Package ‘TSrepr’

March 25, 2020

Type Package
Title Time Series Representations
Version 1.0.4
Date 2020-03-25
Description Methods for representations (i.e. dimensionality reduction, preprocessing, feature extraction) of time series to help more accurate and effective time series data mining. Non-data adaptive, data adaptive, model-based and data dictated (clipped) representation methods are implemented. Also min-max and z-score normalisations, and forecasting accuracy measures are implemented.
License GPL-3 | file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
Imports Rcpp (>= 0.12.12), MASS, quantreg, wavelets, mgcv, dtt
LinkingTo Rcpp
RoxygenNote 7.1.0
URL https://petolau.github.io/package/,
https://github.com/PetoLau/TSrepr/
BugReports https://github.com/PetoLau/TSrepr/issues
Suggests knitr, rmarkdown, ggplot2, data.table, moments, testthat
VignetteBuilder knitr
NeedsCompilation yes
Author Peter Laurinec [aut, cre] (<https://orcid.org/0000-0002-3501-8783>)
Maintainer Peter Laurinec <tsreprpackage@gmail.com>
Repository CRAN
Date/Publication 2020-03-25 19:20:02 UTC
R topics documented:

- clipping .. 3
- coefComp .. 4
- denorm_min_max .. 5
- denorm_z ... 6
- elec_load .. 7
- fast_stat ... 7
- mape .. 8
- mae .. 9
- mape ... 9
- mase .. 10
- mdae .. 11
- mse .. 11
- norm_min_max .. 12
- norm_min_max_list ... 13
- norm_min_max_params 14
- norm_z .. 14
- norm_z_list ... 15
- norm_z_params ... 16
- repr_dct .. 17
- repr_dft ... 18
- repr_dwt ... 19
- repr_exp ... 20
- repr_feaclip .. 21
- repr_feaclip_trend ... 22
- repr_featrend .. 23
- repr_Gam .. 24
- repr_lm ... 25
- repr_matrix ... 27
- repr_paa ... 28
- repr_pip ... 29
- repr_pla ... 30
- repr_sax ... 31
- repr_seas_profile ... 32
- repr_sma .. 33
- repr_windowing .. 33
- rleC .. 35
- rmse .. 35
- smape .. 36
- trending .. 37
- TSrepr .. 38

Index 40
clipping

Creates bit-level (clipped representation) from a vector

Description

The clipping computes bit-level (clipped representation) from a vector.

Usage

clipping(x)

Arguments

x
the numeric vector (time series)

Details

Clipping transforms time series to bit-level representation.

It is defined as follows:

\[\text{repr}_t = \begin{cases} 1 & \text{if } x_t > \mu, \\ 0 & \text{otherwise,} \end{cases} \]

where \(x_t \) is a value of a time series and \(\mu \) is average of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

trending

Examples

clipping(rnorm(50))
The functions computes regression coefficients from a linear model.

Usage

```r
lmCoef(X, Y)
rlmCoef(X, Y)
l1Coef(X, Y)
```

Arguments

- `X`: the model (design) matrix of independent variables
- `Y`: the vector of dependent variable (time series)

Value

The numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`lm, rlm, rq`

Examples

```r
design_matrix <- matrix(rnorm(10), ncol = 2)
lmCoef(design_matrix, rnorm(5))
rlmCoef(design_matrix, rnorm(5))
l1Coef(design_matrix, rnorm(5))
```
denorm_min_max

Description

The `denorm_min_max` denormalises time series by min-max method.

Usage

```r
denorm_min_max(x, min, max)
```

Arguments

- **x**: the numeric vector (time series)
- **min**: the minimum value
- **max**: the maximal value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`norm_min_max`, `norm_min_max_list`

Examples

```r
# Normalise values and save normalisation parameters:
norm_res <- norm_min_max_list(rnorm(50, 5, 2))
# Denormalise new data with previous computed parameters:
denorm_min_max(rnorm(50, 4, 2), min = norm_res$min, max = norm_res$max)
```
denorm_z

Z-score denormalisation

Description

The `denorm_z` denormalises time series by z-score method.

