Package ‘TruncatedNormal’

May 17, 2020

Type Package

Title Truncated Multivariate Normal and Student Distributions

Version 2.2

Date 2020-05-16

License GPL-3

BugReports https://github.com/lbelzile/TruncatedNormal/issues

Depends R (>= 2.10)

Imports nleqslv, randtoolbox, alabama, Rcpp (>= 0.12.16)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.0

VignetteBuilder knitr

Encoding UTF-8

Suggests knitr, rmarkdown, mvtnorm, testthat

NeedsCompilation yes

Author Zdravko Botev [aut] (<https://orcid.org/0000-0001-9054-3452>), Leo Belzile [aut, cre] (<https://orcid.org/0000-0002-9135-014X>)

Maintainer Leo Belzile <belzilel@gmail.com>

Repository CRAN

Date/Publication 2020-05-17 05:00:15 UTC

R topics documented:

TruncatedNormal-package .. 2
cholperm ... 3
lupus ... 4
mroz ... 4
TruncatedNormal-package

Truncated Normal Distribution Toolbox

Description

The routines include:

- generator of **independent and identically distributed** random vectors from the truncated univariate and multivariate distributions;
- (Quasi-) Monte Carlo estimator and a **deterministic upper bound** of the cumulative distribution function of the multivariate normal and Student distributions;
- algorithm for the accurate computation of the quantile function of the normal distribution in the extremes of its tails.

Author(s)

Leo Belzile and Z. I. Botev, email: <botev@unsw.edu.au> and web page: https://web.maths.unsw.edu.au/~zdravkobotev/

References

cholperm

Cholesky decomposition for Gaussian distribution function with permutation

Description

This function computes the Cholesky decomposition of a covariance matrix \(\Sigma \) and returns a list containing the permuted bounds for integration. The prioritization of the variables follows either the rule proposed in Gibson, Glasbey and Elston (1994), reorder variables to have outermost variables with smallest expected values. The alternative is the scheme proposed in Genz and Bretz (2009) that minimizes the variance of the truncated Normal variates.

Usage

```r
cholperm(Sigma, l, u, method = c("GGE", "GB"))
```

Arguments

- `Sigma`: d by d covariance matrix
- `l`: d vector of lower bounds
- `u`: d vector of upper bounds
- `method`: string indicating which method to use. Default to "GGE"

Details

The list contains an integer vector `perm` with the indices of the permutation, which is such that \(\Sigma(\text{perm}, \text{perm}) = L \times L \). The permutation scheme is described in Genz and Bretz (2009) in Section 4.1.3, p.37.

Value

A list with components

- `L`: Cholesky root
- `l`: permuted vector of lower bounds
- `u`: permuted vector of upper bounds
- `perm`: vector of integers with ordering of permutation

References

lupus
Latent membranous Lupus Nephritis dataset

Description

The data represents two clinical measurements (covariates), which are used to predict the occurrence of latent membranous lupus nephritis. The dataset consists of measurements on 55 patients of which 18 have been diagnosed with latent membranous lupus.

Format

a data frame with columns "response", "const", "x1" and "x2"

Source

The data were transcribed from Table 1, page 22, of Dyk and Meng (2001).

References

See Also

The dataset is used in the examples of `mvrandn`

mroz
Women wage dataset from Mroz (1987)

Description

The data are from the Panel Study of Income Dynamics (PSID) longitudinal study, 1976 wave. They give the number of work hours of married women along with socio-economic variables and the number of children.

Format

a data frame containing the following variables:

- `whrs`: hours of work
- `kds1lt6`: number of children aged 5 and below years old in household
- `kdsge6`: number of children between age of 6 and 18 in household
- `age`: age (in years)
- `educ`: number of years in school
- `hearn`: hourly earnings
- `exp`: years of previous labor market experience
pmvnorm

Source

References

See Also

Mroz

pmvnorm

Distribution function of the multivariate normal distribution for arbitrary limits

Description

This function computes the distribution function of a multivariate normal distribution vector for an arbitrary rectangular region \([lb, ub]\). \(pmvnorm\) computes an estimate and the value is returned along with a relative error and a deterministic upper bound of the distribution function of the multivariate normal distribution. Infinite values for vectors \(u\) and \(l\) are accepted. The Monte Carlo method uses sample size \(n\): the larger the sample size, the smaller the relative error of the estimator.

