Package ‘Tmisc’

August 23, 2023

Title Turner Miscellaneous
Version 1.0.1
Maintainer Stephen Turner <vustephen@gmail.com>
Description Miscellaneous utility functions for data manipulation, data tidying, and working with gene expression data.
URL https://github.com/stephenturner/Tmisc,
 https://stephenturner.github.io/Tmisc/
Depends R (>= 3.1.2)
Imports dplyr, tibble, utils, rstudioapi, methods, magrittr, stats
License GPL-3
LazyData true
RoxygenNote 7.2.3
Suggests ggplot2, reshape2
NeedsCompilation no
Author Stephen Turner [aut, cre] (<https://orcid.org/0000-0001-9140-9028>)
Repository CRAN
Date/Publication 2023-08-23 00:10:12 UTC

R topics documented:

 addins ... 2
 are_all_equal ... 2
 corner .. 3
 counts2fpkm ... 4
 dokuwiki ... 4
 ellipses ... 5
 fisherp .. 6
 gghues ... 6
 gg_na ... 7
 gt2refalt ... 7
Description

Call these function as an addin to insert desired text at the cursor position. After installing Tmisc, hit the Addins menu, and optionally add a keyboard shortcut, e.g., Command+Shift+I, Alt+-, etc.

are_all_equal

Are all equal?

Description

Are all the elements of a numeric vector (approximately) equal?

Usage

are_all_equal(x, na.rm = FALSE)

Arguments

x A numeric vector.
na.rm Remove missing values (FALSE by default; NAs in x will return NA).
Value

Logical, whether all elements of a numeric vector are equal.

Examples

are_all_equal(c(5,5,5))
are_all_equal(c(5,5,5,6))
are_all_equal(c(5,5,5,NA,6))
are_all_equal(c(5,5,5,NA,6), na.rm=TRUE)
5==5.000000001
identical(5, 5.000000001)
are_all_equal(c(5L, 5, 5.000000001))

corner Print the top left corner of a data frame

Description

Prints the first n rows and columns of a data frame or matrix.

Usage

corner(x, n = 5)

Arguments

x A data.frame.

n The number of rows/columns to print.

Value

The corner of the data frame

Examples

corner(mtcars)
corner(iris, n=4)
counts2fpkm

Fragments per kilobase per million

Description

Takes a count matrix and a vector of gene lengths and returns an optionally log2-transformed FPKM matrix. Modified from edgeR.

Usage

```r
counts2fpkm(x, length, log = FALSE, prior.count = 0.25)
```

Arguments

- **x**: a matrix of counts
- **length**: a vector of length `nrow(x)` giving length in bases
- **log**: logical, if TRUE, then log2 values are returned.
- **prior.count**: average count to be added to each observation to avoid taking log of zero. Used only if log=TRUE.

Value

A matrix of FPKM values.

Examples

```r
## Not run:
library(readr)
library(dplyr)
countdata <- read_csv("http://files.figshare.com/2439061/GSE37704_featurecounts.csv")
counts <- countdata %>% select(countdata, starts_with("SRR")) %>% as.matrix
counts2fpkm(counts, countdata$length)
## End(Not run)
```

Create tables in dokuwiki format

dokuwiki

Create tables in dokuwiki format

Description

Prints the supplied data frame or matrix using Dokuwiki’s table syntax, optionally copying the data to the clipboard (Mac OS X only).
ellipses

Usage

```r
dokuwiki(x, headersep = "^", sep = "|", clip = TRUE, ...)
```

Arguments

- **x**: A data.frame.
- **headersep**: The separator used between entries in the header row.
- **sep**: The separator used between entries in all other rows.
- **clip**: Whether or not to write the returned table to the clipboard (currently only supported on Mac OS X).
- **...**: Further arguments passed to `write.table`.

Examples

```r
dokuwiki(head(iris), clip=FALSE)
dokuwiki(head(mtcars), clip=FALSE, row.names=TRUE)
```

ellipses

Truncate a data frame with ellipses.

Description

Prints the specified number of rows of a data frame, followed by a row of ellipses. Useful for piping to `knitr::kable()` for printing a truncated table in a markdown document.

Usage

```r
ellipses(df, n = 5L)
```

Arguments

- **df**: A data.frame.
- **n**: The number of rows to show before an ellipses row.

Value

A data frame truncated by a row of ellipses.

Examples

```r
## Not run:
ellipses(mtcars, 5)
```

End(Not run)
fisherp

Fisher’s method to combine p-values.

Description

Uses Fisher’s method to combine p-values from different tests.

Usage

`fisherp(x)`

Arguments

- `x` A vector of p-values between 0 and 1.

Value

A combined p-value.

