Package ‘TunePareto’

October 12, 2022

Type Package
Title Multi-Objective Parameter Tuning for Classifiers
Version 2.5.2
Author Christoph Müssel, Ludwig Lausser, Hans Kestler
Maintainer Hans Kestler <hans.kestler@uni-ulm.de>
Description Generic methods for parameter tuning of classification algorithms using multiple scoring functions (Muessel et al. (2012), <doi:10.18637/jss.v046.i05>).
Suggests snowfall, igraph, gsl, class, tree, e1071, randomForest, klaR
License GPL-2
LazyLoad yes
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-07-14 11:40:15 UTC

R topics documented:

TunePareto-package .. 2
allCombinations .. 3
as.interval ... 5
createObjective .. 5
generateCVRuns .. 8
mergeTuneParetoResults ... 9
plotDominationGraph ... 10
plotObjectivePairs ... 12
plotParetoFronts2D .. 13
precalculation ... 15
predefinedClassifiers ... 17
predefinedObjectiveFunctions 20
predict.TuneParetoModel 24
print.TuneParetoResult 25
rankByDesirability ... 25
The methods of this package allow to assess the performance of classifiers with respect to certain parameter values and multiple scoring functions, such as the cross-validation error or the sensitivity. It provides the `tunePareto` function which can be configured to run most common classification methods implemented in R. Several sampling strategies for parameters are supplied, including Latin Hypercube sampling, quasi-random sequences, and evolutionary algorithms.

Classifiers are wrapped in generic `TuneParetoClassifier` objects which can be created using `tuneParetoClassifier`. For state-of-the-art classifiers, the package includes the corresponding wrapper objects (see `tunePareto.knn`, `tunePareto.tree`, `tunePareto.randomForest`, `tunePareto.svm`, `tunePareto.NaiveBayes`).

The method tests combinations of the supplied classifier parameters according to the supplied scoring functions and calculates the Pareto front of optimal parameter configurations. The Pareto fronts can be visualized using `plotDominationGraph`, `plotParetoFronts2D` and `plotObjectivePairs`.

A number of predefined scoring functions are provided (see `predefinedObjectiveFunctions`), but the user is free to implement own scores (see `createObjective`).

Author(s)

Christoph Müssel, Ludwig Lausser, Hans Kestler

Maintainer: Hans Kestler <hans.kestler@uni-ulm.de>
allCombinations

References

Examples

optimize the 'cost' and 'kernel' parameters of an SVM according # to CV error and CV Specificity on the 'iris' data set # using several predefined values for the cost r <- tunePareto(data = iris[,-ncol(iris)], labels = iris[, ncol(iris)], classifier=tunePareto.svm(), cost=c(0.001,0.01,0.1,1,10), kernel=c("linear", "polynomial", "radial", "sigmoid"), objectiveFunctions=list(cvError(10, 10), cvSpecificity(10, 10, caseClass="setosa")))

print Pareto-optimal solutions print(r)

use a continuous interval for the 'cost' parameter # and optimize it using evolutionary algorithms and # parallel execution with snowfall library(snowfall) sfInit(parallel=TRUE, cpus=2, type="SOCK") r <- tunePareto(data = iris[, -ncol(iris)], labels = iris[, ncol(iris)], classifier = tunePareto.svm(), cost = as.interval(0.001,10), kernel = c("linear", "polynomial", "radial", "sigmoid"), sampleType="evolution", numCombinations=20, numIterations=20, objectiveFunctions = list(cvError(10, 10), cvSensitivity(10, 10, caseClass="setosa"), cvSpecificity(10, 10, caseClass="setosa")), useSnowfall=TRUE) sfStop()

print Pareto-optimal solutions print(r)

plot the Pareto fronts plotDominationGraph(r, legend.x="topleft")
allCombinations

Description

Builds a list of all possible combinations of parameter values from supplied ranges of parameter values. That is, each of the specified values is combined with all specified values for other parameters. The resulting lists can be used in the classifierParameterCombinations and predictorParameterCombinations parameters of tunePareto.

Usage

allCombinations(parameterRanges)

Arguments

parameterRanges

A list of lists of parameter ranges. That is, each element of the list specifies the values of a single parameter to be tested and is named according to this parameter. It is also possible to set parameters to fixed values by specifying only one value.

Value

Returns a list of lists, where each of the inner lists represents one parameter combination and consists of named elements for the parameters.

See Also

tunePareto

Examples

library(class)
Combine only valid combinations of 'k' and 'l'
for the k-NN classifier:
comb <- c(allCombinations(list(k=1,l=0)),
 allCombinations(list(k=3,l=0:2)),
 allCombinations(list(k=5,l=0:4)),
 allCombinations(list(k=7,l=0:6)))
print(comb)

print(tunePareto(data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
 classifier = tunePareto.knn(),
 parameterCombinations = comb,
 objectiveFunctions = list(cvError(10, 10),
 reclassError())))
as.interval

Specify a continuous interval

Description

Specifies a continuous interval by supplying a lower and upper bound. Such intervals can be supplied as parameter value ranges in `tunePareto`.

Usage

```r
as.interval(lower, upper)
```

Arguments

- `lower` The lower bound of the interval
- `upper` The upper bound of the interval

Value

A list of class `Interval` specifying the lower and upper bound.

See Also

tunePareto

createObjective

Create a new objective function

Description

Creates a new `TuneParetoObjective` object. An objective consists of two parts: The precalculation function, which applies the classifier to the data, and the objective itself, which is calculated from the predicted class labels.

Usage

```r
createObjective(precalculationFunction, 
                precalculationParams = NULL, 
                objectiveFunction, 
                objectiveFunctionParams = NULL, 
                direction = c("minimize", "maximize"), 
                name)
```
Arguments

precalculationFunction
 The name of the precalculation function that applies the classifiers to the data.
 Two predefined precalculation functions are reclassification and crossValidation.

precalculationParams
 A named list of parameters for the precalculation function.

objectiveFunction
 The name of the objective function that calculates the objective from the precalculated class labels.

objectiveFunctionParams
 A named list of further parameters for the objective function.

direction
 Specifies whether the objective is minimized or maximized.

name
 A readable name of the objective.

Details

The objective calculation is divided into a precalculation step and the objective calculation itself.
The main reason for this is the possibility to aggregate precalculation across objectives. For example, if both the specificity and the sensitivity of a cross-validation (with the same parameters) are required, the cross-validation is run only once to save computational time. Afterwards, the results are passed to both objective functions.

A precalculation function has the following parameters:

data
 The data set to be used for the precalculation. This is usually a matrix or data frame with the samples in the rows and the features in the columns.

labels
 A vector of class labels for the samples in data.

classifier
 A TuneParetoClassifier wrapper object containing the classifier to tune. A number of state-of-the-art classifiers are included in TunePareto (see predefinedClassifiers). Custom classifiers can be employed using tuneParetoClassifier.

classifierParams
 A named list of parameter assignments for the classifier.

predictorParams
 If the classifier has separate training and prediction functions, a named list of parameter assignments for the predictor.

Additionally, the function can have further parameters which are supplied in precalculationParams.

To train a classifier and obtain predictions, the precalculation function can call the generic trainTuneParetoClassifier and predict.TuneParetoModel functions.

The precalculation function usually returns the predicted labels, the true labels and the model, but the only requirement of the return value is that it can be processed by the corresponding objective function. Predefined precalculation functions are reclassification and crossValidation.

