Package ‘Ternary’

April 15, 2019

Version 1.1.0
Date 2019-04-15
Title An R Package for Creating Ternary Plots
Description Plots ternary diagrams using the standard graphics functions.
An alternative to 'ggtern', which uses the 'ggplot2' family of plotting functions.
URL https://ms609.github.io/Ternary
BugReports https://github.com/ms609/Ternary/issues
License GPL (>= 2)
Language en-GB
Depends R (>= 3.2.0)
Imports viridisLite
Suggests knitr, rmarkdown, testthat,
LazyData true
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 6.1.1
NeedsCompilation no
Author Martin R. Smith [aut, cre, cph]
Maintainer Martin R. Smith <martin.smith@durham.ac.uk>
Repository CRAN
Date/Publication 2019-04-15 17:02:41 UTC

R topics documented:

AddToTernary ... 2
cbPalette15 .. 3
cbPalette8 ... 4
ColourTernary .. 4
Description

Plot points onto a ternary diagram created with `TernaryPlot`.

Usage

```r
AddToTernary(PlottingFunction, coordinates, ...)
```

- `TernaryPoints(coordinates, ...)`
- `TernaryText(coordinates, ...)`
- `TernaryLines(coordinates, ...)`
- `TernaryPolygon(coordinates, ...)`
- `JoinTheDots(coordinates, ...)`

Arguments

- **PlottingFunction**
 Function to add data to a plot; perhaps one of `points`, `lines` or `text`.

- **coordinates**
 A list, matrix, data.frame or vector in which each element (or row) specifies the three coordinates of a point in ternary space.

- **...**
 Additional parameters to pass to `PlottingFunction`. If using `TernaryText`, this will likely include the parameter `labels`, to specify the text to plot.
cbPalette15

Functions

- TernaryPoints: Add points
- TernaryText: Add points
- TernaryLines: Add points
- TernaryPolygon: Add points
- JoinTheDots: Add points, joined by lines

Author(s)

Martin R. Smith

Examples

```r
{ 
  coords <- list(
    A = c(1, 0, 2),
    B = c(1, 1, 1),
    C = c(1.5, 1.5, 0),
    D = c(0.5, 1.5, 1)
  )
  TernaryPlot()
  AddToTernary(lines, coords, col='green', lwd=2)
  TernaryLines(coords, col='red', lty='dotted')
  TernaryText(coords, cex=0.7, col='red')
  TernaryPoints(coords, pch=1, cex=2, col='blue')
  AddToTernary(points, coords, pch=1, cex=3)
}
```

cbPalette15

Fifteen-colour palette compatible with colour blindness

Description

A fifteen-colour Brewer palette comprehensible by colour blind viewers.

Usage

cbPalette15

Format

An object of class character of length 15.

Details

Note that colour 4 is difficult to distinguish from colour 13 in individuals with tritanopia. Likewise, colour 7 is difficult to distinguish from colour 3. You may wish to use cbPalette13 <- cbPalette15[-c(4, 7)].
Source

http://mkweb.bcgsc.ca/biovis2012/color-blindness-palette.png

See Also

cbPalette8

cbPalette8

Eight-colour palette compatible with colour blindness

Description

An eight-colour palette recommended for use with colour blind audiences.

Usage

cbPalette8

Format

An object of class character of length 8.

Source

See Also

cbPalette15

ColourTernary

Colour a ternary plot according to the output of a function

Description

Colour a ternary plot according to the output of a function

Usage

ColourTernary(values, spectrum = viridisLite::viridis(256L, alpha = 0.6), resolution = sqrt(ncol(values)), direction = getOption("ternDirection"))
Arguments

- **values**: Numeric vector specifying the values associated with each point, generated using `TernaryPointValues`.
- **spectrum**: Vector of colours to use as a spectrum.
- **resolution**: The number of triangles whose base should lie on the longest axis of the triangle. Higher numbers will result in smaller subdivisions and smoother colour gradients, but at a computational cost.
- **direction** (optional): Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Author(s)

Martin R. Smith

OutsidePlot

Is a point in the plotting area?

Description

Is a point in the plotting area?

Usage

`OutsidePlot(x, y, tolerance = 0)`

Arguments

- **x**, **y**: Vectors of x and y coordinates of points.
- **tolerance**: Consider points this close to the edge of the plot to be inside. Set to negative values to count points that are just outside the plot as inside, and to positive values to count points that are just inside the margins as outside. Maximum positive value: 1/3.

Value

Logical vector specifying whether each pair of x and y coordinates corresponds to a point outside the plotted ternary diagram.

Author(s)

Martin R. Smith
ReflectedEquivalents

Reflected equivalents of points outside the ternary plot

Description

To avoid edge effects, it may be desirable to add the value of a point within a ternary plot with the value of its 'reflection' across the nearest axis or corner.