Usage

```r
pmvnorm(
mu,    # vector of location parameters
sigma,  # covariance matrix
lb = -Inf,  # vector of lower truncation limits
ub = Inf,   # vector of upper truncation limits
B = 10000,  # number of replications for the (quasi)-Monte Carlo scheme
type = c("mc", "qmc"),
log = FALSE   # logical; if TRUE, probabilities and density are given on the log scale.
)
```

Arguments

- **mu**: vector of location parameters
- **sigma**: covariance matrix
- **lb**: vector of lower truncation limits
- **ub**: vector of upper truncation limits
- **B**: number of replications for the (quasi)-Monte Carlo scheme
- **type**: string, either of mc or qmc for Monte Carlo and quasi Monte Carlo, respectively
- **log**: logical; if TRUE, probabilities and density are given on the log scale.
Author(s)

Zdravko I. Botev, Leo Belzile (wrappers)

References

See Also

pmvnorm

Examples

```r
#From mvtnorm
mean <- rep(0, 5)
lower <- rep(-1, 5)
upper <- rep(3, 5)
corr <- matrix(0.5, 5, 5) + diag(0.5, 5)
prob <- pmvnorm(lb = lower, ub = upper, mu = mean, sigma = corr)
stopifnot(pmvnorm(lb = -Inf, ub = 3, mu = 0, sigma = 1) == pnorm(3))
```

pmvt

Distribution function of the multivariate Student distribution for arbitrary limits

Description

This function computes the distribution function of a multivariate normal distribution vector for an arbitrary rectangular region \([lb, ub]\). pmvt computes an estimate and the value is returned along with a relative error and a deterministic upper bound of the distribution function of the multivariate normal distribution. Infinite values for vectors \(u\) and \(l\) are accepted. The Monte Carlo method uses sample size \(n\): the larger the sample size, the smaller the relative error of the estimator.

Usage

```r
pmvt(
  mu,
  sigma,
  df,
  lb = -Inf,
  ub = Inf,
  type = c("mc", "qmc"),
  log = FALSE,
  B = 10000
)
```
Arguments

- **mu**: vector of location parameters
- **sigma**: scale matrix
- **df**: degrees of freedom
- **lb**: vector of lower truncation limits
- **ub**: vector of upper truncation limits
- **type**: string, either of mc or qmc for Monte Carlo and quasi Monte Carlo, respectively
- **log**: logical; if TRUE, probabilities and density are given on the log scale.
- **B**: number of replications for the (quasi)-Monte Carlo scheme

Author(s)
Matlab code by Zdravko I. Botev, R port by Leo Belzile

References

Examples

d <- 15; nu <- 30;
l <- rep(2, d); u <- rep(Inf, d);
sigma <- 0.5 * matrix(1, d, d) + 0.5 * diag(1, d);
est <- pmvt(lb = l, ub = u, sigma = sigma, df = nu)

mvtnorm::pmvt(lower = l, upper = u, df = nu, sigma = sigma)
Not run:
d <- 5
sigma <- solve(0.5 * diag(d) + matrix(0.5, d, d))
mvtnorm::pmvt(lower = rep(-1,d), upper = rep(Inf, d), df = 10, sigma = sigma)[1]

pmvt(lb = rep(-1, d), ub = rep(Inf, d), sigma = sigma, df = 10)
End(Not run)

Description
Density, distribution function and random generation for the multivariate truncated normal distribution with mean vector mu, covariance matrix sigma, lower truncation limit lb and upper truncation limit ub. The truncation limits can include infinite values. The Monte Carlo (type = "mc") uses a sample of size B, while the quasi Monte Carlo (type = "qmc") uses a pointset of size ceiling(n/12) and estimates the relative error using 12 independent randomized QMC estimators.
tmvnorm

Arguments

- n: number of observations
- x, q: vector of quantiles
- B: number of replications for the (quasi)-Monte Carlo scheme
- log: logical; if TRUE, probabilities and density are given on the log scale.
- mu: vector of location parameters
- sigma: covariance matrix
- lb: vector of lower truncation limits
- ub: vector of upper truncation limits
- type: string, either of mc or qmc for Monte Carlo and quasi Monte Carlo, respectively

Value

dtmvnorm gives the density, ptmvnorm and pmvnorm give the distribution function of respectively the truncated and multivariate Gaussian distribution and rtmvnorm generate random deviates.

Usage

dtmvnorm(x, mu, sigma, lb, ub, type = c("mc", "qmc"), log = FALSE, B = 1e4)
ptmvnorm(q, mu, sigma, lb, ub, type = c("mc", "qmc"), log = FALSE, B = 1e4)
rtmvnorm(n, mu, sigma, lb, ub)

Author(s)

Zdravko I. Botev, Leo Belzile (wrappers)

References

Examples

d <- 4; lb <- rep(0, d)
mu <- runif(d)
sigma <- matrix(0.5, d, d) + diag(0.5, d)
samp <- rtmvnorm(n = 10, mu = mu, sigma = sigma, lb = lb)
loglik <- dtmvnorm(samp, mu = mu, sigma = sigma, lb = lb, log = TRUE)
cdf <- ptmvnorm(samp, mu = mu, sigma = sigma, lb = lb, log = TRUE, type = "q")

Exact Bayesian Posterior Simulation Example
Vignette, example 5
Not run:
data("lupus"); # load lupus data
Y <- lupus[,1]; # response data
X <- as.matrix(lupus[, -1]); # construct design matrix
n <- nrow(X)
d <- ncol(X)
tmvt

Multivariate truncated Student distribution

Description

Density, distribution function and random generation for the multivariate truncated Student distribution with location vector mu, scale matrix sigma, lower truncation limit lb, upper truncation limit ub and degrees of freedom df.