Usage

```r
denorm_z(x, mean, sd)
```

Arguments

- `x`: the numeric vector (time series)
- `mean`: the mean value
- `sd`: the standard deviation value

Value

the numeric vector of denormalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`norm_z`, `norm_z_list`

Examples

```r
# Normalise values and save normalisation parameters:
norm_res <- norm_z_list(rnorm(50, 5, 2))
# Denormalise new data with previous computed parameters:
denorm_z(rnorm(50, 4, 2), mean = norm_res$mean, sd = norm_res$sd)
```
elec_load

2 weeks of electricity load data from 50 consumers.

Description
A dataset containing the electricity consumption time series from 50 consumers of the length of 2 weeks. Every day is 48 measurements (half-hourly data). Each row represents one consumer's time series.

Usage
elec_load

Format
A data frame with 50 rows and 672 variables.

Source
Anonymized.

fast_stat

Fast statistic functions (helpers)

Description
Fast statistic functions (helpers) for representations computation.

Usage
maxC(x)
minC(x)
meanC(x)
sumC(x)
medianC(x)

Arguments
x the numeric vector

Value
the numeric value
Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

Examples
maxC(rnorm(50))
minC(rnorm(50))
meanC(rnorm(50))
sumC(rnorm(50))
medianC(rnorm(50))

maape MAAPE

Description
the maape computes MAAPE (Mean Arctangent Absolute Percentage Error) of a forecast.

Usage
maape(x, y)

Arguments
x the numeric vector of real values
y the numeric vector of forecasted values

Value
the numeric value in %

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References
Sungil Kim, Heeyoung Kim (2016) A new metric of absolute percentage error for intermittent

Examples
maape(runif(50), runif(50))
mae

MAE

Description

The `mae` computes MAE (Mean Absolute Error) of a forecast.

Usage

`mae(x, y)`

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, `<tsreprpackage@gmail.com>`

Examples

`mae(runif(50), runif(50))`

mape

MAPE

Description

the `mape` computes MAPE (Mean Absolute Percentage Error) of a forecast.

Usage

`mape(x, y)`

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values
Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mase(runif(50), runif(50))

Description

The `mase` computes MASE (Mean Absolute Scaled Error) of a forecast.

Usage

`mase(real, forecast, naive)`

Arguments

- `real` the numeric vector of real values
- `forecast` the numeric vector of forecasted values
- `naive` the numeric vector of naive forecast

Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

mase(rnorm(50), rnorm(50), rnorm(50))
mdae

<table>
<thead>
<tr>
<th>mdae</th>
<th>MdAE</th>
</tr>
</thead>
</table>

Description

The `mdae` computes MdAE (Median Absolute Error) of a forecast.

Usage

```r
dae(x, y)
```

Arguments

- `x`: the numeric vector of real values
- `y`: the numeric vector of forecasted values

Value

the numeric value

Author(s)

Peter Laurinec, `<tsreprpackage@gmail.com>`

Examples

```r
dae(runif(50), runif(50))
```

mse

<table>
<thead>
<tr>
<th>mse</th>
<th>MSE</th>
</tr>
</thead>
</table>

Description

The `mse` computes MSE (Mean Squared Error) of a forecast.

Usage

```r
mse(x, y)
```

Arguments

- `x`: the numeric vector of real values
- `y`: the numeric vector of forecasted values
Value
the numeric value

Author(s)
Peter Laurinec, <tsreppackage@gmail.com>

Examples
mse(runif(50), runif(50))

Description

The `norm_min_max` normalises time series by min-max method.

Usage

```r
norm_min_max(x)
```

Arguments

- `x` the numeric vector (time series)

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreppackage@gmail.com>

See Also

`norm_z`

Examples

```r
norm_min_max(rnorm(50))
```
norm_min_max_list

Min-Max normalization list

Description

The `norm_min_max_list` normalises time series by min-max method and returns normalization parameters (min and max).

Usage

```
norm_min_max_list(x)
```

Arguments

- `x` the numeric vector (time series)

Value

the list composed of:

- `norm_values` the numeric vector of normalised values of time series
- `min` the min value
- `max` the max value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

- `norm_z_list`

Examples

```
norm_min_max_list(rnorm(50))
```
norm_min_max_params
Min-Max normalisation with parameters

Description

The `norm_min_max_params` normalises time series by min-max method with defined parameters.