The objective function has a single obligatory parameter named result which supplies the result of the precalculation. Furthermore, optional parameters can be specified. Their values are taken from objectiveFunctionParams. The function either returns a single number specifying the objective value, or a list with a score component containing the objective value and a additionalData component that contains additional information to be stored in the additionalData component of the TuneParetoResult object (see tunePareto).
createObjective

Value

Returns an object of class TuneParetoObjective with the following components:

precalculationFunction
The supplied precalculation function

precalculationParams
The additional parameters to be passed to the precalculation function

objectiveFunction
The objective function

minimize
TRUE if the objective is minimized, FALSE if it is maximized.

name
The readable name of the objective.

See Also

predefinedObjectiveFunctions, trainTuneParetoClassifier, predict.TuneParetoModel

Examples

create new objective minimizing the number of support vectors
for a support vector machine
reclassSupportVectors <- function (saveModel = FALSE)
{
createObjective(precalculationFunction = reclassification,
precalculationParams = NULL, objectiveFunction =
function(result, saveModel)
{
 if(result$model$classifier$name != "svm")
 stop("This objective function can only be applied
to classifiers of type tunePareto.svm()")
 res <- result$model$model$tot.nSV
 if (saveModel)
 # return a list containing the objective value as well as the model
 {
 return(list(additionalData = result$model, fitness = res))
 }
 else
 # only return the objective value
 return(res)
},
objectiveFunctionParams = list(saveModel = saveModel),
direction = "minimize",
name = "Reclass.SupportVectors")
}

tune error vs. number of support vectors on the 'iris' data set
r <- tunePareto(data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
generateCVRuns

Generate cross-validation partitions

description

This function generates a set of partitions for a cross-validation. It can be employed if the same cross-validation settings should be used in the objective functions of several experiments. The resulting fold list can be passed to the cross-validation objective functions (see predefinedObjectiveFunctions) and the internal cross-validation precalculation function crossValidation.

usage

generateCVRuns(labels,
 ntimes = 10,
 nfold = 10,
 leaveOneOut = FALSE,
 stratified = FALSE)

Arguments

labels A vector of class labels of the data set to be used for the cross-validation.
nfold The number of groups of the cross-validation. Ignored if leaveOneOut=TRUE.
ntimes The number of repeated runs of the cross-validation. Ignored if leaveOneOut=TRUE.
leaveOneOut If this is true, a leave-one-out cross-validation is performed, i.e. each sample is left out once in the training phase and used as a test sample.
stratified If set to true, a stratified cross-validation is carried out. That is, the percentage of samples from different classes in the cross-validation folds corresponds to the class sizes in the complete data set. If set to false, the folds may be unbalanced.

Value

A list with ntimes elements, each representing a cross-validation run. Each of the runs is a list of nfold vectors specifying the indices of the samples to be left out in the folds.

see also

predefinedObjectiveFunctions, crossValidation
Examples

precalculate the cross-validation partitions
foldList <- generateCVRuns(labels = iris[, ncol(iris)],
 ntimes = 10,
 nfold = 10,
 stratified=TRUE)

build a list of objective functions
objectiveFunctions <- list(cvError(foldList=foldList),
 cvSensitivity(foldList=foldList, caseClass="setosa"))

pass them to tunePareto
print(tunePareto(data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
 classifier = tunePareto.knn(),
 k = c(3,5,7,9),
 objectiveFunctions = objectiveFunctions))

mergeTuneParetoResults

Calculate optimal solutions from several calls of tunePareto

Description

Merges the results of multiple TuneParetoResult objects as returned by `tunePareto`, and recalculates the optimal solutions for the merged solution set. All supplied TuneParetoResult objects must use the same objective functions.

Usage

`mergeTuneParetoResults(...)`

Arguments

`...` A set of TuneParetoResult objects to be merged.

Value

A TuneParetoResult object containing the parameter configurations of all objects in the `...` argument and selecting the Pareto-optimal solutions among all these configurations. For more details on the object structure, refer to `tunePareto`.

See Also

`tunePareto, recalculateParetoSet`
Examples

optimize an SVM with small costs on # the 'iris' data set
r1 <- tunePareto(classifier = tunePareto.svm(),
 data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
 cost = seq(0.01, 0.1, 0.01),
 objectiveFunctions=list(cvWeightedError(10, 10),
 cvSensitivity(10, 10, caseClass="setosa")))
print(r1)

another call to tunePareto with higher costs
r2 <- tunePareto(classifier = tunePareto.svm(),
 data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
 cost = seq(0.5, 10, 0.5),
 objectiveFunctions=list(cvWeightedError(10, 10),
 cvSensitivity(10, 10, caseClass="setosa")))
print(r2)

merge the results
print(mergeTuneParetoResults(r1, r2))

plotDominationGraph Visualize the Pareto fronts of parameter configuration scores

Description

Draws the Pareto fronts and domination relations of tested parameter configurations in a graph. Here, the leftmost column of nodes represents the non-dominated configurations (i.e. the first Pareto front). The second column contains the second Pareto front, i.e. the configurations that are only dominated by the first Pareto front, and so on. An edge between two configurations indicate that the first configuration is dominated by the second.

Usage

plotDominationGraph(tuneParetoResult,
 transitiveReduction = TRUE,
 drawDominatedObjectives = TRUE,
 drawLabels = TRUE,
 drawLegend = TRUE,
 x.legend = "topleft",
 cex.legend = 0.7,
 col.indicator,
 pch.indicator = 15,
 cex.indicator = 0.8,
 ...)
Arguments

- **tuneParetoResult**
 An object of class TuneParetoResult as returned by `tunePareto`.

- **transitiveReduction**
 If this is true, transitive edges in the graph are removed to enhance readability. That is, if configuration \(c_1 \) dominates configuration \(c_2 \) and \(c_2 \) dominates \(c_3 \), no edge from \(c_3 \) to \(c_1 \) is drawn.

- **drawDominatedObjectives**
 If set to true, color indicators are drawn next to the nodes. Here, each color corresponds to one objective. The color is drawn next to a node if this node has the best score in this objectives among all solutions of the same Pareto front (i.e., column of the graph).

- **drawLabels**
 Specifies whether the parameter configurations should be printed next to the corresponding edges.

- **drawLegend**
 If `drawDominatedObjectives=TRUE`, this specifies whether a legend with the objective colors should be drawn.

- **x.legend**
 The position of the legend. For details, refer to the `x` parameter of `legend`.

- **cex.legend**
 Specifies the size of the text in the legend if `drawLegend` is true.

- **col.indicator**
 Specifies an optional list of colors, one for each objective function. These colors will be used for the indicators if `drawDominatedObjectives` is true. By default, a predefined set of colors is used.

- **pch.indicator**
 Specifies a single plotting character or a list of plotting characters for the objective functions in the indicators which is used for the indicators if `drawDominatedObjectives` is true.

- **cex.indicator**
 Specifies the size of the symbols in the indicators which is be used for the indicators if `drawDominatedObjectives` is true. This can also be a vector of sizes for the symbols of the objectives.

- **...**
 Further graphical parameters for `plot.igraph`.

Value

Invisibly returns the igraph object representing the graph.

See Also

- `tunePareto`

Examples

```r
# call tunePareto using a k-NN classifier
# with different 'k' and 'l' on the 'iris' data set
x <- tunePareto(data = iris[, -ncol(iris)],
                labels = iris[, ncol(iris)],
                classifier = tunePareto.knn(),
                k = c(5,7,9),
                l = c(1,2,3),
```
plotObjectivePairs

```r
objectiveFunctions = list(
  cvError(10, 10),
  cvSpecificity(10, 10, caseClass="setosa")))

# plot the graph
plotDominationGraph(x)
```

plotObjectivePairs
Plot a matrix of Pareto front panels

Description

Plots a matrix of Pareto front panels for each pair of objectives. The plot for \(n \) objectives consists of \(n \times n \) panels, where the panel in row \(i \) and column \(j \) depicts the Pareto fronts of the \(i \)-th and the \(j \)-th objective. Each of the panels is drawn in the same way as `plotParetoFronts2D`.

