Package ‘TaxaNorm’

December 12, 2023

Title Feature-Wise Normalization for Microbiome Sequencing Data

Version 2.4

Maintainer Dillon Lloyd <dlloyd@ncsu.edu>

Description A novel feature-wise normalization method based on a zero-inflated negative binomial model. This method assumes that the effects of sequencing depth vary for each taxon on their mean and also incorporates a rational link of zero probability and taxon dispersion as a function of sequencing depth. Ziyue Wang, Dillon Lloyd, Shanshan Zhao, Alison Motsinger-Reif (2023) [doi:10.1101/2023.10.31.563648].

License GPL-3

Depends R (>= 4.0.0), microbiome,

Imports phyloseq, stats, S4Vectors, BiocGenerics, vegan, methods,
 MASS, future, future.apply, matrixStats, pscl, parallelly,
 ggplot2, utils

URL https://github.com/wangziyue57/TaxaNorm

biocViews Sequencing, Microbiome, Metagenomics, Normalization, Visualization

Suggests rmarkdown, knitr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

BugReports https://github.com/wangziyue57/TaxaNorm/issues

NeedsCompilation no

Author Ziyue Wang [aut],
 Dillon Lloyd [aut, cre, cph],
 Shanshan Zhao [aut, ctb],
 Alison Motsinger-Reif [aut, ctb]

Repository CRAN

Date/Publication 2023-12-12 18:30:05 UTC
R topics documented:

- `TaxaNorm-datasets` .. 2
- `TaxaNormGenerics` .. 3
- `TaxaNorm_Model_Parameters-class` 4
- `TaxaNorm_Model_QC` 6
- `TaxaNorm_NMDS` ... 6
- `TaxaNorm_Normalization` 7
- `TaxaNorm_QC_Input` .. 8
- `TaxaNorm_Results-class` 9
- `TaxaNorm_Run_Diagnose` 11

Index

Description

Objects included in the TaxaNorm package, loaded with `utils::data`

Usage

```r
data(TaxaNorm_Example_Input, package = "TaxaNorm")
data(TaxaNorm_Example_Output, package = "TaxaNorm")
```

TaxaNorm_Example_Input

Example data #'

TaxaNorm_Example_Output

Example output

Examples

```r
data(TaxaNorm_Example_Input, package = "TaxaNorm")
data(TaxaNorm_Example_Output, package = "TaxaNorm")
```
TaxaNormGenerics

TaxaNorm package generics

Description

TaxaNorm package generics; see class man pages for associated methods.

Usage

```r
input_data(x, ...)  
input_data(x, ...) <- value  
rawdata(x, ...)  
rawdata(x, ...) <- value  
normdata(x, ...)  
normdata(x, ...) <- value  
ecdf(x, ...)  
ecdf(x, ...) <- value  
model_pars(x, ...)  
model_pars(x, ...) <- value  
converge(x, ...)  
converge(x, ...) <- value  
llk(x, ...)  
llk(x, ...) <- value  
final_df(x, ...)  
final_df(x, ...) <- value  
coefficients(x, ...)  
coefficients(x, ...) <- value  
mu(x, ...)  
```
mu(x, ...) <- value
theta(x, ...)
theta(x, ...) <- value
pi(x, ...)
pi(x, ...) <- value

Arguments

x TaxaNorm S4 object
... Included for extendability; not currently used
value Replacement value

Value

TaxaNorm generic functions return the specified slot of the TaxaNorm object given to the function

Description

S4 class to store TaxaNorm Parameters

Usage

TaxaNorm_Model_Parameters(coefficients, mu, theta, pi)

S4 method for signature 'TaxaNorm_Model_Parameters'
coefficients(x)

S4 replacement method for signature 'TaxaNorm_Model_Parameters'
coefficients(x) <- value

S4 method for signature 'TaxaNorm_Model_Parameters'
mu(x)

S4 replacement method for signature 'TaxaNorm_Model_Parameters'
mu(x) <- value

S4 method for signature 'TaxaNorm_Model_Parameters'
theta(x)
S4 replacement method for signature 'TaxaNorm_Model_Parameters'
theta(x) <- value

S4 method for signature 'TaxaNorm_Model_Parameters'
pi(x)