Usage

```
norm_min_max_params(x, min, max)
```

Arguments

- `x` the numeric vector (time series)
- `min` the numeric value
- `max` the numeric value

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`norm_z_params`

Examples

```
norm_min_max_params(rnorm(50), 0, 1)
```

norm_z
Z-score normalisation

Description

The `norm_z` normalises time series by z-score.

Usage

```
norm_z(x)
```
norm_z_list

Arguments

- `x` the numeric vector (time series)

Value

- the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

- `norm_min_max`

Examples

```r
norm_z(runif(50))
```

| `norm_z_list` | **Z-score normalization list** |

Description

The `norm_z_list` normalizes time series by z-score and returns normalization parameters (mean and standard deviation).

Usage

```r
norm_z_list(x)
```

Arguments

- `x` the numeric vector (time series)

Value

- the list composed of:
 - `norm_values` the numeric vector of normalised values of time series
 - `mean` the mean value
 - `sd` the standard deviation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>
See Also

norm_min_max_list

Examples

norm_z_list(runif(50))

norm_z_params
Z-score normalisation with parameters

Description

The norm_z_params normalises time series by z-score with defined mean and standard deviation.

Usage

norm_z_params(x, mean, sd)

Arguments

x
the numeric vector (time series)

mean
the numeric value

sd
the numeric value - standard deviation

Value

the numeric vector of normalised values

Author(s)

Peter Laurinec, <tsreppackage@gmail.com>

See Also

norm_min_max_params

Examples

norm_z_params(runif(50), 0.5, 1)
repr_dct

repr_dct
DCT representation

Description

The `repr_dct` computes DCT (Discrete Cosine Transform) representation from a time series.

Usage

```r
repr_dct(x, coef = 10)
```

Arguments

- `x`
 the numeric vector (time series)

- `coef`
 the number of coefficients to extract from DCT

Details

The length of the final time series representation is equal to set `coef` parameter.

Value

the numeric vector of DCT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

`repr_dft`, `repr_dwt`, `dtt`

Examples

```r
repr_dct(rnorm(50), coef = 4)
```
\textbf{repr_dft}\hspace{1cm} \textit{DFT representation by FFT}

\textbf{Description}

The \texttt{repr_dft} computes DFT (Discrete Fourier Transform) representation from a time series by FFT (Fast Fourier Transform).

\textbf{Usage}

\begin{verbatim}
repr_dft(x, coef = 10)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \texttt{x} \hspace{1cm} the numeric vector (time series)
 \item \texttt{coef} \hspace{1cm} the number of coefficients to extract from FFT
\end{itemize}

\textbf{Details}

The length of the final time series representation is equal to set coef parameter.

\textbf{Value}

the numeric vector of DFT coefficients

\textbf{Author(s)}

Peter Laurinec, \texttt{tsreprpackage@gmail.com}

\textbf{See Also}

\texttt{repr_dwt}, \texttt{repr_dct}, \texttt{fft}

\textbf{Examples}

\begin{verbatim}
repr_dft(rnorm(50), coef = 4)
\end{verbatim}
The `repr_dwt` computes DWT (Discrete Wavelet Transform) representation (coefficients) from a time series.

Usage

```r
repr_dwt(x, level = 4, filter = "d4")
```

Arguments

- `x`: the numeric vector (time series)
- `level`: the level of DWT transformation (default is 4)

Details

This function extracts DWT coefficients. You can use various wavelet filters, see all of them here `wt.filter`. The number of extracted coefficients depends on the level selected. The final representation has length equal to floor(n / 2^level), where n is a length of original time series.

Value

the numeric vector of DWT coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`repr_dft`, `repr_dct`, `dwt`
Examples

Interpretation: DWT with Daubechies filter of length 4 and
3rd level of DWT coefficients extracted.
repr_dwt(rnorm(50), filter = "d4", level = 3)

repr_exp
Exponential smoothing seasonal coefficients as representation

Description

The `repr_exp` computes exponential smoothing seasonal coefficients.

Usage

`repr_exp(x, freq, alpha = TRUE, gamma = TRUE)`

Arguments

- `x` the numeric vector (time series)
- `freq` the frequency of the time series
- `alpha` the smoothing factor (default is TRUE - automatic determination of smoothing factor), or number between 0 to 1
- `gamma` the seasonal smoothing factor (default is TRUE - automatic determination of seasonal smoothing factor), or number between 0 to 1

Details

This function extracts exponential smoothing seasonal coefficients and uses them as time series representation. You can set smoothing factors (`alpha`, `gamma`) manually, but recommended is automatic method (set to TRUE). The trend component is not included in computations.