Usage

```r
plotObjectivePairs(tuneParetoResult, 
  drawLabels = TRUE, 
  drawBoundaries = TRUE, 
  labelPos = 4, 
  fitLabels = TRUE, 
  cex.conf = 0.5, 
  lty.fronts = 1, 
  pch.fronts = 8, 
  col.fronts, 
  ...)```

**Arguments**

- `tuneParetoResult`: An object of class `TuneParetoResult` as returned by `tunePareto`.
- `drawLabels`: If set to true, the descriptions of the configurations are printed next to the points in the plot.
- `drawBoundaries`: If set to true, the upper or lower objective limits supplied in the `objectiveBoundaries` parameter of `tunePareto` are drawn as horizontal and vertical lines.
- `labelPos`: The position of the configuration labels in the plot (if `drawLabels` is true). Values of 1, 2, 3 and 4 denote positions below, to the left of, above and to the right of the points on the Pareto fronts.
- `fitLabels`: If this parameter is true (and `drawLabels` is true), overlapping or partially hidden configuration labels are removed from the plot to improve the readability of the remaining labels.
- `cex.conf`: The size of the configuration labels in the plots (if `drawLabels` is true).
- `lty.fronts`: A vector of line types to use for the Pareto fronts. By default, straight lines are drawn for all fronts.
plotParetoFronts2D

pch.fronts A vector of symbols to use for points on the Pareto fronts. All points on the same front will have the same symbol. By default, an asterisk is used.
col.fronts A vector of colors to use for the Pareto fronts. By default, a predefined set of colors is used.
...
Further graphical parameters to be passed to the plot function.

Value
This function does not have a return value.

See Also
tunePareto, plotParetoFronts2D, plotDominationGraph

Examples

# optimize the 'cost' parameter of an SVM according
# to CV error, CV error variance, and CV Specificity
# on two classes of the 'iris' data set
r <- tunePareto(data = iris[, -ncol(iris)],
  labels = iris[, ncol(iris)],
  classifier = tunePareto.svm(),
  cost = c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50),
  objectiveFunctions = list(cvError(10, 10),
    cvErrorVariance(10, 10),
    cvSpecificity(10, 10, caseClass="virginica")))

# plot the matrix of Pareto fronts
plotObjectivePairs(r)
plotParetoFronts2D

Arguments

tuneParetoResult
   An object of class TuneParetoResult as returned by \texttt{tunePareto}.

objectives
   The names or indices of the two objectives to plot. Pareto-optimality is determined only on the basis of these two objectives. Optional if the parameter tuning has exactly two objectives.

drawLabels
   If set to true, the descriptions of the configurations are printed next to the points in the plot.

drawBoundaries
   If set to true, the upper or lower objective limits supplied in the \texttt{objectiveBoundaries} parameter of \texttt{tunePareto} are drawn as horizontal and vertical lines.

labelPos
   The position of the configuration labels in the plot (if \texttt{drawLabels} is true). Values of 1, 2, 3 and 4 denote positions below, to the left of, above and to the right of the points on the Pareto fronts.

fitLabels
   If this parameter is true (and \texttt{drawLabels} is true), overlapping or partially hidden configuration labels are removed from the plot to improve the readability of the remaining labels.

cex.conf
   The size of the configuration labels in the plots (if \texttt{drawLabels} is true).

lty.fronts
   A vector of line types to use for the Pareto fronts. By default, straight lines are drawn for all fronts.

pch.fronts
   A vector of symbols to use for points on the Pareto fronts. All points on the same front will have the same symbol. By default, an asterisk is used.

col.fronts
   A vector of colors to use for the Pareto fronts. By default, a predefined set of colors is used.

...
   Further graphical parameters to be passed to the \texttt{plot} function.

Value

This function does not have a return value.

See Also

\texttt{tunePareto, plotDominationGraph}

Examples

# optimize the 'cost' parameter according
# to CV error and CV Specificity on the 'iris' data set
r <- tunePareto(data = iris[, -ncol(iris)],
                fitLabels=TRUE,
                cex.conf=0.5,
                lty.fronts=1,
                pch.fronts=8,
                col.fronts,
                ...)
labels = iris[, ncol(iris)],
classifier = tunePareto.svm(),
cost=c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50),
objectiveFunctions=list(cvError(10, 10),
                     cvSpecificity(10, 10, caseClass="setosa")))

# plot the Pareto graph
plotParetoFronts2D(r)

---

precalculation

**Predefined precalculation functions for objectives**

**Description**

These predefined precalculation functions can be employed to create own objectives using `createObjective`. They perform a reclassification or a cross-validation and return the true labels and the predictions.

**Usage**

reclassification(data, labels, classifier, classifierParams, predictorParams)

crossValidation(data, labels, classifier, classifierParams, predictorParams, ntimes = 10, nfold = 10, leaveOneOut = FALSE, stratified = FALSE, foldList = NULL)

**Arguments**

- **data**: The data set to be used for the precalculation. This is usually a matrix or data frame with the samples in the rows and the features in the columns.
- **labels**: A vector of class labels for the samples in data.
- **classifier**: A TuneParetoClassifier wrapper object containing the classifier to tune. A number of state-of-the-art classifiers are included in TunePareto (see `predefinedClassifiers`). Custom classifiers can be employed using `tuneParetoClassifier`.
- **classifierParams**: A named list of parameter assignments for the training routine of the classifier.
- **predictorParams**: If the classifier consists of separate training and prediction functions, a named list of parameter assignments for the predictor function.
- **ntimes**: The number of groups of the cross-validation. Ignored if `leaveOneOut=TRUE`.
- **nfold**: The number of repeated runs of the cross-validation. Ignored if `leaveOneOut=TRUE`.
- **leaveOneOut**: If this is true, a leave-one-out cross-validation is performed, i.e. each sample is left out once in the training phase and used as a test sample.
stratified  If set to true, a stratified cross-validation is carried out. That is, the percentage of samples from different classes in the cross-validation folds corresponds to the class sizes in the complete data set. If set to false, the folds may be unbalanced.

foldList  If this parameter is set, the other cross-validation parameters (ntimes, nfold, leaveOneOut, stratified) are ignored. Instead, the precalculated cross-validation partition supplied in foldList is used. This allows for using the same cross-validation experiment in multiple tunePareto calls. Partitions can be generated using generateCVRuns.

Details

reclassification trains the classifier with the full data set. Afterwards, the classifier is applied to the same data set.

