the numeric vector (time series)
freq the frequency of the time series. Can be vector of two frequencies (seasonalities)
or just an integer of one frequency.
xreg the numeric vector or the data.frame with additional exogenous regressors

Details
This model-based representation method extracts regression coefficients from a GAM (Generalized
Additive Model). The extraction of seasonal regression coefficients is automatic. The maximum
number of seasonalities is 2 so it is possible to compute representation for double-seasonal time
series. The first set seasonality (frequency) is main, so for example if we have hourly time series
(freq = c(24, 24*7)), the number of extracted daily seasonal coefficients is 24 and the number of
weekly seasonal coefficients is 7, because the length of second seasonality representation is always
freq_1 / freq_2. The smooth function for seasonal variables is set to cubic regression spline. There
is also possibility to add another independent variables (xreg).
repr_list

Value

the numeric vector of GAM regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

repr_lm, repr_exp, gam

Examples

```r
repr_gam(rnorm(96), freq = 24)
```

repr_list

Computation of list of representations list of time series with different lengths

Description

The `repr_list` computes list of representations from list of time series

Usage

```r
repr_list(  
  x,  
  func = NULL,  
  args = NULL,  
  normalise = FALSE,  
  func_norm = norm_z,  
  windowing = FALSE,  
  win_size = NULL
)
```
Arguments

x the list of time series, where time series can have different lengths
func the function that computes representation
args the list of additional (or required) parameters of func (function that computes representation)
normalise normalise (scale) time series before representations computation? (default is FALSE)
func_norm the normalisation function (default is norm_z)
windowing perform windowing? (default is FALSE)
win_size the size of the window

Details

This function computes representation to an every member of a list of time series (that can have different lengths) and returns list of time series representations. It can be combined with windowing (see repr_windowing) and normalisation of time series.

Value

the numeric list of representations of time series

Author(s)

Peter Laurinec, <tsreppackage@gmail.com>

See Also

repr_windowing, repr_matrix

Examples

Create random list of time series with different lengths
list_ts <- list(rnorm(sample(8:12, 1)), rnorm(sample(8:12, 1)), rnorm(sample(8:12, 1)))
repr_list(list_ts, func = repr_sma,
 args = list(order = 3))

return normalised representations, and normalise time series by min-max normalisation
repr_list(list_ts, func = repr_sma,
 args = list(order = 3), normalise = TRUE, func_norm = norm_min_max)
Description

The `repr_lm` computes seasonal regression coefficients from a linear model. Additional exogenous variables can be also added.

Usage

`repr_lm(x, freq = NULL, method = "lm", xreg = NULL)`

Arguments

- `x`: the numeric vector (time series)
- `freq`: the frequency of the time series. Can be vector of two frequencies (seasonalities) or just an integer of one frequency.
- `method`: the linear regression method to use. It can be "lm", "rlm" or "l1".
- `xreg`: the data.frame with additional exogenous regressors or the single numeric vector

Details

This model-based representation method extracts regression coefficients from a linear model. The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalities is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series (`freq = c(24, 24*7)`), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always `freq_1 / freq_2`. There is also possibility to add another independent variables (`xreg`).

You have three possibilities for selection of a linear model method.

- "lm" is classical OLS regression.
- "rlm" is robust linear model using psi huber function and is implemented in MASS package.
- "l1" is L1 quantile regression model (also robust linear regression method) implemented in package quantreg.

Value

the numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>
References

See Also

repr_gam, repr_exp

Examples

Extracts 24 seasonal regression coefficients from the time series by linear model
repr_lm(rnorm(96), freq = 24, method = “lm”)

Try also robust linear models (“rlm” and “l1”)
repr_lm(rnorm(96), freq = 24, method = “rlm”)
repr_lm(rnorm(96), freq = 24, method = “l1”)

repr_matrix

Computation of matrix of representations from matrix of time series

Description

The repr_matrix computes matrix of representations from matrix of time series

Usage

repr_matrix(
x,
func = NULL,
args = NULL,
normalise = FALSE,
func_norm = norm_z,
windowing = FALSE,
win_size = NULL
)

repr_matrix
repr_matrix

Arguments

- **x**: the matrix, data.frame or data.table of time series, where time series are in rows of the table
- **func**: the function that computes representation
- **args**: the list of additional (or required) parameters of func (function that computes representation)
- **normalise**: normalise (scale) time series before representations computation? (default is FALSE)
- **func_norm**: the normalisation function (default is norm_z)
- **windowing**: perform windowing? (default is FALSE)
- **win_size**: the size of the window

Details

This function computes representation to an every row of a matrix of time series and returns matrix of time series representations. It can be combined with windowing (see repr_windowing) and normalisation of time series.

Value

the numeric matrix of representations of time series

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

repr_windowing, repr_list

Examples

Create random matrix of time series
mat_ts <- matrix(rnorm(100), ncol = 10)
repr_matrix(mat_ts, func = repr_paa,
args = list(q = 5, func = meanC))

return normalised representations, and normalise time series by min-max normalisation
repr_matrix(mat_ts, func = repr_paa,
args = list(q = 2, func = meanC), normalise = TRUE, func_norm = norm_min_max)

with windowing
repr_matrix(mat_ts, func = repr_feaclip, windowing = TRUE, win_size = 5)
repr_paa

PAA - Piecewise Aggregate Approximation

Description

The `repr_paa` computes PAA representation from a vector.