Arguments

- n: number of observations
- x, q: vector or matrix of quantiles
- B: number of replications for the (quasi)-Monte Carlo scheme
- log: logical; if TRUE, probabilities and density are given on the log scale.
- mu: vector of location parameters
- sigma: scale matrix
- df: degrees of freedom
- lb: vector of lower truncation limits
- ub: vector of upper truncation limits
- type: string, either of mc or qmc for Monte Carlo and quasi Monte Carlo, respectively

Details

The truncation limits can include infinite values. The Monte Carlo (type = "mc") uses a sample of size B, while the quasi Monte Carlo (type = "qmc") uses a pointset of size ceiling(n/12) and estimates the relative error using 12 independent randomized QMC estimators.

pmvt computes an estimate and a deterministic upper bound of the distribution function of the multivariate normal distribution. Infinite values for vectors u and l are accepted. The Monte Carlo method uses sample size n: the larger n, the smaller the relative error of the estimator.
tnorm

Value

dtmvt gives the density, ptmvt gives the distribution function, rtmvt generate random deviates.

Usage

dtmvt(x, mu, sigma, df, lb, ub, type = c("mc", "qmc"), log = FALSE, B = 1e4)
ptmvt(q, mu, sigma, df, lb, ub, type = c("mc", "qmc"), log = FALSE, B = 1e4)
rtmvt(n, mu, sigma, df, lb, ub)

Author(s)

Leo Belzile, R port from Matlab code by Z. I. Botev

References

Examples

d <- 4; lb <- rep(0, d)
mu <- runif(d)
sigma <- matrix(0.5, d, d) + diag(0.5, d)
samp <- rtmvt(n = 10, mu = mu, sigma = sigma, df = 2, lb = lb)
loglik <- dtmvt(samp, mu = mu, sigma = sigma, df = 2, lb = lb, log = TRUE)
cdf <- ptmvt(samp, mu = mu, sigma = sigma, df = 2, lb = lb, log = TRUE, type = "q")

Description

The function provides efficient state-of-the-art random number generation of a vector of truncated univariate distribution of the same length as the lower bound vector. The function is vectorized and the vector of means mu and of standard deviations sd are recycled.

If mu or sd are not specified they assume the default values of 0 and 1, respectively.

Arguments

n number of observations
p vector or matrix of probabilities
mu vector of means
sd vector of standard deviations
lb vector of lower truncation limits
ub vector of upper truncation limits
method string, either of fast or invtransfo
tregress

Value

vector or matrix of random variates (rtnorm) or of quantiles (ptnorm), depending on the input

Examples

rtnorm(n = 10, mu = 2, lb = 1:10, ub = 2:11, method = “fast”)
qtnorm(runif(10), mu = 2, lb = 1:10, ub = 2:11, sd = 1)

Description

Simulates \(n \) random vectors \(X \) exactly distributed from the \(d \)-dimensional Student distribution with \(\text{df} = \nu \) degrees of freedom, mean zero and scale matrix \(\sigma \), conditional on \(l < X < u \).

Usage

tregress(n, lb, ub, sigma, df)

Arguments

- \(n \): number of observations
- \(lb \): vector of lower truncation limits
- \(ub \): vector of upper truncation limits
- \(sigma \): scale matrix
- \(df \): degrees of freedom

Value

list with components

- \(R \): \(n \) vector of scale
- \(Z \): a \(d \) by \(n \) matrix

so that \(\sqrt{\nu} Z / R \) follows a truncated Student distribution

Author(s)

Matlab code by Zdravko Botev, R port by Leo Belzile

References

Examples

d <- 5
tregress(lb = rep(-2, d), ub = rep(2, d), df = 3, n = 10,
 sigma = diag(0.5, d) + matrix(1, d, d))
Index

cholperm, 3
lupus, 4
Mroz, 5
mroz, 4
mvrandn, 4
pmvnorm, 5, 6
pmvt, 6
tmvnorm, 7
tmv, 9
tnorm, 10
tregress, 11
TruncatedNormal
 (TruncatedNormal-package), 2
TruncatedNormal-package, 2