crossValidate partitions the samples in the data set into a number of groups (depending on nfold and leaveOneOut). Each of these groups is left out once in the training phase and used for prediction. The whole procedure is repeated several times (as specified in ntimes).

Value

reclassification returns a list with the following components:

trueLabels  The original labels of the dataset as supplied in labels

predictedLabels  A vector of predicted labels of the data set

model  The TuneParetoModel object resulting from the classifier training

crossValidation returns a nested list structure. At the top level, there is one list element for each run of the cross-validation. Each of these elements consists of a list of sub-structures for each fold. The sub-structures have the following components:

trueLabels  The original labels of the test samples in the fold

predictedLabels  A vector of predicted labels of the test samples in the fold

model  The TuneParetoModel object resulting from the classifier training in the fold

That is, for a cross-validation with n runs and m folds, there are n top-level lists, each having m sub-lists comprising the true labels and the predicted labels.

See Also

createObjective, generateCVRuns.

Examples

# create new objective minimizing the
# false positives of a reclassification

cvFalsePositives <- function(nfold=10, ntimes=10, leaveOneOut=FALSE, foldList=NULL, caseClass)
{
  return(createObjective(
    precalculationFunction = "crossValidation",

precalculationParams = list(nfold=nfold,
                    ntimes=ntimes,
                    leaveOneOut=leaveOneOut,
                    foldList=foldList),

objectiveFunction =
  function(result, caseClass)
{
  # take mean value over the cv runs
  return(mean(sapply(result,
                   function(run)
                   # iterate over runs of cross-validation
                   {
                     # extract all predicted labels in the folds
                     predictedLabels <-
                       unlist(lapply(run,
                                      function(fold)fold$predictedLabels))

                     # extract all true labels in the folds
                     trueLabels <-
                       unlist(lapply(run,
                                      function(fold)fold$trueLabels))

                     # calculate number of false positives in the run
                     return(sum(predictedLabels == caseClass &
                                    trueLabels != caseClass))
                   })))
  },
  objectiveFunctionParams = list(caseClass=caseClass),
  direction = "minimize",
  name = "CV.FalsePositives")
}

# use the objective in an SVM cost parameter tuning on the 'iris' data set
r <- tunePareto(data = iris[, -ncol(iris)],
                 labels = iris[, ncol(iris)],
                 classifier = tunePareto.svm(),
                 cost = c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50),
                 objectiveFunctions=list(cvFalsePositives(10, 10, caseClass="setosa")))
print(r)

---

**predefinedClassifiers**  *TunePareto wrappers for certain classifiers*

**Description**

Creates TunePareto classifier objects for the k-Nearest Neighbour classifier, support vector machines, and trees.
Usage

- `tunePareto.knn()`
- `tunePareto.svm()`
- `tunePareto.tree()`
- `tunePareto.randomForest()`
- `tunePareto.NaiveBayes()`

Details

tunePareto.knn encapsulates a k-Nearest Neighbour classifier as defined in link[package]{class}{knn} in package class. The classifier allows for supplying and tuning the following parameters of link[package]{knn}:

- `k`, `1`, `use.all`

tunePareto.svm encapsulates the support vector machine svm classifier in package e1071. The classifier allows for supplying and tuning the following parameters:

- `kernel`, `degree`, `gamma`, `coef0`, `cost`, `nu`, `class.weights`, `cachesize`, `tolerance`, `epsilon`, `scale`, `shrinking`, `fitted`, `subset`, `na.action`

tunePareto.tree encapsulates the CART classifier tree in package tree. The classifier allows for supplying and tuning the following parameters:

- `weights`, `subset`, `na.action`, `method`, `split`, `mincut`, `minsize`, `mindev` as well as the type parameter of predict.tree.

tunePareto.randomForest encapsulates the randomForest classifier in package randomForest. The classifier allows for supplying and tuning the following parameters:

- `subset`, `na.action`, `ntree`, `mtry`, `replace`, `classwt`, `cutoff`, `strata`, `sampsize`, `nodesize`, `maxnodes`

tunePareto.NaiveBayes encapsulates the NaiveBayes classifier in package klaR. The classifier allows for supplying and tuning the following parameters:

- `prior`, `usekernel`, `fl`, `subset`, `na.action`, `bw`, `adjust`, `kernel`, `weights`, `window`, `width`, `give.Rkern`, `n`, `from`, `to`, `cut`, `na.rm`

Value

Returns objects of class TuneParetoClassifier as described in tuneParetoClassifier. These can be passed to functions like tunePareto or trainTuneParetoClassifier.

See Also

- `tuneParetoClassifier`, `tunePareto`, `trainTuneParetoClassifier`
Examples

# tune a k-NN classifier with different 'k' and 'l'
# on the 'iris' data set
print(tunePareto(classifier = tunePareto.knn(),
    data = iris[, -ncol(iris)],
    labels = iris[, ncol(iris)],
    k = c(5,7,9),
    l = c(1,2,3),
    objectiveFunctions=list(cvError(10, 10),
                             cvSpecificity(10, 10, caseClass="setosa"))))

# tune an SVM with different costs on
# the 'iris' data set
# using Halton sequences for sampling
print(tunePareto(classifier = tunePareto.svm(),
    data = iris[, -ncol(iris)],
    labels = iris[, ncol(iris)],
    cost = as.interval(0.001,10),
    sampleType = "halton",
    numCombinations=20,
    objectiveFunctions=list(cvWeightedError(10, 10),
                             cvSensitivity(10, 10, caseClass="setosa"))))

# tune a CART classifier with different
# splitting criteria on the 'iris' data set
print(tunePareto(classifier = tunePareto.tree(),
    data = iris[, -ncol(iris)],
    labels = iris[, ncol(iris)],
    split = c("deviance", "gini"),
    objectiveFunctions=list(cvError(10, 10),
                             cvErrorVariance(10, 10))))

# tune a Random Forest with different numbers of trees
# on the 'iris' data set
print(tunePareto(classifier = tunePareto.randomForest(),
    data = iris[, -ncol(iris)],
    labels = iris[, ncol(iris)],
    ntree = seq(50,300,50),
    objectiveFunctions=list(cvError(10, 10),
                             cvSpecificity(10, 10, caseClass="setosa"))))

# tune a Naive Bayes classifier with different kernels
# on the 'iris' data set
print(tunePareto(classifier = tunePareto.NaiveBayes(),
    data = iris[, -ncol(iris)],
    labels = iris[, ncol(iris)],
    kernel = c("gaussian", "epanechnikov", "rectangular",
               "triangular", "biweight",
               "cosine", "optcosine"),
    objectiveFunctions=list(cvError(10, 10),
                             cvSpecificity(10, 10, caseClass="setosa"))))
**predefinedObjectiveFunctions**

*Predefined objective functions for parameter tuning*

**Description**

Predefined objective functions that calculate several performance criteria of reclassification or cross-validation experiments.

**Usage**