Usage

```r
repr_paa(x, q, func)
```

Arguments

- `x`: the numeric vector (time series)
- `q`: the integer of the length of the "piece"
- `func`: the aggregation function. Can be meanC, medianC, sumC, minC or maxC or similar aggregation function

Details

PAA with possibility to use arbitrary aggregation function. The original method uses average as aggregation function.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`repr_dwt`, `repr_dft`, `repr_dct`, `repr_sma`

Examples

```r
repr_paa(rnorm(11), 2, meanC)
```
repr_pip

Description

The `repr_pip` computes PIP (Perceptually Important Points) representation from a time series.

Usage

```r
demo_pip(x, times = 10, return = "points")
```

Arguments

- `x`: the numeric vector (time series)
- `times`: the number of important points to extract (default 10)
- `return`: what to return? Can be important points ("points"), places of important points in a vector ("places") or "both" (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprepackage@gmail.com>

References

Fu TC, Chung FL, Luk R, and Ng CM (2008) Representing financial time series based on data point importance. Engineering Applications of Artificial Intelligence, 21(2):277-300

Examples

```r
demo_pip(rnorm(100), times = 12, return = "both")
```
repr_pla PLA representation

Description

The repr_pla computes PLA (Piecewise Linear Approximation) representation from a time series.

Usage

repr_pla(x, times = 10, return = "points")

Arguments

x the numeric vector (time series)
times the number of important points to extract (default 10)
return what to return? Can be "points" (segments), places of points (segments) in a vector ("places") or "both" (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Examples

repr_pla(rnorm(100), times = 12, return = "both")
The `repr_sax` creates SAX symbols for a univariate time series.

Usage

`repr_sax(x, q = 2, a = 6, eps = 0.01)`

Arguments

- `x`: the numeric vector (time series)
- `q`: the integer of the length of the "piece" in PAA
- `a`: the integer of the alphabet size
- `eps`: is the minimum threshold for variance in `x` and should be a numeric value. If `x` has a smaller variance than `eps`, it will represented as a word using the middle alphabet.

Value

the character vector of SAX representation

Author(s)

Peter Laurinec, <tsreprepackage@gmail.com>

References

See Also

`repr_paa, repr_pla`

Examples

```r
x <- rnorm(48)
repr_sax(x, q = 4, a = 5)
```
repr_seas_profile

Mean seasonal profile of time series

Description
The repr_seas_profile computes mean seasonal profile representation from a time series.

Usage
repr_seas_profile(x, freq, func)

Arguments
- x: the numeric vector (time series)
- freq: the integer of the length of the season
- func: the aggregation function. Can be meanC or medianC or similar aggregation function.

Details
This function computes mean seasonal profile representation for a seasonal time series. The length of representation is length of set seasonality (frequency) of a time series. Aggregation function is arbitrary (best choice is for you maybe mean or median).

Value
the numeric vector

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also
repr_lm, repr_gam, repr_exp
repr_sma

Examples

repr_seas_profile(rnorm(48*10), 48, meanC)

repr_sma

Simple Moving Average representation

Description

The repr_sma computes Simple Moving Average (SMA) from a time series.

Usage

repr_sma(x, order)

Arguments

x the numeric vector (time series)
order the order of simple moving average

Value

the numeric vector of smoothed values of the length = length(x) - order + 1

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

repr_sma(rnorm(50), 4)

repr_windowing

Windowing of time series

Description

The repr_windowing computes representations from windows of a vector.

Usage

repr_windowing(x, win_size, func = NULL, args = NULL)
Arguments

- `x`: the numeric vector (time series)
- `win_size`: the length of the window
- `func`: the function for representation computation. For example `repr_feaclip` or `repr_trend`.
- `args`: the list of additional arguments to the `func` (representation computation function). The args list must be named.

Details

This function applies specified representation method (function) to every non-overlapping window (subsequence, piece) of a time series.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`repr_paa`, `repr_matrix`

Examples

func without arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_feaclip)

func with arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_featrend,
args = list(func = maxC, order = 2, pieces = 2))
rleC

rleC \hspace{1cm} RLE (Run Length Encoding) written in C++

Description

The *rleC* computes RLE from bit-level (clipping or trending representation) vector.

Usage

```r
rleC(x)
```

Arguments

- `x` the integer vector (from clipping or trending)

Value

the list of values and counts of zeros and ones

Examples

```r
# clipping
clipped <- clipping(rnorm(50))
rleC(clipped)
# trending
trended <- trending(rnorm(50))
rleC(trended)
```

rmse

rmse \hspace{1cm} RMSE

Description

The *rmse* computes RMSE (Root Mean Squared Error) of a forecast.

Usage

```r
rmse(x, y)
```

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values
Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

rmse(runif(50), runif(50))

smape

sMAPE

Description

The smape computes sMAPE (Symmetric Mean Absolute Percentage Error) of a forecast.