S4 replacement method for signature 'TaxaNorm_Model_Parameters'
pi(x) <- value

Arguments
- **coefficients**: Passed to coefficients slot
- **mu**: Passed to mu slot
- **theta**: Passed to theta slot
- **pi**: Passed to pi slot
- **x**: TaxaNorm_Model_Parameters object
- **value**: Replacement value

Details
Parameters for TaxaNorm Method

Functions
- **coefficients(TaxaNorm_Model_Parameters)**: Return coefficients slot
- **mu(TaxaNorm_Model_Parameters)**: Return mu slot
- **theta(TaxaNorm_Model_Parameters)**: Return theta slot
- **pi(TaxaNorm_Model_Parameters)**: Return pi slot

Slots
- **coefficients**: matrix coefficients
- **mu**: matrix mu
- **theta**: matrix theta
- **pi**: matrix pi

Examples
```
coefficients <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
mu <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
theta <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
pi <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
TaxaNorm_Model_Parameters(coefficients = coefficients,mu = mu,theta = theta,pi = pi)
```
TaxaNorm_Model_QC
Function to QC TaxNorm algorithm

Description
Function to QC TaxNorm algorithm

Usage
```r
TaxaNorm_Model_QC(TaxaNormResults)
```

Arguments
- `TaxaNormResults`
 Input data; Results from TaxaNorm normalization

Value
a list containing qc taxnorm object

Examples
```r
data("TaxaNorm_Example_Output", package = "TaxaNorm")
TaxaNorm_Model_QC(TaxaNormResults = TaxaNorm_Example_Output)
```

TaxaNorm_NMDS
Function for TaxNorm NMDS

Description
Function for TaxNorm NMDS

Usage
```r
TaxaNorm_NMDS(TaxaNormResults, group_column)
```

Arguments
- `TaxaNormResults`
 (Required) Input data; should be either a phyloseq object or a count matrix
- `group_column`
 column to cluster on

Value
NMDS Plot
Examples

```r
data("TaxaNorm_Example_Output", package = "TaxaNorm")
TaxaNorm_NMDS(TaxaNorm_Example_Output, group_column = "body_site")
```

TaxaNorm_Normalization

Function to run TaxaNorm algorithm

Description

Function to run TaxaNorm algorithm

Usage

```
TaxaNorm_Normalization(
  data,
  depth = NULL,
  group = NULL,
  meta.data = NULL,
  filter.cell.num = 10,
  filter.taxa.count = 0,
  random = FALSE,
  ncores = NULL
)
```

Arguments

- `data` *(Required)* Input data; should be either a phyloseq object or a count matrix
- `depth` sequencing depth if pre-calculated. It should be a vector with the same length and order as the column of the count data
- `group` condition variables if samples are from multiple groups; should be correpsond to the column of the count data. default is NULL, where no grouping is considered
- `meta.data` meta data for Taxa
- `filter.cell.num` taxa with "filter.cell.num" in more than the value provided will be filtered
- `filter.taxa.count" samples will be removed before testing. default is keep taxa appear in at least 10 samples within each group
- `random` calculate randomized normal quantile residual
- `ncores` whether multiple cores is used for parallel computing; default is max(1, detect-Cores() - 1)

Value

a TaxaNorm Object containing the normalized count values and accessory information
Examples

```r
data("TaxaNorm_Example_Input", package = "TaxaNorm")
Normalized_Data <- TaxaNorm_Normalization(data = TaxaNorm_Example_Input,
                                           depth = NULL,
                                           group = sample_data(TaxaNorm_Example_Input)$body_site,
                                           meta.data = NULL,
                                           filter.cell.num = 10,
                                           filter.taxa.count = 0,
                                           random = FALSE,
                                           ncores = 1)
```

TaxaNorm_QC_Input
Function for TaxNorm input data

Description

Function for TaxNorm input data

Usage

```r
TaxaNorm_QC_Input(data)
```

Arguments

- `data` *(Required)* Input data; should be either a phyloseq object or a count matrix

Value

QC Plots

Examples

```r
data("TaxaNorm_Example_Input", package = "TaxaNorm")
qc_data <- TaxaNorm_QC_Input(TaxaNorm_Example_Input)
```
TaxaNorm_Results-class