```r
reclassAccuracy(saveModel = FALSE)
reclassError(saveModel = FALSE)
reclassWeightedError(saveModel = FALSE)
reclassSensitivity(caseClass, saveModel = FALSE)
reclassRecall(caseClass, saveModel = FALSE)
reclassTruePositive(caseClass, saveModel = FALSE)
reclassSpecificity(caseClass, saveModel = FALSE)
reclassTrueNegative(caseClass, saveModel = FALSE)
reclassFallout(caseClass, saveModel = FALSE)
reclassFalsePositive(caseClass, saveModel = FALSE)
reclassMiss(caseClass, saveModel = FALSE)
reclassFalseNegative(caseClass, saveModel = FALSE)
reclassPrecision(caseClass, saveModel = FALSE)
reclassPPV(caseClass, saveModel = FALSE)
reclassNPV(caseClass, saveModel = FALSE)
reclassConfusion(trueClass, predictedClass, saveModel = FALSE)
```

```r
cvAccuracy(nfold = 10, ntimes = 10,
 leaveOneOut = FALSE, stratified = FALSE,
 foldList = NULL,
 saveModel = FALSE)
cvError(nfold = 10, ntimes = 10,
 leaveOneOut = FALSE, stratified = FALSE,
 foldList = NULL,
 saveModel = FALSE)
cvErrorVariance(nfold = 10, ntimes = 10,
 leaveOneOut = FALSE, stratified = FALSE,
 foldList = NULL,
 saveModel = FALSE)
cvWeightedError(nfold = 10, ntimes = 10,
 leaveOneOut = FALSE, stratified = FALSE,
 foldList = NULL,
 saveModel = FALSE)
```
cvSensitivity(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvRecall(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvTruePositive(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvSpecificity(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvTrueNegative(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvFallout(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvFalsePositive(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvMiss(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvFalseNegative(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvPrecision(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvPPV(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvNPV(nfold = 10, ntimes = 10,
leaveOneOut = FALSE, stratified=FALSE,
foldList=NULL, caseClass,
saveModel = FALSE)
cvConfusion(nfold = 10, ntimes = 10,
  leaveOneOut = FALSE, stratified=FALSE,
  foldList=NULL, trueClass, predictedClass,
  saveModel = FALSE)

Arguments

nfold           The number of groups of the cross-validation. Ignored if leaveOneOut=TRUE.
ntimes          The number of repeated runs of the cross-validation. Ignored if leaveOneOut=TRUE.
leaveOneOut     If this is true, a leave-one-out cross-validation is performed, i.e. each sample is left out once in the training phase and used as a test sample
stratified      If set to true, a stratified cross-validation is carried out. That is, the percentage of samples from different classes in the cross-validation folds corresponds to the class sizes in the complete data set. If set to false, the folds may be unbalanced.
foldList        If this parameter is set, the other cross-validation parameters (ntimes, nfold, leaveOneOut, stratified) are ignored. Instead, the precalculated cross-validation partition supplied in foldList is used. This allows for using the same cross-validation experiment in multiple tunePareto calls. Partitions can be generated using generateCVRuns.
caseClass       The class containing the positive samples for the calculation of specificity and sensitivity. All samples with different class labels are regarded as controls (negative samples).
trueClass       When calculating the confusion of two classes, the class to which a sample truly belongs.
predictedClass  When calculating the confusion of two classes, the class to which a sample is erroneously assigned.
saveModel       If set to true, the trained model(s) are stored to the additionalData component of the resulting TuneParetoResult objects (see tunePareto for details). In case of a reclassification, a single model is stored. In case of a cross-validation, a list of length nruns, each containing a sub-list of nfold models, is stored. If the size of a model is large, setting saveModel = TRUE can result in a high memory consumption. As the model information is the same for all reclassification objectives or for cross-validation objectives with the same parameters, it is usually sufficient to set saveModel=TRUE for only one of the objective functions.

Details

The functions do not calculate the objectives directly, but return a structure of class TuneParetoObjectives that provides all information on the objective function for later use in tunePareto.

The behaviour of the functions in tunePareto is as follows:

The reclassification functions train the classifiers with the full data set. Afterwards, the classifiers are applied to the same data set. reclassAccuracy measures the fraction of correctly classified samples, while reclassError calculates the fraction of misclassified samples. reclassWeightedError calculates the sum of fractions of misclassified samples in each class weighted by the class size. reclassSensitivity measures the sensitivity, and reclassSpecificity measures the specificity of the reclassification experiment. reclassTruePositive and reclassRecall are aliases for
reclassSensitivity, and reclassTrueNegative is an alias for reclassSpecificity. reclassFallout and its equivalent alias reclassFalsePositive give the ratio of false positives to all negative samples, and reclassMiss and its alias reclassFalseNegative measure the ratio of false negatives to all positive samples. reclassPrecision calculates the precision of the reclassification experiment, i.e. the ratio of true positives to all samples classified as positive. This is equivalent to the positive predictive value (reclassPPV). reclassNPV measures the negative predictive value, i.e. the ratio of true negatives to all samples classified as negative. reclassConfusion calculates the fraction of samples in trueClass that have been confused with predictedClass.

reclassError, reclassWeightedError, reclassFallout, reclassFalsePositive, reclassMiss, reclassFalsePositive and reclassConfusion are minimization objectives, whereas reclassAccuracy, reclassSensitivity, reclassTruePositive, reclassRecall, reclassSpecificity, reclassTrueNegative reclassPrecision, reclassPPV and reclassNPV are maximization objectives.

The cross-validation functions partition the samples in the data set into a number of groups (depending on nfold and leaveOneOut). Each of these groups is left out once in the training phase and used for prediction. The whole procedure is usually repeated several times (as specified in ntimes), and the results are averaged. Similar to the reclassification functions, cvAccuracy calculates the fraction of correctly classified samples over the runs, cvError calculates the average fraction of misclassified samples over the runs, and cvWeightedError calculates the mean sum of fractions of misclassified samples in each class weighted by the class size. cvErrorVariance calculates the variance of the cross-validation error. cvSensitivity, cvRecall and cvTruePositive calculate the average sensitivity, and cvSpecificity and cvTrueNegative calculate the average specificity. cvFallout and cvFalsePositive calculate the average false positive rate over the runs. cvMiss and cvFalseNegative calculate the average false negative rate over the runs. cvPrecision and cvPPV calculate the average precision/positive predictive rate. cvNPV gives the average negative predictive rate over all runs. cvConfusion calculates the average fraction of samples in trueClass that have been confused with predictedClass.

cvError, cvWeightedError, cvErrorVariance, cvFallout, cvFalsePositive, cvMiss, cvFalseNegative and cvConfusion are minimization objectives, and cvAccuracy, cvSensitivity, cvRecall, cvTruePositive, cvSpecificity, cvTrueNegative, cvPrecision, cvPPV and cvNPV are maximization objectives.

Value

An object of class TuneParetoObjective representing the objective function. For more details, see createObjective.

See Also

createObjective, tunePareto, generateCVRuns

Examples

# build a list of objective functions
objectiveFunctions <- list(cvError(10, 10),
                          reclassSpecificity(caseClass="setosa"),
                          reclassSensitivity(caseClass="setosa"))

# pass them to tunePareto
print(tunePareto(data = iris[, -ncol(iris)],
                 objectiveFunctions = objectiveFunctions, ntimes = 10))
predict.TuneParetoModel

Prediction method for TuneParetoClassifier objects

Description

S3 method that predicts the labels of unknown samples using a trained TuneParetoModel model of a TuneParetoClassifier object.

Usage

## S3 method for class 'TuneParetoModel'
predict(object, newdata, ...)

Arguments

object A TuneParetoTraining object as returned by \texttt{trainTuneParetoClassifier}.
newdata The samples whose class labels are predicted. This is usually a matrix or data frame with the samples in the rows and the features in the columns.
... Further parameters for the predictor. These must be defined in the predictorParamNames argument of \texttt{tuneParetoClassifier}.

Value

Returns a vector of class labels for the samples in newdata.

See Also

tuneParetoClassifier, predefinedClassifiers, trainTuneParetoClassifier

Examples

# train an SVM classifier
c1 <- tunePareto.svm()
tr <- trainTuneParetoClassifier(c1,
    iris[,-ncol(iris)],
    iris[,ncol(iris)],
    cost=0.001)

# re-apply the classifier to predict the training data
print(iris[,ncol(iris)])
print(predict(tr, iris[,ncol(iris)]))
print.TuneParetoResult

Print method for objects used in TunePareto

Description

Customized printing methods for several objects used in TunePareto: For TuneParetoResult objects, the Pareto-optimal parameter configurations are printed. For TuneParetoClassifier and TuneParetoModel objects, information on the classifier and its parameters is printed.

Usage