Value

the numeric vector of seasonal coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

repr_lm, repr_gam, repr_seas_profile, HoltWinters

Examples

repr_exp(rnorm(96), freq = 24)

repr_feaclip FeaClip representation of time series

Description

The repr_feaclip computes representation of time series based on feature extraction from bit-level (clipped) representation.

Usage

description repr_feaclip(x)

Arguments

x the numeric vector (time series)

Details

FeaClip is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (clipped) representation. It extracts 8 key features from clipped representation.

There are as follows:

\[
\text{repr} = \{ \text{max} - \text{max from runlength of ones}, \\
\text{sum} - \text{sum of runlength of ones}, \\
\text{max} - \text{max from runlength of zeros}, \\
\text{crossings} - \text{length of RLE encoding} - 1, \\
\text{f} - \text{number of first zeros}, \\
\text{l} - \text{number of last zeros}, \\
\text{f} - \text{number of first ones}, \\
\text{l} - \text{number of last ones} \}.
\]

Value

the numeric vector of length 8
repr_feacliptrend

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

repr_featrend, repr_feacliptrend

Examples

repr_feaclip(rnorm(50))

repr_feacliptrend FeaClipTrend representation of time series

Description

The repr_feacliptrend computes representation of time series based on feature extraction from bit-level representations (clipping and trending).

Usage

repr_feacliptrend(x, func, pieces = 2L, order = 4L)

Arguments

x the numeric vector (time series)
func the aggregation function for FeaTrend procedure (sumC or maxC)
pieces the number of parts of time series to split
order the order of simple moving average

Details

FeaClipTrend combines FeaClip and FeaTrend representation methods. See documentation of these two methods (check See Also section).

Value

the numeric vector of frequencies of features
repr_featrend

Author(s)
Peter Laurinec, <tsreppackage@gmail.com>

References

See Also
repr_featrend, repr_feaclip

Examples

```r
repr_feacliptrend(rnorm(50), maxC, 2, 4)
```

repr_featrend

FeaTrend representation of time series

Description
The `repr_featrend` computes representation of time series based on feature extraction from bit-level (trending) representation.

Usage

```r
repr_featrend(x, func, pieces = 2L, order = 4L)
```

Arguments

- `x`: the numeric vector (time series)
- `func`: the function of aggregation, can be sumC or maxC or similar aggregation function
- `pieces`: the number of parts of time series to split (default to 2)
- `order`: the order of simple moving average (default to 4)

Details
FeaTrend is method of time series representation based on feature extraction from run lengths (RLE) of bit-level (trending) representation. It extracts number of features from trending representation based on number of pieces defined. From every piece, 2 features are extracted. You can define what feature will be extracted, recommended functions are max and sum. For example if max is selected, then maximum value of run lengths of ones and zeros are extracted.
Value
the numeric vector of the length pieces

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

See Also
repr_feaclip, repr_feacliptrend

Examples

default settings
repr_featrend(rnorm(50), maxC)

compute FeaTrend for 4 pieces and make more smoothed ts by order = 8
repr_featrend(rnorm(50), sumC, 4, 8)

repr_gam

GAM regression coefficients as representation

Description
The repr_gam computes seasonal GAM regression coefficients. Additional exogenous variables can be also added.

Usage
repr_gam(x, freq = NULL, xreg = NULL)

Arguments
x the numeric vector (time series)
freq the frequency of the time series. Can be vector of two frequencies (seasonalities) or just an integer of one frequency.xreg the numeric vector or the data.frame with additional exogenous regressors

Details
This model-based representation method extracts regression coefficients from a GAM (Generalized Additive Model). The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalities is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series (freq = c(24, 24*7)), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always freq_1 / freq_2. The smooth function for seasonal variables is set to cubic regression spline. There is also possibility to add another independent variables (xreg).
repr_lm

Value

the numeric vector of GAM regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

repr_lm, repr_exp, gam

Examples

repr_gam(rnorm(96), freq = 24)

repr_lm

Regression coefficients from linear model as representation

Description

The repr_lm computes seasonal regression coefficients from a linear model. Additional exogenous variables can be also added.