Description

S4 class to store TaxaNorm Results

Usage

```r
TaxaNorm_Results(
  input_data,
  rawdata,
  normdata,
  ecdf,
  model_pars,
  converge,
  llk,
  final_df
)
```

```r
## S4 method for signature 'TaxaNorm_Results'
input_data(x)
```

```r
## S4 replacement method for signature 'TaxaNorm_Results'
input_data(x) <- value
```

```r
## S4 method for signature 'TaxaNorm_Results'
rawdata(x)
```

```r
## S4 replacement method for signature 'TaxaNorm_Results'
rawdata(x) <- value
```

```r
## S4 method for signature 'TaxaNorm_Results'
normdata(x)
```

```r
## S4 replacement method for signature 'TaxaNorm_Results'
normdata(x) <- value
```

```r
## S4 method for signature 'TaxaNorm_Results'
ecdf(x)
```

```r
## S4 replacement method for signature 'TaxaNorm_Results'
ecdf(x) <- value
```

```r
## S4 method for signature 'TaxaNorm_Results'
model_pars(x)
```
S4 replacement method for signature 'TaxaNorm_Results'
model_pars(x) <- value

S4 method for signature 'TaxaNorm_Results'
converge(x)

S4 replacement method for signature 'TaxaNorm_Results'
converge(x) <- value

S4 method for signature 'TaxaNorm_Results'
llk(x)

S4 replacement method for signature 'TaxaNorm_Results'
llk(x) <- value

S4 method for signature 'TaxaNorm_Results'
final_df(x)

S4 replacement method for signature 'TaxaNorm_Results'
final_df(x) <- value

Arguments

- **input_data** passed to input_data slot
- **rawdata** Passed to rawdata slot
- **normdata** Passed to normdata slot
- **ecdf** Passed to ecdf slot
- **model_pars** Passed to model_pars slot
- **converge** Passed to converge slot
- **llk** Passed to llk slot
- **final_df** Passed to final_df slot
- **x** TaxaNorm_Results object
- **value** Replacement value

Details

All results from the TaxaNorm method and what was used to get those results

Functions

- **input_data(TaxaNorm_Results)**: Return input_data slot
- **rawdata(TaxaNorm_Results)**: Return rawdata slot
- **normdata(TaxaNorm_Results)**: Return normdata slot
- **ecdf(TaxaNorm_Results)**: Return ecdf slot
• `model_pars(TaxaNorm_Results)`: Return `model_pars` slot
• `converge(TaxaNorm_Results)`: Return `converge` slot
• `llk(TaxaNorm_Results)`: Return `llk` slot
• `final_df(TaxaNorm_Results)`: Return `final_df` slot

Slots

- `input_data` ANY phyloseq input data
- `rawdata` data.frame Data frame of counts to use
- `normdata` data.frame Normalized Data
- `ecdf` data.frame ecdf
- `model_pars` `TaxaNorm_Model_Parameters` list of model parameters
- `converge` vector(<logical>) converge
- `llk` ANY llk
- `final_df` ANY final_df

Examples

```r
coefficients <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
mu <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
theta <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
pi <- matrix(c(1,2,3,4,5,6,7,8,9),nrow=3,ncol=3,byrow=TRUE)
model_pars <- TaxaNorm_Model_Parameters(coefficients = coefficients,mu = mu,theta = theta,pi = pi)
data("TaxaNorm_Example_Input", package = "TaxaNorm")
rawdata <- data.frame(Taxa1 = c(1,2,3),Taxa2 = c(3,4,5),Taxa3 = c(6,7,8))
normdata <- data.frame(Taxa1 = c(-1.4,-1.09,-0.73),
                        Taxa2 = c( -0.36,0,0.36), Taxa3 = c(0.73,1.09,1.46))
ecdf <- data.frame(0.05,0.23,0.89)
converge <- c(TRUE,TRUE,FALSE)
llk <- c(1,1.5,0.5)
final_df <- data.frame(Taxa1 = c(1,2,3),Taxa2 = c(3,4,5),Taxa3 = c(6,7,8))
TaxaNorm_Results(input_data = TaxaNorm_Example_Input,
                  rawdata = rawdata,
                  normdata = normdata,
                  ecdf = ecdf,
                  model_pars = model_pars,
                  converge = converge,
                  llk = llk,
                  final_df = final_df)
```

Description

Function to run TaxNorm algorithm
Usage

TaxaNorm_Run_Diagnose(Normalized_Results, prev = TRUE, equiv = TRUE, group)

