Package ‘UPCM’

October 12, 2022

Type Package
Title Uncertainty in Partial Credit Models
Version 0.0-3
Date 2021-04-27
Author Gunther Schauberger
Maintainer Gunther Schauberger <gunther.schauberger@tum.de>
Description Provides an extension to the Partial Credit Model and Generalized Partial Credit Models which allows for an additional person parameter that characterizes the uncertainty of the person. The method was originally proposed by Tutz and Schauberger (2020) <doi:10.1177/0146621620920932>.
License GPL (>= 2)
Imports Rcpp (>= 0.12.4), cubature, mvtnorm, numDeriv, statmod
Depends R (>= 3.5.0), ltm
LinkingTo Rcpp, RcppArmadillo
SystemRequirements C++11
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-04-27 13:20:05 UTC

R topics documented:

UPCM-package .......................................................... 2
plot.UPCM ........................................................................ 2
tenseness ................................................................. 4
UPCM ................................................................. 5

Index 8
UPCM-package  

Uncertainty in Partial Credit Models

Description

Performs UPCM, a method to model uncertainty in (Generalized) Partial Credit Models

Author(s)

Gunther Schauberger  
<gunther.schauberger@tum.de>  
https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also

UPCM

Examples

data(tenseness)

Y <- data.matrix(tenseness[,1:4])
X <- model.matrix(~ Gender + Age, data = tenseness)[,-1]

m_upcm <- UPCM(Y = Y, X = X, cores = 2, GPCM = FALSE)
m_upcm
plot(m_upcm)

plot.UPCM

Plot function for UPCM

Description

Plot function for a UPCM or a UGPCM object. Plots show coefficient estimates together with confidence intervals displayed as star plots.

Usage

## S3 method for class 'UPCM'
plot(x, sig = 0.05, KIfactor = 0.9, xlim, ylim, ...)
Arguments

- **x**: UPCM object
- **sig**: Significance level for confidence intervals, default is `sig = 0.05`.
- **Kfactor**: Parameter to regulate the shape of the resulting star.
- **xlim**: See `xlim` in `plot.default`.
- **ylim**: See `ylim` in `plot.default`.
- **...**: Further plot arguments.

Value

No return value, called for side effects

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>
https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also

UPCM

Examples

data(tenseness)
Y <- data.matrix(tenseness[,1:4])
X <- model.matrix(~ Gender + Age, data = tenseness)[,-1]

m_upcm <- UPCM(Y = Y, X = X, cores = 2, GPCM = FALSE)
m_upcm
plot(m_upcm)
**Description**

Data from the Freiburg Complaint Checklist. The data contain all 8 items corresponding to the scale *Tenseness* for 2042 participants of the standardization sample of the Freiburg Complaint Checklist.

**Format**

A data frame containing data from the Freiburg Complaint Checklist with 1847 observations. All items refer to the scale *Tenseness* and are measured on a 5-point Likert scale where low numbers correspond to low frequencies or low intensities of the respective complaint and vice versa.

- **Clammy_hands** Do you have clammy hands?
- **Sweat_attacks** Do you have sudden attacks of sweating?
- **Clumsiness** Do you notice that you behave clumsy?
- **Wavering_hands** Are your hands wavering frequently, e.g. when lightning a cigarette or when holding a cup?
- **Restless_hands** Do you notice that your hands are restless?
- **Restless_feet** Do you notice that your feet are restless?
- **Twitching_eyes** Do you notice unvoluntary twitching of your eyes?
- **Twitching_mouth** Do you notice unvoluntary twitching of your mouth?
- **Gender** Gender of the person
- **Household** Does the person live alone in a household or together with somebody?
- **Income** Income, categorized to levels from 1 (low income) to 11 (high income). For simplicity, due to the high number of categories income can be treated as a metric variable.
- **WestEast** Is the person from East Germany (former GDR)?
- **Abitur** Does the person have Abitur (A-levels)?
- **Age** Age of the person

**Source**


**Examples**

data(tenseness)
**UPCM**

*Uncertainty in (Generalized) Partial Credit Models*

---

**Description**

Performs UPCM, a method to model uncertainty in (Generalized) Partial Credit Models