Examples

`fisherp(c(.042, .02, .001, 0.01, .89))`

gghues

Emulate ggplot2 default hues

Description

This will emulate ggplot2’s hues, which are equally spaced hues around the color wheel, starting from 15.

Usage

`gghues(n, start = 15)`

Arguments

- `n` The Numeric; number of hues to generate.
- `start` Numeric; the place on the color wheel to start. ggplot2 default is 15.

Value

A vector of hues
Examples

```r
n <- 10
ghues(3)
barplot(rep(1,n), col=ghues(n), names=ghues(n))
barplot(rep(1,n), col=ghues(n, start=15+180), names=ghues(n, start=15+180))
```

gg_na

Plot missing data

Description

Plots missing data as holes on a black canvas.

Usage

```r
gg_na(df)
```

Arguments

- `df` A data.frame.

Examples

```r
# What a mess.
# Feature 10 is missing a lot. Observations 25 and 35 are completely missing.
# Most of features 40-45 are missing, except for the first few observations.
set.seed(2016-07-12)
x <- matrix(1, nrow=50, ncol=50)
x[sample(prod(dim(x)), 100)] <- NA
x <- data.frame(x)
x$X10[sample(length(x$X10), 25)] <- NA
x[c(25, 35), ] <- NA
x[1:40, 40:45] <- NA
gg_na(x)
```

gt2refalt

Two-letter genotype from VCF GT

Description

Get a two-letter genotype from a VCF GT field. Current implementation is quick and dirty, and only accepts 0/0, 0/1, or 1/1. Any other input to gt will return a missing value.
Usage

gt2refalt(gt, ref, alt)

Arguments

gt The genotype field (must be 0/0, 0/1, or 1/1).
ref The reference allele.
alt The alternate allele.

Value

Returnvalue

Examples

gt2refalt(gt="0/0", ref="R", alt="A")
gt2refalt(gt="0/1", ref="R", alt="A")
gt2refalt(gt="1/1", ref="R", alt="A")
gt2refalt(gt="0/2", ref="R", alt="A")
gt2refalt(gt="./.", ref="R", alt="A")

jsd

Jensen-Shannon divergence

Description

Calculates a distance matrix from a matrix of probability distributions using Jensen-Shannon divergence. Adapted from https://enterotype.embl.de/enterotypes.html#dm.

Usage

jsd(M, pseudocount = 1e-06, normalizeCounts = FALSE)

Arguments

M a probability distribution matrix, e.g., normalized transcript compatibility counts.
pseudocount a small number to avoid division by zero errors.
normalizeCounts logical, whether to attempt to normalize by dividing by the column sums. Set to TRUE if this is, e.g., a count matrix.

Value

A Jensen-Shannon divergence-based distance matrix.
Examples

```r
set.seed(42)
M <- matrix(rpois(100, lambda=100), ncol=5)
colnames(M) <- paste0("sample", 1:5)
rownames(M) <- paste0("gene", 1:20)
Mnorm <- apply(M, 2, function(x) x/sum(x))
Mjsd <- jsd(Mnorm)
# equivalently
Mjsd <- jsd(M, normalizeCounts=TRUE)
Mjsd
plot(hclust(Mjsd))
```

lmp
Linear model p-value

Description

Extract F-test p-value from a linear model object. Can also use `broom::glance(fit)`.

Usage

```r
lmp(modelobject)
```

Arguments

- **modelobject**: A model object of class `lm`.

Value

The p-value on the f-test of a linear model object testing the null hypothesis that $R^2=0$.

Examples

```
# simulate some (e.g. SNP genotype) data
set.seed(42)
n=20
d=data.frame(x1=rbinom(n,2,.5), x2=rbinom(n,2,.5))
d=transform(d, y=x1+x2+rnorm(n))
#fit the linear model
fit=lm(y ~ x1 + x2, data=d)
#shows that the F-test is 0.006641
summary(fit)
#can't access that p-value using this
names(summary(fit))
# this doesn't work either
names(fit)
lmp(fit)
```
lowestnonzero

Lowest nonzero values

Description

Sometimes want to plot p-values (e.g., volcano plot or MA-plot), but if a statistical test returns a zero p-value, this causes problems with visualization on the log scale. This function returns a vector where the zero values are equal to the smallest nonzero value in the vector.

Usage

```
lowestnonzero(x)
```

Arguments

x
A vector of p-values between 0 and 1.

Value

A vector of p-values where zero values are exchanged for the lowest non-zero p-value in the original vector.

Examples

```
lowestnonzero(c(.042, .02, 0, .001, 0, .89))
```

lsa

Improved list of objects

Description

Improved list of objects. Sorts by size by default. Adapted from https://stackoverflow.com/q/1358003/654296.