Arguments

Normalized_Results
 (Required) Input results from from run_norm()

prev run prev test
equiv run equiv test

Value

a list containing the normalized count values

Examples

data("TaxaNorm_Example_Input", package = "TaxaNorm")
data("TaxaNorm_Example_Output", package = "TaxaNorm")
Diagnose_Data <- TaxaNorm_Run_Diagnose(Normalized_Results = TaxaNorm_Example_Output,
 prev = TRUE,
 equiv = TRUE,
 group = sample_data(TaxaNorm_Example_Input)$body_site)
Index

coefficients (TaxaNormGenerics), 3
coefficients, TaxaNorm_Model_Parameters-method (TaxaNorm_Model_Parameters-class), 4
coefficients<-(TaxaNormGenerics), 3
coefficients<-, TaxaNorm_Model_Parameters-method (TaxaNorm_Model_Parameters-class), 4
converge (TaxaNormGenerics), 3
converge, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
converge<-(TaxaNormGenerics), 3
converge<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
ecdf (TaxaNormGenerics), 3
ecdf, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
ecdf<-(TaxaNormGenerics), 3
ecdf<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
final_df (TaxaNormGenerics), 3
final_df, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
final_df<-(TaxaNormGenerics), 3
final_df<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
input_data (TaxaNormGenerics), 3
input_data, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
input_data<-(TaxaNormGenerics), 3
input_data<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
llk (TaxaNormGenerics), 3
llk, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
llk<-(TaxaNormGenerics), 3
model_pars (TaxaNormGenerics), 3
model_pars, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
model_pars<-(TaxaNormGenerics), 3
model_pars<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
mu (TaxaNormGenerics), 3
mu, TaxaNorm_Model_Parameters-method (TaxaNorm_Model_Parameters-class), 4
mu<-(TaxaNormGenerics), 3
mu<-, TaxaNorm_Model_Parameters-method (TaxaNorm_Model_Parameters-class), 4
normdata (TaxaNormGenerics), 3
normdata, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
normdata<-(TaxaNormGenerics), 3
normdata<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
pi (TaxaNormGenerics), 3
pi, TaxaNorm_Model_Parameters-method (TaxaNorm_Model_Parameters-class), 4
pi<-(TaxaNormGenerics), 3
pi<-, TaxaNorm_Model_Parameters-method (TaxaNorm_Model_Parameters-class), 4
rawdata (TaxaNormGenerics), 3
rawdata, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
rawdata<-(TaxaNormGenerics), 3
rawdata<-, TaxaNorm_Results-method (TaxaNorm_Results-class), 9
TaxaNorm-datasets, 2
TaxaNorm_Example_Input
 (TaxaNorm-datasets), 2
TaxaNorm_Example_Output
 (TaxaNorm-datasets), 2
TaxaNorm_Model_Parameters, 11
 (TaxaNorm_Model_Parameters-class), 4
 TaxaNorm_Model_Parameters-class, 4
TaxaNorm_Model_Parameters-coefficients
 (TaxaNorm_Model_Parameters-class), 4
TaxaNorm_Model_Parameters-mu
 (TaxaNorm_Model_Parameters-class), 4
TaxaNorm_Model_Parameters-pi
 (TaxaNorm_Model_Parameters-class), 4
TaxaNorm_Model_Parameters-theta
 (TaxaNorm_Model_Parameters-class), 4
 theta, TaxaNorm_Model_Parameters-method
 (TaxaNorm_Model_Parameters-class), 4
theta<-(TaxaNormGenerics), 3
theta<-, TaxaNorm_Model_Parameters-method
 (TaxaNorm_Model_Parameters-class), 4
 utils::data, 2
TaxaNorm_Model_QC, 6
TaxaNorm_NMDS, 6
TaxaNorm_Normalization, 7
TaxaNorm_QC_Input, 8
TaxaNorm_Results
 (TaxaNorm_Results-class), 9
 TaxaNorm_Results-class, 9
TaxaNorm_Results-converge
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-ecdf
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-final_df
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-input_data
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-llk
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-model_pars
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-normdata
 (TaxaNorm_Results-class), 9
TaxaNorm_Results-rawdata
 (TaxaNorm_Results-class), 9
TaxaNorm_Run_Diagnose, 11
TaxaNormGenerics, 3
theta (TaxaNormGenerics), 3