```r
S3 method for class 'TuneParetoResult'
print(x, ...)
S3 method for class 'TuneParetoClassifier'
print(x, ...)
S3 method for class 'TuneParetoModel'
print(x, ...)
```

Arguments

- `x`: An object of class `TuneParetoResult`, `TuneParetoClassifier` or `TuneParetoModel` to be printed.
- `...`: Further parameters (currently unused).

Value

Invisibly returns the printed object.

See Also

`tunePareto`, `tuneParetoClassifier`, `trainTuneParetoClassifier`

rankByDesirability

Rank results according to their desirabilities

Description

Calculates the desirability index for each Pareto-optimal combination (or for all combinations), and ranks the combinations according to this value. The desirability index was introduced by Harrington in 1965 for multicriteria optimization. Desirability functions specify the desired values of each objective and are aggregated in a single desirability index.
rankByDesirability

Usage

```r
callByDesirability(tuneParetoResult,
 desirabilityIndex,
 optimalOnly = TRUE)
```

Arguments

tuneParetoResult
A TuneParetoResult object containing the parameter configurations to be examined

desirabilityIndex
A function accepting a vector of objective values and returning a desirability index in \([0,1]\).

optimalOnly
If set to true, only the Pareto-optimal solutions are ranked. Otherwise, all tested solutions are ranked. Defaults to TRUE.

Value

A matrix of objective values with an additional column for the desirability index. The rows of the matrix are sorted according to the index.

Examples

```r
optimize the 'cost' parameter of an SVM on # the 'iris' data set
res <- tunePareto(classifier = tunePareto.svm(),
 data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
 cost=c(0.01,0.05,0.1,0.5,1,5,10,50,100),
 objectiveFunctions=list(cvWeightedError(10, 10),
 cvSensitivity(10, 10, caseClass="setosa"),
 cvSpecificity(10, 10, caseClass="setosa"))

create desirability functions
aggregate functions in desirability index (e.g. harrington desirability function)
here, for the sake of simplicity a random number generator
di <- function(x) {runif(1)}

rank all tuning results according to their desirabilities
print(rankByDesirability(res,di,optimalOnly=FALSE))
```
recalculateParetoSet  

Recalculate Pareto-optimal solutions

Description

Recalculates the Pareto-optimal solutions in a TuneParetoResult according to the specified objectives only, and returns another TuneParetoResult object reduced to these objectives. This avoids time-consuming recalculations of objective values if only a subset of objectives should be considered for a previously evaluated set of parameter combinations.

Usage

recalculateParetoSet(tuneParetoResult, objectives)

Arguments

tuneParetoResult
The TuneParetoResult object containing the parameter configurations to be examined

objectives
A vector of objective function indices. The Pareto set is recalculated according to these objectives, i.e. omitting other objectives. If this argument is not supplied, all objectives are used, which usually returns a copy of the input.

Value

Returns a reduced TuneParetoResult object. For more details on the object structure, refer to tunePareto.

See Also

tunePareto, mergeTuneParetoResults

Examples

# optimize the 'cost' parameter of an SVM on # the 'iris' data set
res <- tunePareto(classifier = tunePareto.svm(),
  data = iris[, -ncol(iris)],
  labels = iris[, ncol(iris)],
  cost=seq(0.01,0.1,0.01),
  objectiveFunctions=list(cvWeightedError(10, 10),
    cvSensitivity(10, 10, caseClass="setosa"),
    cvSpecificity(10, 10, caseClass="setosa"))
print(res)

# select only specificity and sensitivity
trainTuneParetoClassifier

*Train a TunePareto classifier*

**Description**

Trains a classifier wrapped in a TuneParetoClassifier object. The trained classifier model can then be passed to `predict.TuneParetoModel`.

**Usage**

`trainTuneParetoClassifier(classifier, trainData, trainLabels, ...)`

**Arguments**

- `classifier`: A TuneParetoClassifier object as returned by `tuneParetoClassifier` or one of the predefined classification functions (see `predefinedClassifiers`).
- `trainData`: The data set to be used for the classifier training. This is usually a matrix or data frame with the samples in the rows and the features in the columns.
- `trainLabels`: A vector of class labels for the samples in `trainData`.
- `...`: Further parameters to be passed to the classifier. These must be parameters specified in the `classifierParameterNames` parameter of `tuneParetoClassifier` and usually correspond to the tuned parameters.

**Value**

Returns an object of class `TuneParetoModel` with the following entries

- `classifier`: The classifier object supplied in the `classifier` parameter
- `classifierParams`: The additional parameters supplied to the classifier in the `...` parameter
- `trainData`: If `classifier` is an all-in-one classifier without a separate prediction method, this stores the input training data.
- `trainLabels`: If `classifier` is an all-in-one classifier without a separate prediction method, this stores the input training labels.
- `model`: If `classifier` consists of separate training and prediction methods, this contains the trained classifier model.

**See Also**

`tuneParetoClassifier, predefinedClassifiers, predict.TuneParetoModel`
Examples

```r
train an SVM classifier
c1 <- tunePareto.svm()
tr <- trainTuneParetoClassifier(cl, iris[-ncol(iris)], iris[,ncol(iris)], cost=0.001)

re-apply the classifier to predict the training data
print(iris[,ncol(iris)])
print(predict(tr, iris[-ncol(iris)]))
```

tunePareto

**Generic function for multi-objective parameter tuning of classifiers**

Description

This generic function tunes parameters of arbitrary classifiers in a multi-objective setting and returns the Pareto-optimal parameter combinations.

Usage