Usage

```
lsa(
   pos = 1,
   pattern,
   order.by = "Size",
   decreasing = TRUE,
   head = TRUE,
   n = 10
)
```
Arguments

- **pos** numeric. Position in the stack.
- **pattern** Regex to filter the objects by.
- **order.by** character. Either 'Type', 'Size', 'PrettySize', 'Rows', or 'Columns'. This will dictate how the output is ordered.
- **decreasing** logical. Should the output be displayed in decreasing order?
- **head** logical. Use head on the output?
- **n** numeric. Number of objects to display is head is TRUE.

Value

A data.frame with type, size in bytes, human-readable size, rows, and columns of every object in the environment.

Author(s)

Dirk Eddelbuettel, Tony Breyal

Examples

```r
## Not run:
a <- rnorm(100000)
b <- matrix(1, 1000, 100)
lsa()
## End(Not run)
```

Description

Turns a distance matrix into a data frame of pairwise distances.

Usage

```r
mat2df(M)
```

Arguments

- **M** a square pairwise matrix (e.g., of distances).

Value

Data frame with pairwise distances.
Mode

Examples

```r
set.seed(42)
M <- matrix(rnorm(25), nrow=5)
M
mat2df(M)
M <- matrix(rnorm(25), nrow=5, dimnames=list(letters[1:5], letters[1:5]))
M
mat2df(M)
```

Mode | Mode.

Description

Returns the mode of a vector. First in a tie wins (see examples).

Usage

```r
Mode(x, na.rm = FALSE)
```

Arguments

- **x**: A vector.
- **na.rm**: Remove missing values before calculating the mode (FALSE by default). NAs are counted just like any other element. That is, an NA in the vector won't necessarily result in a return NA. See the first example.

Value

A combined p-value.

Examples

```r
Mode(c(1,2,2,3,3,3))
Mode(c(1,2,2,3,3,3, NA))
Mode(c(1,2,2,3,3,3, NA, NA, NA))
Mode(c(1,2,2,3,3,3, NA, NA, NA, NA), na.rm=TRUE)
Mode(c("A", "Z", "Z", "B", "B"))
```
Get names and class of all columns in a data frame

Description
Get names and class of all columns in a data frame in a friendly format.

Usage
```r
nn(df)
```

Arguments
- `df` A data.frame.

Value
A data.frame with index and class.

Author(s)
Stephen Turner

Examples
```r
nn(iris)
```

Open the current working directory on mac

Description
Opens the current working directory on mac.

Usage
```r
o()
```

Examples
```r
## Not run:
o()
## End(Not run)
```
peek

Peek at the top of a text file

Description

This returns a character vector which shows the top n lines of a file.

Usage

```r
peek(x, n = 5)
```

Arguments

- `x`: a filename
- `n`: the number of lines to return

Examples

```r
## Not run:
filename <- tempfile()
x <- matrix(round(rnorm(10^4),2),1000,10)
colnames(x) <- letters[1:10]
write.csv(x,file=filename,row.names=FALSE)
peek(filename)
## End(Not run)
```

quartet

Anscombe’s Quartet data (tidy)

Description

Tidy version of built-in Anscombe’s Quartet data. Four datasets that have nearly identical linear regression properties, yet appear very different when graphed.

Usage

```r
quartet
```

Format

Data frame with columns.
read.cb

Read from the clipboard

Description

Read tabular data from the clipboard.

Usage

```r
read.cb(header = TRUE, ...)```

**Arguments**

- `header` A logical value indicating whether the file contains the names of the variables as its first line. Overrides the default header=FALSE option in `read.table()`.
- `...` Further arguments to be passed to `read.table`.

**Value**

A `data.frame`

**Examples**

```r
Not run:
To read CSV data with a header from the clipboard:
read.cb(header=TRUE, sep='\',')

End(Not run)
```

---

**saveit**

*Rename objects while saving.*

**Description**

Allows you to rename objects as you save them. See [https://stackoverflow.com/a/21248218/654296](https://stackoverflow.com/a/21248218/654296).

**Usage**

```r
saveit(..., file = stop("'file' must be specified"))
```

```r
saveit(..., file = stop("'file' must be specified"))
```
sicb

Write sessionInfo to the clipboard

Description

Writes output of sessionInfo() to the clipboard. Only works on Mac.

Usage

sicb()

Examples

## Not run:
# Write sessionInfo() to the clipboard on mac.
sicb()

## End(Not run)
**strSort**

*Sort characters in a string*

**Description**

Alphabetically sorts characters in a string. Vectorized over x.

**Usage**

`strSort(x)`

**Arguments**

- **x**
  
  A string to sort.

**Value**

A sorted string.

**Examples**