Usage

repr_lm(x, freq = NULL, method = "lm", xreg = NULL)

Arguments

x the numeric vector (time series)
freq the frequency of the time series. Can be vector of two frequencies (seasonalities) or just an integer of one frequency.
method the linear regression method to use. It can be "lm", "rlm" or "l1".
xreg the data.frame with additional exogenous regressors or the single numeric vector
Details

This model-based representation method extracts regression coefficients from a linear model. The extraction of seasonal regression coefficients is automatic. The maximum number of seasonalties is 2 so it is possible to compute representation for double-seasonal time series. The first set seasonality (frequency) is main, so for example if we have hourly time series \((freq = c(24, 24*7))\), the number of extracted daily seasonal coefficients is 24 and the number of weekly seasonal coefficients is 7, because the length of second seasonality representation is always \(freq_1 / freq_2\). There is also possibility to add another independent variables \((xreg)\).

You have three possibilities for selection of a linear model method.

- "lm" is classical OLS regression.
- "rlm" is robust linear model using psi huber function and is implemented in MASS package.
- "l1" is L1 quantile regression model (also robust linear regression method) implemented in package quantreg.

Value

the numeric vector of regression coefficients

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

repr_gam, repr_exp

Examples

Extracts 24 seasonal regression coefficients from the time series by linear model
repr_lm(rnorm(96), freq = 24, method = "lm")

Try also robust linear models ("rlm" and "l1")
repr_lm(rnorm(96), freq = 24, method = "rlm")
repr_lm(rnorm(96), freq = 24, method = "l1")
The `repr_matrix` function computes matrix of representations from matrix of time series. It can be combined with windowing (see `repr_windowing`) and normalisation of time series.

Arguments

- **x**: the matrix, data.frame or data.table of time series, where time series are in rows of the table
- **func**: the function that computes representation
- **args**: the list of additional (or required) parameters of `func` (function that computes representation)
- **normalise**: normalise (scale) time series before representations computation? (default is `FALSE`)
- **func_norm**: the normalisation function (default is `norm_z`)
- **windowing**: perform windowing? (default is `FALSE`)
- **win_size**: the size of the window

Details

This function computes representation to an every row of a matrix of time series and returns matrix of time series representations.

Value

- the numeric matrix of representations of time series

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>
See Also

repr_windowing

Examples

Create random matrix of time series
mat_ts <- matrix(rnorm(100), ncol = 10)
repr_matrix(mat_ts, func = repr_paa,
args = list(q = 5, func = meanC))

return normalised representations, and normalise time series by min-max normalisation
repr_matrix(mat_ts, func = repr_paa,
args = list(q = 2, func = meanC), normalise = TRUE, func_norm = norm_min_max)

with windowing
repr_matrix(mat_ts, func = repr_feaclip, windowing = TRUE, win_size = 5)

repr_paa

PAA - Piecewise Aggregate Approximation

Description

The `repr_paa` computes PAA representation from a vector.

Usage

`repr_paa(x, q, func)`

Arguments

x the numeric vector (time series)
q the integer of the length of the "piece"
func the aggregation function. Can be meanC, medianC, sumC, minC or maxC or similar aggregation function

Details

PAA with possibility to use arbitrary aggregation function. The original method uses average as aggregation function.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>
References

See Also
repr_dwt, repr_dft, repr_dct, repr_sma

Examples
repr_paa(rnorm(11), 2, meanC)

repr_pip

PIP representation

Description
The repr_pip computes PIP (Perceptually Important Points) representation from a time series.

Usage
repr_pip(x, times = 10, return = "points")

Arguments
x
the numeric vector (time series)
times
the number of important points to extract (default 10)
return
what to return? Can be important points ("points"), places of important points in a vector ("places") or "both" (data.frame).

Value
the values based on the argument return (see above)

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References
Fu TC, Chung FL, Luk R, and Ng CM (2008) Representing financial time series based on data point importance. Engineering Applications of Artificial Intelligence, 21(2):277-300

Examples
repr_pip(rnorm(100), times = 12, return = "both")
repr_pla

PLA representation

Description

The `repr_pla` computes PLA (Piecewise Linear Approximation) representation from a time series.