```r
tunePareto(..., data, labels, classifier, parameterCombinations,
 sampleType = c("full","uniform",
 "latin","halton",
 "niederreiter","sobol",
 "evolution"),
 numCombinations,
 mu=10, lambda=20, numIterations=100,
 objectiveFunctions, objectiveBoundaries,
 keepSeed = TRUE, useSnowfall = FALSE, verbose=TRUE)
```

Arguments

- `data`: The data set to be used for the parameter tuning. This is usually a matrix or data frame with the samples in the rows and the features in the columns.
- `labels`: A vector of class labels for the samples in `data`.
- `classifier`: A TuneParetoClassifier wrapper object containing the classifier to tune. A number of state-of-the-art classifiers are included in **TunePareto** (see predefinedClassifiers). Custom classifiers can be employed using `tuneParetoClassifier`.
- `parameterCombinations`: If not all combinations of parameter ranges for the classifier are meaningful, you can set this parameter instead of specifying parameter values in the ... argument. It holds an explicit list of possible combinations, where each element of the list is a named sublist with one entry for each parameter.
**sampleType**
Determines the way parameter configurations are sampled.

If type="full", all possible combinations are tried. This is only possible if all supplied parameter ranges are discrete or if the combinations are supplied explicitly in parameterCombinations.

If type="uniform", numCombinations combinations are drawn uniformly at random.

If type="latin", Latin Hypercube sampling is applied. This is particularly encouraged when tuning using continuous parameters.

If type="halton","niederreiter","sobol", numCombinations parameter combinations are drawn on the basis of the corresponding quasi-random sequences (initialized at a random step to ensure that different values are drawn in repeated runs). This is particularly encouraged when tuning using continuous parameters. type="niederreiter" and type="sobol" require the gsl package to be installed.

If type="evolution", an evolutionary algorithm is applied. In details, this employs mu+lambda Evolution Strategies with uncorrelated mutations and non-dominated sorting for survivor selection. This is encouraged when the space of possible parameter configurations is very large. For smaller parameter spaces, the above sampling methods may be faster.

**numCombinations**
If this parameter is set, at most numCombinations randomly chosen parameter configurations are tested. Otherwise, all possible combinations of the supplied parameter ranges are tested.

**mu**
The number of individuals used in the Evolution Strategies if type="evolution".

**lambda**
The number of offspring per generation in the Evolution Strategies if type="evolution".

**numIterations**
The number of iterations/generations the evolutionary algorithm is run if type="evolution".

**objectiveFunctions**
A list of objective functions used to tune the parameters. There are a number of predefined objective functions (see predefinedObjectiveFunctions). Custom objective functions can be created using createObjective.

**objectiveBoundaries**
If this parameter is set, it specifies boundaries of the objective functions for valid solutions. That is, each element of the supplied vector specifies the upper or lower limit of an objective (depending on whether the objective is maximized or minimized). Parameter combinations that do not meet all these restrictions are not included in the result set, even if they are Pareto-optimal. If only some of the objectives should have bounds, supply NA for the remaining objectives.

**keepSeed**
If this is true, the random seed is reset to the same value for each of the tested parameter configurations. This is an easy way to guarantee comparability in randomized objective functions. E.g., cross-validation runs of the classifiers will all start with the same seed, which results in the same partitions.

**Attention:** If you set this parameter to FALSE, you must ensure that all configuration are treated equally in the objective functions. There may be randomness in processes such as classifier training, but there should be no random difference in
the rating itself. In particular, the choice of subsets for subsampling experiments should always be the same for all configurations. For example, you can provide precalculated fold lists to the cross-validation objectives in the foldList parameter. If parameter configurations are rated under varying conditions, this may yield over-optimistic or over-pessimistic ratings for some configurations due to outliers.

**useSnowfall** If this parameter is true, the routine loads the snowfall package and processes the parameter configurations in parallel. Please note that the snowfall cluster has to be initialized properly before running the tuning function and stopped after the run.

**verbose** If this parameter is true, status messages are printed. In particular, the algorithm prints the currently tested combination.

... The parameters of the classifier and predictor functions that should be tuned. The names of the parameters must correspond to the parameters specified in classifierParameterNames and predictorParameterNames of tuneParetoClassifier. Each supplied argument describes the possible values of a single parameter. These can be specified in two ways: Discrete parameter ranges are specified as lists of possible values. Continuous parameter ranges are specified as intervals using as.interval. The algorithm then generates combinations of possible parameter values. Alternatively, the combinations can be defined explicitly using the parameterCombinations parameter.

**Details**

This is a generic function that allows for parameter tuning of a wide variety of classifiers. You can either specify the values or intervals of tuned parameters in the ... argument, or supply selected combinations of parameter values using parameterCombinations. In the first case, combinations of parameter values specified in the ... argument are generated. If sampleType="uniform", sampleType="latin", sampleType="halton", sampleType="niederreiter" or sampleType="sobol", a random subset of the possible combinations is drawn. If sampleType="evolution", random parameter combinations are generated and optimized using Evolution Strategies.

In the latter case, only the parameter combinations specified explicitly in parameterCombinations are tested. This is useful if certain parameter combinations are invalid. You can create parameter combinations by concatenating results of calls to allCombinations. Only sampleType="full" is allowed in this mode.

For each of the combinations, the specified objective functions are calculated. This usually involves training and testing a classifier. From the resulting objective values, the non-dominated parameter configurations are calculated and returned.

The ... argument is the first argument of tunePareto for technical reasons (to prevent partial matching of the supplied parameters with argument names of tunePareto). This requires all arguments to be named.

**Value**

Returns a list of class TuneParetoResult with the following components:
bestCombinations
A list of Pareto-optimal parameter configurations. Each element of the list consists of a sub-list with named elements corresponding to the parameter values.

bestObjectiveValues
A matrix containing the objective function values of the Pareto-optimal configurations in bestCombinations. Each row corresponds to a parameter configuration, and each column corresponds to an objective function.

testedCombinations
A list of all tested parameter configurations with the same structure as bestCombinations.

testedObjectiveValues
A matrix containing the objective function values of all tested configurations with the same structure as bestObjectiveValues.

dominationMatrix
A Boolean matrix specifying which parameter configurations dominate each other. If a configuration \(i\) dominates a configuration \(j\), the entry in the \(i\)th row and the \(j\)th column is TRUE.

minimizeObjectives
A Boolean vector specifying which of the objectives are minimization objectives. This is derived from the objective functions supplied to tunePareto.

additionalData
A list containing additional data that may have been returned by the objective functions. The list has one element for each tested parameter configuration, each comprising one sub-element for each objective function that returned additional data. The structure of these sub-elements depends on the corresponding objective function. For example, the predefined objective functions (see predefinedObjectiveFunctions) save the trained models here if saveModel is true.

See Also
predefinedClassifiers, predefinedObjectiveFunctions, createObjective, allCombinations

Examples

```r
tune 'k' of a k-NN classifier
on two classes of the 'iris' data set --
see ?knn
print(tunePareto(data = iris[, -ncol(iris)],
 labels = iris[, ncol(iris)],
 classifier = tunePareto.knn(),
 k = c(1,3,5,7,9),
 objectiveFunctions = list(cvError(10, 10),
 reclassError())))

example using predefined parameter configurations,
as certain combinations of k and l are invalid:
comb <- c(allCombinations(list(k=1,l=0)),
```
tuneParetoClassifier

Create a classifier object

Description

Creates a wrapper object mapping all information necessary to call a classifier which can be passed to tunePareto.
Usage

tuneParetoClassifier(name, classifier, classifierParamNames = NULL, predefinedClassifierParams = NULL, predictor = NULL, predictorParamNames = NULL, predefinedPredictorParams = NULL, useFormula = FALSE, formulaName = "formula", trainDataName = "x", trainLabelName = "y", testDataName = "newdata", modelName = "object", requiredPackages = NULL)

Arguments

name A human-readable name of the classifier.
classifier The classification function to use. If predictor is NULL, this function is an all-in-one classification method that receives both training data and test data and returns the predicted labels for the test data. If predictor is not NULL, this is the training function of the classifier that builds a model from the training data. This model is then passed to predictor along with the test data to obtain the predicted labels for the test data.
classifierParamNames A vector of names of possible arguments for classifier.
predefinedClassifierParams A named list of default values for the classifier parameters.
predictor If the classification method consists of separate training and prediction functions, this points to the prediction function that receives a model and the test data as inputs and returns the predicted class labels.
predictorParamNames If predictor != NULL, a vector of names of possible arguments for predictor.
predictedPredictorParams If predictor != NULL, a named list of default values for the parameters of predictor.
useFormula Set this to true if the classifier expects a formula to describe the relation between features and class labels. The formula itself is built automatically.
formulaName If useFormula is true, this is the name of the parameter of the classifier’s training function that holds the formula.
trainDataName The name of the parameter of the classifier’s training function that holds the training data.
trainLabelName If useFormula=FALSE, the name of the parameter of the classifier’s training function that holds the training labels. Otherwise, the training labels are added to the training data and supplied in parameter trainDataName.
**Details**

TunePareto classifier objects are wrappers containing all information necessary to run the classifier, including the training and prediction function, the required packages, and the names of certain arguments. **TunePareto** provides a set of predefined objects for state-of-the-art classifiers (see `predefinedClassifiers`).

The main `tunePareto` routine evaluates `TuneParetoClassifier` objects to call the training and prediction methods. Furthermore, direct calls to the classifiers are possible using `trainTuneParetoClassifier` and `predict.TuneParetoModel`.

**Value**

An object of class `TuneParetoClassifier` with components corresponding to the above parameters.

**See Also**

`trainTuneParetoClassifier`, `predict.TuneParetoModel`, `tunePareto`, `predefinedClassifiers`

**Examples**

```r
equivalent to tunePareto.svm()
cl <- tuneParetoClassifier(name = "svm",
classifier = svm,
predictor = predict,
classifierParamNames = c("kernel", "degree", "gamma",
"coef0", "cost", "nu",
"class.weights", "cache.size",
"tolerance", "epsilon",
"subset", "na.action"),
useFormula = FALSE,
trainDataName = "x",
trainLabelName = "y",
testDataName = "newdata",
modelName = "object",
requiredPackages="e1071")

call TunePareto with the classifier
print(tunePareto(classifier = cl,
data = iris[, -ncol(iris)],

...)
```

```bash
testDataName
If predictor=NULL, this is the name of the parameter of classifier that receives the test data. Otherwise, it is the parameter of predictor that holds the test data.

modelName
If predictor is not NULL, this is the name of the parameter of predictor that receives the training model (i.e., the return value of classifier).

requiredPackages
A vector containing the names of packages that are required to run the classifier. These packages are loaded automatically when running the classifier using `tunePareto`. They are also loaded in the `snowfall` cluster if necessary.