Usage

ReflectedEquivalents(x, y, direction = getOption("ternDirection"))

Arguments

x, y Vectors of x and y coordinates of points.
direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Value

A list of the x, y coordinates of the points produced if the given point is reflected across each of the edges or corners.

Examples

TernaryPlot(axis.labels=FALSE, point=4)

xy <- cbind(
 TernaryCoords(0.9, 0.08, 0.02),
 TernaryCoords(0.15, 0.8, 0.05),
 TernaryCoords(0.05, 0.1, 0.85)
)
x <- xy[1,]
y <- xy[2,]

points(x, y, col='red', pch=1:3)
ref <- ReflectedEquivalents(x, y)
points(ref[[1]][, 1], ref[[1]][, 2], col='blue', pch=1)
points(ref[[2]][, 1], ref[[2]][, 2], col='green', pch=2)
points(ref[[3]][, 1], ref[[3]][, 2], col='orange', pch=3)
TernaryContour

Add contours to a ternary plot

Description

Draws contour lines to depict the value of a function in ternary space.

Usage

TernaryContour(Func, resolution = 96L,
direction = getOption("ternDirection"), ...)

Arguments

- **Func**: Function taking the parameters a, b and c, which evaluates to a numeric whose value should be depicted.
- **resolution**: The number of triangles whose base should lie on the longest axis of the triangle. Higher numbers will result in smaller subdivisions and smoother colour gradients, but at a computational cost.
- **direction**: (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.
- ... Further parameters to pass to `contour`.

Author(s)

Martin R. Smith

TernaryCoords

Convert ternary coordinates to Cartesian space

Description

Converts coordinates of a point in ternary space, in the format \((a, b, c)\), to \(x\) and \(y\) coordinates of Cartesian space, which can be sent to standard functions in the graphics package.

Usage

TernaryCoords(abc, b_coord = NULL, c_coord = NULL,
direction = getOption("ternDirection"))
TernaryDensityContour

Arguments

abc A vector of length three giving the position on a ternary plot that points in the direction specified by direction (1 = up, 2 = right, 3 = down, 4 = left). c(100, 0, 0) will plot in the direction-most corner; c(0, 100, 0) will plot in the corner clockwise of direction; c(0, 0, 100) will plot in the corner anti-clockwise of direction. Alternatively, the a coordinate can be specified as the first parameter, in which case the b and c coordinates must be specified via b_coord and c_coord.

b_coord The b coordinate, if abc is a single number.

c_coord The c coordinate, if abc is a single number.

direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Value

A vector of length two that converts the coordinates given in abc into Cartesian (x, y) coordinates corresponding to the plot created by the last call of TernaryPlot.

Author(s)

Martin R. Smith

See Also

TernaryPlot

Description

Uses two-dimensional kernel density estimation to plot contours of point density.

Usage

TernaryDensityContour(coordinates, bandwidth, resolution = 25L, tolerance = -0.2/resolution, edgeCorrection = TRUE, direction = getOption("ternDirection"), ...)

Arguments

coordinates A list, matrix, data.frame or vector in which each element (or row) specifies the three coordinates of a point in ternary space.

bandwidth Vector of bandwidths for x and y directions. Defaults to normal reference bandwidth (see MASS::bandwidth.nrd). A scalar value will be taken to apply to both directions.
TernaryPlot

resolution The number of triangles whose base should lie on the longest axis of the triangle. Higher numbers will result in smaller subdivisions and smoother colour gradients, but at a computational cost.

tolerance Numeric specifying how close to the margins the contours should be plotted, as a fraction of the size of the triangle. Negative values will cause contour lines to extend beyond the margins of the plot.

directional Logical specifying whether to correct for edge effects (see details).

direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

... Further parameters to pass to 'contour.'

Author(s)

Adapted from MASS::kde2d by Martin R. Smith

Explanation

Create and style a blank ternary plot.

Usage

TernaryPlot(atip = NULL, btip = NULL, ctip = NULL, alab = NULL, blab = NULL, clab = NULL, lab.offset = 0.16, point = "up", xlim = NULL, ylim = NULL, lab.cex = 1, lab.font = 0, tip.cex = lab.cex, tip.font = 2, isometric = TRUE, atip.rotate = NULL, btip.rotate = NULL, ctip.rotate = NULL, atip.pos = NULL, btip.pos = NULL, ctip.pos = NULL, padding = 0.08, col = NA, grid.lines = 10, grid.col = "darkgrey", grid.lty = "solid", grid.lwd = par("lwd"), grid.minor.lines = 4, grid.minor.col = "lightgrey", grid.minor.lty = "solid", grid.minor.lwd = par("lwd"), axis.lty = "solid", axis.labels = TRUE, axis.cex = 0.8, axis.font = par("font"), axis.tick = TRUE, axis.lwd = 1, ticks.lwd = axis.lwd, ticks.length = 0.025, axis.col = "black", ticks.col = grid.col, axis.labels.col = axis.col, ...)