Usage

`repr_pla(x, times = 10, return = "points")`

Arguments

- `x`
 the numeric vector (time series)
- `times`
 the number of important points to extract (default 10)
- `return`
 what to return? Can be “points” (segments), places of points (segments) in a vector (“places”) or “both” (data.frame).

Value

the values based on the argument return (see above)

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

Examples

`repr_pla(rnorm(100), times = 12, return = "both")`
repr_sax

SAX - SymbolicAggregate Approximation

Description

The `repr_sax` creates SAX symbols for a univariate time series.

Usage

`repr_sax(x, q = 2, a = 6, eps = 0.01)`

Arguments

- `x`: the numeric vector (time series)
- `q`: the integer of the length of the "piece" in PAA
- `a`: the integer of the alphabet size
- `eps`: is the minimum threshold for variance in x and should be a numeric value. If x has a smaller variance than eps, it will represented as a word using the middle alphabet.

Value

the character vector of SAX representation

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

`repr_paa, repr_pla`

Examples

```r
x <- rnorm(48)
repr_sax(x, q = 4, a = 5)
```
repr_seas_profile

Mean seasonal profile of time series

Description
The repr_seas_profile computes mean seasonal profile representation from a time series.

Usage
repr_seas_profile(x, freq, func)

Arguments
x the numeric vector (time series)
freq the integer of the length of the season
func the aggregation function. Can be meanC or medianC or similar aggregation function.

Details
This function computes mean seasonal profile representation for a seasonal time series. The length of representation is length of set seasonality (frequency) of a time series. Aggregation function is arbitrary (best choice is for you maybe mean or median).

Value
the numeric vector

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also
repr_lm, repr_gam, repr_exp
repr_sma

Examples
repr_seas_profile(rnorm(48*10), 48, meanC)

description
The repr_sma computes Simple Moving Average (SMA) from a time series.

Usage
repr_sma(x, order)

Arguments
x the numeric vector (time series)
order the order of simple moving average

Value
the numeric vector of smoothed values

Author(s)
Peter Laurinec, <tsreprpackage@gmail.com>

Examples
repr_sma(rnorm(50), 4)

description
The repr_windowing computes representations from windows of a vector.

Usage
repr_windowing(x, win_size, func = NULL, args = NULL)
Arguments

x the numeric vector (time series)
win_size the length of the window
func the function for representation computation. For example repr_feaclip or repr_trend.
args the list of additional arguments to the func (representation computation function). The args list must be named.

Details

This function applies specified representation method (function) to every non-overlapping window (subsequence, piece) of a time series.

Value

the numeric vector

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

References

See Also

repr_paa, repr_matrix

Examples

func without arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_feaclip)

func with arguments
repr_windowing(rnorm(48), win_size = 24, func = repr_featrend,
 args = list(func = maxC, order = 2, pieces = 2))
rleC

Description
The `rleC` computes RLE from bit-level (clipping or trending representation) vector.

Usage
`rleC(x)`

Arguments
x
the integer vector (from clipping or trending)

Value
the list of values and counts of zeros and ones

Examples
```
# clipping
clipped <- clipping(rnorm(50))
rleC(clipped)

# trending
trended <- trending(rnorm(50))
rleC(trended)
```

rmse

Description
The `rmse` computes RMSE (Root Mean Squared Error) of a forecast.

Usage
`rmse(x, y)`

Arguments
x
the numeric vector of real values

y
the numeric vector of forecasted values
Value

the numeric value

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```r
rmse(runif(50), runif(50))
```

Description

The `smape` computes sMAPE (Symmetric Mean Absolute Percentage Error) of a forecast.

Usage

```r
smape(x, y)
```

Arguments

- `x` the numeric vector of real values
- `y` the numeric vector of forecasted values

Value

the numeric value in %

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

Examples

```r
smape(runif(50), runif(50))
```
trending
Creates bit-level (trending) representation from a vector

Description

The `trending` Computes bit-level (trending) representation from a vector.

Usage

```r
trending(x)
```

Arguments

- `x`
 the numeric vector (time series)

Details

Trending transforms time series to bit-level representation. It is defined as follows:

\[
repr_t = \begin{cases}
1 & \text{if } x_t - x_{t+1} < 0, \\
0 & \text{otherwise,}
\end{cases}
\]

where \(x_t \) is a value of a time series.

Value

the integer vector of zeros and ones

Author(s)

Peter Laurinec, <tsreprpackage@gmail.com>

See Also

- `clipping`

Examples