**Usage**

```r
UPCM(
Y,
X = NULL,
GPCM = TRUE,
Q = 10,
cores = 2,
lambda = 0.01,
se = TRUE,
method = c("nlminb", "L-BFGS-B"),
ctrl.nlminb = list(eval.max = 200, iter.max = 150, abs.tol = 1e-08, rel.tol = 1e-08,
                 trace = 0, step.min = 0.1, x.tol = 1e-08, xf.tol = 1e-08)
)
```

**Arguments**

- **Y**: Matrix containing the ordinal item response data (as ordered factors), one row per observation, one column per item.
- **X**: Matrix containing explanatory variables which are used both for trait parameters and uncertainty parameters, one row per observation, one column per variable.
- **GPCM**: Specifies the baseline model. `GPCM = TRUE` results in a UGPCM while `GPCM = FALSE` results in a UPCM.
- **Q**: Number of nodes to be used (per dimension) in two-dimensional Gauss-Hermite-Quadrature.
- **cores**: Number of cores to be used in parallelized computation.
- **lambda**: Tuning parameter for ridge penalty on all coefficients except sigma/slope parameters. Should be small, only used to stabilize results.
- **se**: Should standard errors be computed? Standard errors are necessary for `plot.UPCM`. Computation is time-consuming because numerical optimization methods are used.
- **method**: Specifies optimization algorithm used, either `nlminb` or `L-BFGS-B` (optim).
- **ctrl.nlminb**: List of control arguments for optimization procedure `nlminb`. 
Value

delta  Matrix containing all item parameters for the UPCM pr UGPCM model, one row per item, one column per category.

Sigma 2x2 covariance matrix for both random effects, namely the trait parameters theta and the uncertainty parameters alpha.

xi Estimates for covariate effects on trait parameters.

alpha Estimates for covariate effects on uncertainty parameters.

slopes Estimates item slope parameters (only for GPCM = TRUE).

se.delta Estimates of standard errors for covariate effects on trait parameters.

se.xi Estimates of standard errors for covariate effects on trait parameters.

se.alpha Estimates of standard errors for covariate effects on uncertainty parameters.

se.sigma Estimates of standard errors for covariance parameters. Attention: First and third parameter are estimates of se for both variances, the variance of theta and the variance of alpha. Second parameter is the estimate for correlation coefficient between theta and alpha, NOT of the corresponding covariance.

se.slopes Estimates of standard errors of item slope parameters (only for GPCM = TRUE).

delta.GPCM Estimates of item parameters theta in the PCM or GPCM model.

sigma.GPCM Estimate of variance of trait parameters theta in the PCM or GPCM model.

slopes.GPCM Estimates of slope parameters in the GPCM (only for GPCM = TRUE).

Y Matrix containing the ordinal item response data, one row per observation, one column per item.

loglik Marginal log-likelihood

coefs Complete vector of all estimated parameters (for internal use).

se.vec Complete vector of all estimated standard errors (for internal use).

Author(s)

Gunther Schauberger  
<gunther.schauberger@tum.de>  
https://www.sg.tum.de/epidemiologie/team/schauberger/

References


See Also

plot.UPCM UPCM-package
Examples

data(tenseness)

Y <- data.matrix(tenseness[,1:4])
X <- model.matrix(~ Gender + Age, data = tenseness)[,-1]

m_upcm <- UPCM(Y = Y, X = X, cores = 2, GPCM = FALSE)
m_upcm
plot(m_upcm)
Index

* Credit
  UPCM-package, 2

* Model
  UPCM-package, 2

* Partial
  UPCM-package, 2

* UPCM
  UPCM, 5
  UPCM-package, 2

* Uncertainty
  UPCM-package, 2

* datasets
  tenseness, 4

* package
  UPCM-package, 2

nlminb, 5

optim, 5

plot.default, 3
plot.UPCM, 2, 5, 6

tenseness, 4

UPCM, 2, 3, 5

UPCM-package, 2