HorizontalGrid(grid.lines = 10, grid.col = "grey", grid.lty = "dotted", grid.lwd = par("lwd"), direction = getOption("ternDirection"))
Arguments

atip, btip, ctip
Character string specifying text to title corners, proceeding clockwise from the corner specified in point (default: top).

alab, blab, clab
Character string specifying text with which to label the corresponding sides of the triangle. Left or right-pointing arrows are produced by typing \U2190 or \U2192, or using expression('value' %->% 'value').

lab.offset
Numeric specifying distance between midpoint of axis label and the axis. Increase padding if labels are being clipped.

point
Character string specifying the orientation of the ternary plot: should the triangle point "up", "right", "down" or "left"? The integers 1 to 4 can be used in place of the character strings.

xlim, ylim
Numeric vectors of length 2 specifying the minimum and maximum x and y limits of the plotted area, to which padding will be added. The default is to display the complete height or width of the plot. Allows cropping to magnified region of the plot. (See vignette for diagram.) May be overwriten if isometric=TRUE; see documentation for isometric parameter.

lab.cex, tip.cex
Numeric specifying character expansion for axis titles.

lab.font, tip.font
Numeric specifying font (roman, bold, italic, bold-italic) for axis titles.

isometric
Logical specifying whether to enforce an equilateral shape for the ternary plot. If only one of xlim and ylim is set, the other will be calculated to maintain an equilateral plot. If both xlim and ylim are set, but have different ranges, then the limit with the smaller range will be scaled until its range matches that of the other limit.

atip.rotate, btip.rotate, ctip.rotate
Integer specifying number of degrees to rotate label of rightmost apex.

atip.pos, btip.pos, ctip.pos
Integer specifying positioning of labels, iff the corresponding xlab.rotate parameter is set.

padding
Numeric specifying size of internal margin of the plot; increase if axis labels are being clipped.

col
The colour for filling the plot; see polygon.

grid.lines
Integer specifying the number of grid lines to plot.

grid.col, grid.minor.col
The colour to draw the grid lines.

grid.lty, grid.minor.lty
Character or integer; line type of the grid lines.

grid.lwd, grid.minor.lwd
Non-negative numeric giving line width of the grid lines.

grid.minor.lines
Integer specifying the number of minor (unlabelled) grid lines to plot between each major pair.
axis.lty Line type for both the axis line and tick marks.
axis.labels This can either be a logical value specifying whether (numerical) annotations are to be made at the tickmarks, or a character or expression vector of labels to be placed at the tick points.
axis.cex Numeric specifying character expansion for axis labels.
axis.font Font for text. Defaults to par('font').
axis.tick Logical specifying whether to mark the axes with tick marks.
axis.lwd, ticks.lwd Line width for the axis line and tick marks. Zero or negative values will suppress the line or ticks.
ticks.length Numeric specifying distance that ticks should extend beyond the plot margin. Also affects position of axis labels, which are plotted at the end of each tick.
axis.col, ticks.col, axis.labels.col Colours for the axis line, tick marks and labels, respectively. axis.col = NULL means to use par('fg'), possibly specified inline, and ticks.col = NULL means to use whatever colour axis.col resolved to.
... Additional parameters to plot.
direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Details

The plot will be generated using the standard graphics plot functions, on which additional elements can be added using cartesian coordinates, perhaps using functions such as arrows, legend or text.

Functions

- HorizontalGrid: Add grid.lines horizontal lines to the ternary plot

Author(s)

Martin R. Smith

See Also

- AddToTernary: Add elements to a ternary plot
- TernaryCoords: Convert ternary coordinates to Cartesian (x and y) coordinates
- TernaryXRange, TernaryYRange: What are the x and y limits of the plotted region?

Examples

```R
TernaryPlot(atip="Top", btip="Bottom", ctip="Right", axis.col="red", col=rgb(0.8, 0.8, 0.8))
HorizontalGrid(grid.lines=2, grid.col='blue', grid.lty=1) # the second line corresponds to # the base of the triangle, and is not drawn
```
TernaryPointValues

Value of a function at regularly spaced points

Description

Evaluates a function at points on a triangular grid. Intended to facilitate coloured contour plots with ColourTernary.