```r
trending(rnorm(50))
```
Description

Package contains methods for time series representations computation. Representation methods of time series are for dimensionality and noise reduction, emphasizing of main characteristics of time series data and speed up of consequent usage of machine learning methods.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>TSrepr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Date:</td>
<td>2018-01-26 - Inf</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-3</td>
</tr>
</tbody>
</table>

The following functions for time series representations are included in the package:

- `repr_paa` - Piecewise Aggregate Approximation (PAA)
- `repr_dwt` - Discrete Wavelet Transform (DWT)
- `repr_dft` - Discrete Fourier Transform (DFT)
- `repr_dct` - Discrete Cosine Transform (DCT)
- `repr_sma` - Simple Moving Average (SMA)
- `repr_pip` - Perceptually Important Points (PIP)
- `repr_sax` - Symbolic Aggregate Approximation (SAX)
- `repr_pla` - Piecewise Linear Approximation (PLA)
- `repr_seas_profile` - Mean seasonal profile
- `repr_lm` - Model-based seasonal representations based on linear model (lm, rlm, 11)
- `repr_gam` - Model-based seasonal representations based on generalized additive model (GAM)
- `repr_exp` - Exponential smoothing seasonal coefficients
- `repr_feaclip` - Feature extraction from clipping representation (FeaClip)
- `repr_featrend` - Feature extraction from trending representation (FeaTrend)
- `repr_feaclip_trend` - Feature extraction from clipping and trending representation (FeaClip-Trend)

There are also implemented additional useful functions as:

- `repr_windowing` - applies above mentioned representations to every window of a time series
- `repr_matrix` - applies above mentioned representations to every row of a matrix of time series
- `norm_z, norm_min_max` - normalisation functions
• `norm_z_params, norm_min_max_params` - normalisation functions with defined parameters
• `norm_z_list, norm_min_max_list` - normalisation functions with output also of scaling parameters
• `denorm_z, denorm_min_max` - denormalisation functions

Author(s)

Peter Laurinec

Maintainer: Peter Laurinec <tsreppackage@gmail.com>
Index

*Topic **datasets**
 - elec_load, 7

 clipping, 3, 37
 coefComp, 4

 denorm_min_max, 5, 39
 denorm_z, 6, 39
 dtt, 17
 dwt, 19

 elec_load, 7

 fast_stat, 7
 fft, 18

 gam, 25

 HoltWinters, 21
 l1Coef (coefComp), 4
 lm, 4
 lmCoef (coefComp), 4

 mape, 8
 mae, 9
 mape, 9
 mase, 10
 maxC (fast_stat), 7
 mdae, 11
 meanC (fast_stat), 7
 medianC (fast_stat), 7
 minC (fast_stat), 7
 mse, 11

 norm_min_max, 5, 12, 15, 38
 norm_min_max_list, 5, 13, 16, 39
 norm_min_max_params, 14, 16, 39
 norm_z, 6, 12, 14, 38
 norm_z_list, 6, 13, 15, 39
 norm_z_params, 14, 16, 39

 repr_dct, 17, 18, 19, 29, 38
 repr_dft, 17, 18, 19, 29, 38
 repr_dwt, 17, 18, 19, 29, 38
 repr_exp, 20, 25, 26, 32, 38
 repr_feaclip, 21, 23, 24, 38
 repr_feacliptrend, 22, 22, 24, 38
 repr_featrend, 22, 23, 23, 38
 repr_gam, 21, 24, 26, 32, 38
 repr_lm, 21, 25, 25, 32, 38
 repr_matrix, 27, 34, 38
 repr_paa, 28, 31, 34, 38
 repr_pip, 29, 38
 repr_pla, 30, 31, 38
 repr_sax, 31, 38
 repr_seas_profile, 21, 32, 38
 repr_sma, 29, 33, 38
 repr_windowing, 27, 28, 33, 38
 rlc, 35
 rlm, 4
 rlmCoef (coefComp), 4
 rmse, 35
 rq, 4

 smape, 36
 sumC (fast_stat), 7

 trending, 3, 37
 TSrepr, 38

 wt.filter, 19