```
strSort("cba")
strSort("zyxcBbB105.a")
strSort(c("cba", "zyx"))
strSort(c("cba", NA))
```

---

**Tcols**

*A palette of 17 diverging colors*

**Description**

17 diverging colors created by combining the Set1 and Dark2 palettes from RColorBrewer.

**Usage**

`Tcols`

**Format**

Vector of 17 diverging colors.

**Source**

R Color brewer: `c(brewer.pal(9, "Set1"), brewer.pal(8, "Dark2"))`. 
### Thist

**Histograms with overlays**

Plot a histogram with either a normal distribution or density curve overlay.

**Usage**

```r
Thist(x, overlay = "normal", col = "gray80", ...)
```

**Arguments**

- `x`: A numeric vector.
- `overlay`: Either "normal" (default) or "density" indicating whether a normal distribution or density curve should be plotted on top of the histogram.
- `col`: Color of the histogram bars.
- `...`: Other arguments to be passed to `hist()`.

**Examples**

```r
set.seed(42)
x <- rnorm(1000, mean=5, sd=2)
Thist(x)
Thist(x, overlay="density")
Thist(x^2)
Thist(x^2, overlay="density", breaks=50, col="lightblue2")
```

### Tpairs

**Better scatterplot matrices.**

A matrix of scatter plots with rugged histograms, correlations, and significance stars. Much of the functionality borrowed from `PerformanceAnalytics::chart.Correlation()`.

**Usage**

```r
Tpairs(x, histogram = TRUE, gap = 0, ...)
```
%like%

Arguments

x       A numeric matrix or data.frame.
histogram Overlay a histogram on the diagonals?
gap     distance between subplots, in margin lines.
...     arguments to be passed to or from other methods.

Examples

Tpairs(iris[-5])
Tpairs(iris[-5], pch=21, bg=Tcols[factor(iris$Species)])
Tpairs(iris[-5], pch=21, bg=gghues(3)[factor(iris$Species)], gap=1)

%like%   x like y

Description

Returns a logical vector of elements of x matching the regex y.

Usage

x %like% pattern

Arguments

x       a vector (numeric, character, factor)
pattern a vector (numeric, character, factor), matching the mode of x

Value

A logical vector with length equal to x of things in x that are like y.

See Also

%like%, %nlike%, %nin%,

Examples

(Name <- c("Mary","George","Martha"))
Name %in% c("Mary")
Name %like% "^Mar"
Name %nin% c("George")
Name %nlike% "^Mar"
%nin%  

\textit{x not in y}

\textbf{Description}

Returns a logical vector of elements of \textit{x} that are not in \textit{y}.

\textbf{Usage}

\texttt{x %nin% table}

\textbf{Arguments}

\begin{itemize}
  \item \texttt{x} \hspace{1cm} a vector (numeric, character, factor)
  \item \texttt{table} \hspace{1cm} a vector (numeric, character, factor), matching the mode of \texttt{x}
\end{itemize}

\textbf{Value}

A logical vector with length equal to \texttt{x} of things in \texttt{x} that aren't in \texttt{y}.

\textbf{See Also}

\texttt{%like%}, \texttt{%nlike%}, \texttt{%nin%}.

\textbf{Examples}

\begin{verbatim}
1:10 %nin% seq(from=2, to=10, by=2)
c("a", "b", "c") %nin% c("a", "b")
letters[letters %nin% unlist(strsplit("pack my box with five dozen liquor jugs", ""))]
\end{verbatim}

%nlike%

\textit{x not like y}

\textbf{Description}

Returns a logical vector of elements of \textit{x} not matching the regex \textit{y}.

\textbf{Usage}

\texttt{x %nlike% pattern}

\textbf{Arguments}

\begin{itemize}
  \item \texttt{x} \hspace{1cm} a vector (numeric, character, factor)
  \item \texttt{pattern} \hspace{1cm} a vector (numeric, character, factor), matching the mode of \texttt{x}
\end{itemize}
Value
A logical vector with length equal to \( x \) of things in \( x \) that aren’t like \( y \).

See Also
\%\%like\%, \%\%nlike\%, \%\%nin\%,

Examples

```r
(Name <- c("Mary", "George", "Martha"))
Name %in% c("Mary")
Name %like% "^Mar"
Name %nin% c("George")
Name %nlike% "^Mar"
```
## Index

* **NA**
  - lsa, 10
  - nn, 13

* **datasets**
  - quartet, 14
  - Tcols, 17
  - \%like\%, 19, 20, 21
  - \%nin\%, 19, 20, 21
  - \%nlike\%, 19, 20, 21

addins, 2
are_all_equal, 2

corner, 3
counts2fpkm, 4
dokuwiki, 4
dfishers, 5

fisherp, 6

gg_na, 7
gghues, 6
gt2refalt, 7

insertEqual (addins), 2
insertInAddin (addins), 2

jsd, 8

lmp, 9
lowestnonzero, 10
lsa, 10

mat2df, 11
Mode, 12

nn, 13

o, 13