Usage

TernaryPointValues(Func, resolution = 48L, direction = getOption("ternDirection"))

TernaryDensity(coordinates, resolution = 48L, direction = getOption("ternDirection"))

Arguments

Func Function taking the parameters a, b and c, which evaluates to a numeric whose value should be depicted.
resolution The number of triangles whose base should lie on the longest axis of the triangle. Higher numbers will result in smaller subdivisions and smoother colour gradients, but at a computational cost.
direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.
coordinates A list, matrix, data.frame or vector in which each element (or row) specifies the three coordinates of a point in ternary space.

Details

Density plotting functions are somewhat experimental; please report any issues.

Value

A matrix whose rows correspond to:

x, y: co-ordinates of the centres of smaller triangles
z: The value of Func(a, b, c), where a, b and c are the ternary coordinates of x and y.
down: 0 if the triangle concerned points upwards (or right), 1 otherwise

Functions

• TernaryDensity: Returns the density of points in each triangle

Author(s)

Martin R. Smith
TernaryTiles

TernaryTiles

Function to fill a ternary plot with coloured tiles. Useful in combination with TernaryPointValues and TernaryContour.

Usage

TernaryTiles(x, y, down, resolution, col, direction = getOption("ternDirection"))

Arguments

x, y Numeric vectors specifying x and y coordinates of centres of each triangle.
down Logical vector specifying TRUE if each triangle should point down (or right), FALSE otherwise.
resolution The number of triangles whose base should lie on the longest axis of the triangle. Higher numbers will result in smaller subdivisions and smoother colour gradients, but at a computational cost.
col Vector specifying the colour with which to fill each triangle.
direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Author(s)

Martin R. Smith

Examples

FunctionToContour <- function(a, b, c) {
 a - c + (4 * a * b) + (27 * a * b * c)
}

TernaryPlot()

values <- TernaryPointValues(FunctionToContour, resolution=24L)
ColourTernary(values)
TernaryContour(FunctionToContour, resolution=36L)
TernaryXRange | X and Y coordinates of ternary plotting area

Description
X and Y coordinates of ternary plotting area

Usage
TernaryXRange(direction = getOption("ternDirection"))
TernaryYRange(direction = getOption("ternDirection"))

Arguments
| direction | (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Value
Returns the minimum and maximum X or Y coordinate of the area in which a ternary plot is drawn, oriented in the specified direction. Because the plotting area is a square, the triangle of the ternary plot will not occupy the full range in one direction. Assumes that the defaults have not been overwritten by specifying xlim or ylim.

Functions
- TernaryYRange: Returns the minimum and maximum Y coordinate for a ternary plot in the specified direction.

Author(s)
Martin R. Smith

TriangleCentres | Coordinates of triangle mid-points

Description
Coordinates of triangle mid-points

Usage
TriangleCentres(resolution = 48L,
direction = getOption("ternDirection"))
Arguments

resolution The number of triangles whose base should lie on the longest axis of the triangle. Higher numbers will result in smaller subdivisions and smoother colour gradients, but at a computational cost.

direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Value

A matrix containing three named rows:

• x coordinates of triangle midpoints;
• y coordinates of triangle midpoints;
• triDown binary integer specifying whether given triangle points down.

Author(s)

Martin R. Smith

Description

Cartesian coordinates to ternary point

Usage

XYToTernary(x, y, direction = getOption("ternDirection"))

Arguments

x, y Numeric values giving the x and y coordinates of a point or points.

direction (optional) Integer specifying the direction that the current ternary plot should point: 1, up; 2, right; 3, down; 4, left.

Value

XYToTernary Returns the ternary point(s) corresponding to the specified x and y coordinates, where $a + b + c = 1$.

Author(s)

Martin R. Smith
Index

*Topic datasets
 cbPalette15, 3
 cbPalette8, 4

addToTernary, 2, 11

cbPalette15, 3, 4
cbPalette8, 4, 4
ColourTernary, 4, 12
contour, 7, 9

HorizontalGrid (TernaryPlot), 9

JoinTheDots (addToTernary), 2

legend, 11
lines, 2

OutsidePlot, 5

plot, 11
points, 2
polygon, 10

ReflectedEquivalents, 6

TernaryContour, 7, 13
TernaryCoords, 7, 11
TernaryDensity (TernaryPointValues), 12
TernaryDensityContour, 8
TernaryDownTiles (TernaryTiles), 13
TernaryLeftTiles (TernaryTiles), 13
TernaryLines (addToTernary), 2
TernaryPlot, 2, 8, 9
TernaryPoints (addToTernary), 2
TernaryPointValues, 5, 12, 13
TernaryPolygon (addToTernary), 2
TernaryRightTiles (TernaryTiles), 13
TernaryText (addToTernary), 2
TernaryTiles, 13
TernaryUpTiles (TernaryTiles), 13

TernaryXRange, 11, 14
TernaryYRange, 11
TernaryYRange (TernaryXRange), 14
text, 2, 11
TriangleCentres, 14

XYToTernary, 15