Details

TunePareto classifier objects are wrappers containing all information necessary to run the classifier, including the training and prediction function, the required packages, and the names of certain arguments. **TunePareto** provides a set of predefined objects for state-of-the-art classifiers (see `predefinedClassifiers`).

The main `tunePareto` routine evaluates `TuneParetoClassifier` objects to call the training and prediction methods. Furthermore, direct calls to the classifiers are possible using `trainTuneParetoClassifier` and `predict.TuneParetoModel`.

Value

An object of class `TuneParetoClassifier` with components corresponding to the above parameters.

See Also

`trainTuneParetoClassifier`, `predict.TuneParetoModel`, `tunePareto`, `predefinedClassifiers`

Examples

```r
# equivalent to tunePareto.svm()
cl <- tuneParetoClassifier(name = "svm",
classifier = svm,
predictor = predict,
classifierParamNames = c("kernel", "degree", "gamma",
"coef0", "cost", "nu",
"class.weights", "cache.size",
"tolerance", "epsilon",
"subset", "na.action"),
useFormula = FALSE,
trainDataName = "x",
trainLabelName = "y",
testDataName = "newdata",
modelName = "object",
requiredPackages="e1071")

# call TunePareto with the classifier
print(tunePareto(classifier = cl,
data = iris[, -ncol(iris)],

...)
```
labels = iris[, ncol(iris)],
cost = c(0.001, 0.01, 0.1, 1, 10),
objectiveFunctions=
 list(cvError(10, 10),
 cvSpecificity(10, 10,
 caseClass="setosa"))
Index

* Pareto front domination graph objective function
 plotDominationGraph, 10
* TuneParetoClassifier knn svm tree
 randomForest NaiveBayes
 predefinedClassifiers, 17
* TuneParetoClassifier
 tuneParetoClassifier, 33
* classifier training
 trainTuneParetoClassifier, 28
* continuous parameter
 as.interval, 5
* cross-validation
 generateCVRuns, 8
* desirability function
 rankByDesirability, 25
* desirability index
 rankByDesirability, 25
* interval
 as.interval, 5
* merge results
 mergeTuneParetoResults, 9
* multi-objective optimization MOO Pareto front
 plotObjectivePairs, 12
 plotParetoFronts2D, 13
* multi-objective parameter tuning
 TunePareto-package, 2
* objective function multi-objective optimization MOO
 createObjective, 5
 precalculation, 15
 predefinedObjectiveFunctions, 20
* parameter combinations
 allCombinations, 3
* parameter tuning multi-objective optimization MOO parallel multi-core
 tunePareto, 29
* prediction
 predict.TuneParetoModel, 24
* print
 print.TuneParetoResult, 25
* subset of objectives
 recalculateParetoSet, 27
* training
 trainTuneParetoClassifier, 28

allCombinations, 3, 31, 32
as.interval, 5, 31

createObjective, 2, 5, 15, 16, 23, 30, 32
crossValidation, 6, 8
crossValidation (precalculation), 15
cvAccuracy
 (predefinedObjectiveFunctions), 20
cvConfusion
 (predefinedObjectiveFunctions), 20
cvError (predefinedObjectiveFunctions), 20
cvErrorVariance
 (predefinedObjectiveFunctions), 20
cvFallout
 (predefinedObjectiveFunctions), 20
cvFalseNegative
 (predefinedObjectiveFunctions), 20
cvFalsePositive
 (predefinedObjectiveFunctions), 20
cvMiss (predefinedObjectiveFunctions), 20
cvNPV (predefinedObjectiveFunctions), 20
cvPPV (predefinedObjectiveFunctions), 20
cvPrecision (predefinedObjectiveFunctions), 20

cvRecall (predefinedObjectiveFunctions), 20

cvSensitivity (predefinedObjectiveFunctions), 20

cvSpecificity (predefinedObjectiveFunctions), 20

cvTrueNegative (predefinedObjectiveFunctions), 20

cvTruePositive (predefinedObjectiveFunctions), 20

cvWeightedError (predefinedObjectiveFunctions), 20

generateCVRuns, 8, 16, 22, 23

legend, 11

mergeTuneParetoResults, 9, 27

NaiveBayes, 18

plot, 13, 14

plot.igraph, 11

plotDominationGraph, 2, 10, 13, 14

plotObjectivePairs, 2, 12

plotParetoFronts2D, 2, 12, 13, 13

precalculation, 15

predefinedClassifiers, 6, 15, 17, 24, 28, 29, 32, 35

predefinedObjectiveFunctions, 2, 7, 8, 20, 30, 32

predict.tree, 18

predict.TuneParetoModel, 6, 7, 24, 28, 35

print.TuneParetoClassifier (print.TuneParetoResult), 25

print.TuneParetoModel (print.TuneParetoResult), 25

print.TuneParetoResult, 25

randomForest, 18

rankByDesirability, 25

recalculateParetoSet, 9, 27

reclassAccuracy (predefinedObjectiveFunctions), 20

reclassConfusion (predefinedObjectiveFunctions), 20

reclassError (predefinedObjectiveFunctions), 20

reclassFallout (predefinedObjectiveFunctions), 20

reclassFalseNegative (predefinedObjectiveFunctions), 20

reclassFalsePositive (predefinedObjectiveFunctions), 20

reclassification, 6

reclassification (precalculation), 15

reclassMiss (predefinedObjectiveFunctions), 20

reclassNPV (predefinedObjectiveFunctions), 20

reclassPPV (predefinedObjectiveFunctions), 20

reclassPrecision (predefinedObjectiveFunctions), 20

reclassRecall (predefinedObjectiveFunctions), 20

reclassSensitivity (predefinedObjectiveFunctions), 20

reclassSpecificity (predefinedObjectiveFunctions), 20

reclassTrueNegative (predefinedObjectiveFunctions), 20

reclassTruePositive (predefinedObjectiveFunctions), 20
reclassWeightedError
 (predefinedObjectiveFunctions), 20

svm, 18

trainTuneParetoClassifier, 6, 7, 18, 24,
 25, 28, 35

tree, 18

TunePareto (TunePareto-package), 2
tunePareto, 2, 4–6, 9, 11–14, 16, 18, 22, 23,
 25, 27, 29, 33, 35

TunePareto-package, 2
tunePareto.knn, 2
tunePareto.knn (predefinedClassifiers), 17
tunePareto.NaiveBayes, 2
tunePareto.NaiveBayes
 (predefinedClassifiers), 17
tunePareto.randomForest, 2
tunePareto.randomForest
 (predefinedClassifiers), 17
tunePareto.svm, 2
tunePareto.svm (predefinedClassifiers), 17
tunePareto.tree, 2
tunePareto.tree
 (predefinedClassifiers), 17
tuneParetoClassifier, 2, 6, 15, 18, 24, 25,
 28, 29, 31, 33