Usage

smape(x, y)

Arguments

x the numeric vector of real values

y the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

smape(runif(50), runif(50))
trending

Description

The `trending` function computes bit-level (trending) representation from a vector.

Usage

`trending(x)`

Arguments

- `x`: the numeric vector (time series)

Details

Trending transforms time series to bit-level representation. It is defined as follows:

\[
repr_t = \begin{cases}
1 & \text{if } x_t - x_{t+1} < 0, \\
0 & \text{otherwise},
\end{cases}
\]

where \(x_t \) is a value of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`clipping`

Examples

`trending(rnorm(50))`
Description

Package contains methods for time series representations computation. Representation methods of time series are for dimensionality and noise reduction, emphasizing of main characteristics of time series data and speed up of consequent usage of machine learning methods.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>Date</th>
<th>License</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSrepr</td>
<td>Package</td>
<td>2018-01-26 - Inf</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

The following functions for time series representations are included in the package:

- **repr_paa** - Piecewise Aggregate Approximation (PAA)
- **repr_dwt** - Discrete Wavelet Transform (DWT)
- **repr_dft** - Discrete Fourier Transform (DFT)
- **repr_dct** - Discrete Cosine Transform (DCT)
- **repr_sma** - Simple Moving Average (SMA)
- **repr_pip** - Perceptually Important Points (PIP)
- **repr_sax** - Symbolic Aggregate Approximation (SAX)
- **repr_pla** - Piecewise Linear Approximation (PLA)
- **repr_seas_profile** - Mean seasonal profile
- **repr_lm** - Model-based seasonal representations based on linear model (lm, rlm, l1)
- **repr_gam** - Model-based seasonal representations based on generalized additive model (GAM)
- **repr_exp** - Exponential smoothing seasonal coefficients
- **repr_feaclip** - Feature extraction from clipping representation (FeaClip)
- **repr_featrend** - Feature extraction from trending representation (FeaTrend)
- **repr_feacliptrend** - Feature extraction from clipping and trending representation (FeaClip-Trend)

There are also implemented additional useful functions as:

- **repr_windowing** - applies above mentioned representations to every window of a time series
- **repr_matrix** - applies above mentioned representations to every row of a matrix of time series
- **repr_list** - applies above mentioned representations to every member of a list of time series
• `norm_z`, `norm_min_max`, `norm_boxcox`, `norm_yj`, `norm_atan` - normalisation functions
• `norm_z_params`, `norm_min_max_params` - normalisation functions with defined parameters
• `norm_z_list`, `norm_min_max_list` - normalisation functions with output also of scaling parameters
• `denorm_z`, `denorm_min_max`, `denorm_boxcox`, `denorm_yj`, `denorm_atan` - denormalisation functions

Author(s)

Peter Laurinec

Maintainer: Peter Laurinec <tsreprpackage@gmail.com>
Index

* datasets
 elec_load, 9
clipping, 3, 43
coeComp, 4
denorm_atan, 5, 6, 45
denorm_boxcox, 5, 7, 45
denorm_min_max, 5, 6, 7, 45
denorm_yj, 7, 45
denorm_z, 5–7, 8, 45
dtt, 21
dwt, 23

elec_load, 9
fast_stat, 9
fft, 22

gam, 29
HoltWinters, 25
l1Coef (coefficient), 4
lm, 4
lmCoef (coefficient), 4

maa, 10
mae, 11
mape, 11
mase, 12
maxC (fast_stat), 9
mdae, 13
meanC (fast_stat), 9
medianC (fast_stat), 9
minC (fast_stat), 9
mse, 13

norm_atan, 14, 15, 45
norm_boxcox, 15, 18, 45
norm_min_max, 7, 14, 15, 18, 19, 45
norm_min_max_list, 7, 16, 19, 45
norm_min_max_params, 17, 20, 45
norm_yj, 18, 45
norm_z, 8, 14–16, 18, 18, 45
norm_z_list, 8, 17, 19, 45
norm_z_params, 17, 20, 45
repr_dct, 21, 22, 23, 34, 44
repr_dft, 21, 22, 23, 34, 44
repr_dwt, 21, 22, 23, 34, 44
repr_exp, 24, 29, 32, 38, 44
repr_feaclip, 25, 27, 28, 44
repr_feacliptrend, 26, 26, 28, 44
repr_featrend, 26, 27, 27, 44
repr_gam, 25, 28, 32, 38, 44
repr_list, 29, 33, 44
repr_lm, 25, 29, 31, 38, 44
repr_matrix, 30, 32, 40, 44
repr_paa, 34, 37, 40, 44
repr_paa, 35, 44
repr_pla, 36, 37, 44
repr_sax, 37, 44
repr_seas_profile, 25, 38, 44
repr_sma, 34, 39, 44
repr_windowing, 30, 33, 39, 44
rle, 41
rlm, 4
rlmCoef (coefficient), 4
rmse, 41
rq, 4

smape, 42
sumC (fast_stat), 9
trending, 3, 43
TSrepr, 44

wt.filter, 23