Package ‘UPG’

October 12, 2022

Type Package
Title Efficient Bayesian Algorithms for Binary and Categorical Data Regression Models
Version 0.3.1
Author Gregor Zens [aut, cre],
 Sylvia Frühwirth-Schnatter [aut],
 Helga Wagner [aut]
Maintainer Gregor Zens <gzens@wu.ac.at>
Encoding latin1
License GPL-3
Language en-US
Depends R (>= 3.5.0)
Imports ggplot2, knitr, matrixStats, mnormt, pgdraw, reshape2, coda, truncnorm
LazyData true
RoxygenNote 7.2.0
NeedsCompilation no
Repository CRAN
Date/Publication 2022-08-05 10:50:02 UTC

R topics documented:

 coef.UPG.Binomial .. 2
 coef.UPG.Logit ... 3
 coef.UPG.MNL ... 4
 coef.UPG.Probit .. 5
Description

ccoef can be used to extract posterior means and credible intervals based on posterior quantiles from UPG.Binomial objects.

Usage

```r
## S3 method for class 'UPG.Binomial'
coeff(object, ..., q = c(0.025, 0.975))
```
Arguments

object an object of class UPG.Binomial.
... other coef parameters.
q a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

Value

Returns a matrix containing posterior means and the desired credible interval.

Author(s)

Gregor Zens

See Also

summary.UPG.Binomial to summarize a UPG.Binomial object and create tables. predict.UPG.Binomial to predict probabilities using a UPG.Binomial object. plot.UPG.Binomial to plot a UPG.Binomial object.

Examples

estimate a binomial logit model using example data
library(UPG)
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[,-c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial")

extract posterior means and credible interval based on 0.025 and 0.975 quantiles
coeff(results.binomial, q = c(0.025, 0.975))
Arguments

object: an object of class UPG.Logit.
...
other coef parameters.
q: a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

Value

Returns a matrix containing posterior means and the desired credible interval.

Author(s)

Gregor Zens

See Also

summary.UPG.Logit to summarize a UPG.Logit object and create tables. predict.UPG.Logit to predict probabilities using a UPG.Logit object. plot.UPG.Logit to plot a UPG.Logit object.

Examples

estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")

extract posterior means and credible interval based on 0.025 and 0.975 quantiles
coefficients = coef(results.logit, q = c(0.025, 0.975))
Arguments

object an object of class UPG.MNL.
... other coef parameters.
q a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

Value

Returns a list containing posterior means and the desired credible interval.

Author(s)

Gregor Zens

See Also

summary.UPG.MNL to summarize a UPG.MNL object and create tables. predict.UPG.MNL to predict probabilities using a UPG.MNL object. plot.UPG.MNL to plot a UPG.MNL object.

Examples

estimate a multinomial logit model using example data
library(UPG)
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl")

extract posterior means and credible interval based on 0.025 and 0.975 quantiles
coef(results.mnl, q = c(0.025, 0.975))
Arguments

object an object of class UPG.Probit.
...
other coef parameters.
q a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

Value

Returns a matrix containing posterior means and the desired credible interval.

Author(s)

Gregor Zens

See Also

summary.UPG.Probit to summarize a UPG.Probit object and create tables. predict.UPG.Probit to predict probabilities using a UPG.Probit object. plot.UPG.Probit to plot a UPG.Probit object.

Examples

estimate a probit model using example data
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.probit = UPG(y = y, X = X, model = "probit")

extract posterior means and credible interval based on 0.025 and 0.975 quantiles
coeff(results.probit, q = c(0.025, 0.975))

lfp Female labor force participation data.

Description

A dataset containing socio-economic characteristics as well as a labor force participation dummy for 753 married women from the panel study of income dynamics.

Usage

lfp
logLik.UPG.Binomial

Format

A data frame with 753 rows and 9 variables:

- lfp: binary indicator for participating in the labor force (=1) or not (=0)
- intercept: intercept
- k5: number of children 5 years old or younger
- k618: number of children 6 to 18 years old
- age: age in years
- wc: binary indicator for college education of the wife
- hc: binary indicator for college education of the husband
- lwg: log expected wage rate; for women in the labor force, the actual wage rate; for women not in the labor force, an imputed value based on a regression of lwg on the other variables
- inc: family income exclusive of wife’s income

Source

logLik.UPG.Binomial

Compute log-likelihoods from UPG.Binomial objects

Description

logLik can be used to compute log-likelihoods from UPG.Binomial objects. The log-likelihood is based on the posterior mean of the coefficients.

Usage

```r
## S3 method for class 'UPG.Binomial'
logLik(object = NULL, ...)
```

Arguments

- object: an object of class UPG.Binomial.
- ...: other logLik parameters.

Value

Returns a numeric of class logLik with attributes containing the number of estimated parameters and the number of observations.

Author(s)

Gregor Zens
logLik.UPG.Logit

See Also

summary.UPG.Binomial to summarize a UPG.Binomial object and create tables. plot.UPG.Binomial to plot a UPG.Binomial object. coef.UPG.Binomial to extract coefficients from a UPG.Binomial object.

Examples

estimate a binomial logit model using example data
library(UPG)
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[,-c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial")

extract log-likelihood
ll.binomial = logLik(results.binomial)

logLik.UPG.Logit

Compute log-likelihoods from UPG.Logit objects

logLik can be used to compute log-likelihoods from UPG.Logit objects. The log-likelihood is based on the posterior mean of the coefficients.

Usage

S3 method for class 'UPG.Logit'
logLik(object = NULL, ...)

Arguments

object an object of class UPG.Logit.

Value

Returns a numeric of class logLik with attributes containing the number of estimated parameters and the number of observations.

Author(s)

Gregor Zens
logLik.UPG.MNL

See Also

summary.UPG.Logit to summarize a UPG.Logit object and create tables. plot.UPG.Logit to plot a UPG.Logit object. coef.UPG.Logit to extract coefficients from a UPG.Logit object.

Examples

estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")

extract log-likelihood
ll.logit = logLik(results.logit)

logLik.UPG.MNL

Compute log-likelihoods from UPG.MNL objects

Description

logLik can be used to compute log-likelihoods from UPG.MNL objects. The log-likelihood is based on the posterior mean of the coefficients.

Usage

S3 method for class 'UPG.MNL'
logLik(object = NULL, ...)

Arguments

object an object of class UPG.MNL.
...
other logLik parameters.

Value

Returns a numeric of class logLik with attributes containing the number of estimated parameters and the number of observations.

Author(s)

Gregor Zens
logLik.UPG.Probit

See Also

summary.UPG.MNL to summarize a UPG.MNL object and create tables. plot.UPG.MNL to plot a UPG.MNL object. coef.UPG.MNL to extract coefficients from a UPG.MNL object.

Examples

estimate a multinomial logit model using example data
library(UPG)
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl")

extract log-likelihood
ll.mnl = logLik(results.mnl)

logLik.UPG.Probit

Compute log-likelihoods from UPG.Probit objects

Description

logLik can be used to compute log-likelihoods from UPG.Probit objects. The log-likelihood is based on the posterior mean of the coefficients.

Usage

S3 method for class 'UPG.Probit'
logLik(object = NULL, ...)

Arguments

object an object of class UPG.Probit.
...
other logLik parameters.

Value

Returns a numeric of class logLik with attributes containing the number of estimated parameters and the number of observations.

Author(s)

Gregor Zens
See Also

`summary.UPG.Probit` to summarize a UPG.Probit object and create tables. `plot.UPG.Probit` to plot a UPG.Probit object. `coef.UPG.Probit` to extract coefficients from a UPG.Probit object.

Examples

```r
# estimate a probit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,,-1]
results.probit = UPG(y = y, X = X, model = "probit")

# extract log-likelihood
ll.probit = logLik(results.probit)
```

Description

plot generates plots from UPG.Binomial objects using ggplot2. Coefficient plots show point estimates for all coefficients as well as their credible intervals.

Usage

```r
## S3 method for class 'UPG.Binomial'
plot(
x = NULL,
...
sort = FALSE,
names = NULL,
xlab = NULL,
ylab = NULL,
q = c(0.025, 0.975),
include = NULL
)
```

Arguments

- `x` an object of class `UPG.Binomial`.
- `...` other plot parameters.
- `sort` a logical variable indicating whether the plotted coefficients should be sorted according to effect sizes. Default is `FALSE`.

plot.UPG.Binomial Coefficient plots for UPG.Binomial objects
plot.UPG.Binomial

names a character vector indicating names for the variables used in the plots.

xlab a character vector of length 1 indicating a title for the x-axis.

ylab a character vector of length 1 indicating a title for the y-axis.

q a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

include can be used to plot only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.

Value

Returns a ggplot2 object.

Author(s)

Gregor Zens

See Also

`summary.UPG.Binomial` to summarize a UPG.Binomial object and create tables. `predict.UPG.Binomial` to predict probabilities using a UPG.Binomial object. `coef.UPG.Binomial` to extract coefficients from a UPG.Binomial object.

Examples

```r
# estimate a binomial logit model using example data
library(UPG)
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[,-c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial")

# plot the results and sort coefficients by effect size
plot(results.binomial, sort = TRUE)

# plot only variables 1 and 3 with custom names, credible intervals and axis labels
plot(results.binomial,
     include = c(1,3),
     names = c("Custom 1", "Custom 2"),
     q = c(0.1, 0.9),
     xlab = c("Custom X"),
     ylab = c("Custom Y"))
```
plot.UPG.Logit

Coefficient plots for UPG.Logit objects

Description

plot generates plots from UPG.Logit objects using ggplot2. Coefficient plots show point estimates for all coefficients as well as their credible intervals.

Usage

S3 method for class 'UPG.Logit'
plot(
 x = NULL,
 ..., sort = FALSE,
 names = NULL,
 xlab = NULL,
 ylab = NULL,
 q = c(0.025, 0.975),
 include = NULL
)

Arguments

x
 an object of class UPG.Logit.

... other plot parameters.

sort a logical variable indicating whether the plotted coefficients should be sorted according to effect sizes. Default is FALSE.

names a character vector indicating names for the variables used in the plots.

xlab a character vector of length 1 indicating a title for the x-axis.

ylab a character vector of length 1 indicating a title for the y-axis.

q a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

include can be used to plot only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.

Value

Returns a ggplot2 object.

Author(s)

Gregor Zens
See Also

summary.UPG.Logit to summarize a UPG.Logit object and create tables. predict.UPG.Logit to predict probabilities using a UPG.Logit object. coef.UPG.Logit to extract coefficients from a UPG.Logit object.

Examples

estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")

plot the results and sort coefficients by effect size
plot(results.logit, sort = TRUE)

plot only variables 1 and 3 with custom names, credible intervals and axis labels
plot(results.logit,
 include = c(1,3),
 names = c("Custom 1", "Custom 2"),
 q = c(0.1, 0.9),
 xlab = c("Custom X"),
 ylab = c("Custom Y"))
Arguments

- **x**: An object of class UPG.MNL.
- **...**: Other plot parameters.
- **sort**: A logical variable indicating whether the plotted coefficients should be sorted according to average effect sizes across groups. Default is FALSE.
- **names**: A character vector indicating names for the variables used in the plots.
- **groups**: A character vector indicating names for the groups excluding the baseline. The group names must correspond to the ordering in the dependent variable used for estimation.
- **xlab**: A character vector of length 1 indicating a title for the x-axis.
- **ylab**: A character vector of length 1 indicating a title for the y-axis.
- **q**: A numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.
- **include**: Can be used to plot only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.

Value

Returns a ggplot2 object.

Author(s)

Gregor Zens

See Also

- summary.UPG.MNL to summarize a UPG.MNL object and create tables.
- predict.UPG.MNL to predict probabilities using a UPG.MNL object.
- coef.UPG.MNL to extract coefficients from a UPG.MNL object.

Examples

```r
# estimate a multinomial logit model using example data
library(UPG)
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl")

# plot the results and sort coefficients by average effect size
plot(results.mnl, sort = TRUE)

# plot only variables 1 and 3 with custom group and variable names
# also, customize credible intervals and axis labels
plot(results.mnl,
     include = c(1,3),
     names = c("Custom 1", "Custom 2"),
     groups = c("Alpha", "Beta"),
)```
plot.UPG.Probit

Coefficient plots for UPG.Probit objects

Description

plot generates plots from UPG.Probit objects using ggplot2. Coefficient plots show point estimates for all coefficients as well as their credible intervals.

Usage

```r
S3 method for class 'UPG.Probit'
plot(
x = NULL,
...,
sort = FALSE,
names = NULL,
lab = NULL,
lab = NULL,
q = c(0.025, 0.975),
include = NULL
)
```

Arguments

- `x` an object of class UPG.Probit.
- `...` other plot parameters.
- `sort` a logical variable indicating whether the plotted coefficients should be sorted according to effect sizes. Default is FALSE.
- `names` a character vector indicating names for the variables used in the plots.
- `xlab` a character vector of length 1 indicating a title for the x-axis.
- `ylab` a character vector of length 1 indicating a title for the y-axis.
- `q` a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.
- `include` can be used to plot only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.

Value

Returns a ggplot2 object.
predict.UPG.Binomial

Author(s)

Gregor Zens

See Also

summary.UPG.Probit to summarize a UPG.Probit object and create tables. predict.UPG.Probit to predict probabilities using a UPG.Probit object. coef.UPG.Probit to extract coefficients from a UPG.Probit object.

Examples

# estimate a probit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,2:3]
results.probit = UPG(y = y, X = X, model = "probit")

# plot the results and sort coefficients by effect size
plot(results.probit, sort = TRUE)

# plot only variables 1 and 3 with custom names, credible intervals and axis labels
plot(results.probit,
     include = c(1, 3),
     names = c("Custom 1", "Custom 2"),
     q = c(0.1, 0.9),
     xlab = c("Custom x"),
     ylab = c("Custom y"))

---

predict.UPG.Binomial  Predicted probabilities from UPG.Binomial objects

Description

predict generates predicted probabilities from a UPG.Binomial object. In addition, credible intervals for these probabilities are computed. Probabilities can be predicted from the data used for estimating the model or for a new data set with the same structure.

Usage

## S3 method for class 'UPG.Binomial'
predict(object = NULL, ..., newdata = NULL, q = c(0.025, 0.975))

Arguments

object  
an object of class UPG.Binomial.

...  
other predict parameters.

newdata  
a matrix or a data.frame containing new explanatory data. The number of columns and the variable ordering must be the same as in the explanatory data used for estimation to generate valid predictions. If no new data is provided, predict will return predicted probabilities for the data used for estimating the model.

q  
a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

Value

Returns a list containing posterior means of predicted probabilities as well as the desired credible interval.

Author(s)

Gregor Zens

See Also

summary.UPG.Binomial to summarize a UPG.Binomial object and create tables. plot.UPG.Binomial to plot a UPG.Binomial object. coef.UPG.Binomial to extract coefficients from a UPG.Binomial object.

Examples

# estimate a binomial logit model using example data
library(UPG)
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[,-c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial")

# extract predicted probabilities
predict(results.binomial)
**predict.UPG.Logit**

Predicted probabilities from UPG.Logit objects

**Description**

`predict` generates predicted probabilities from a UPG.Logit object. In addition, credible intervals for these probabilities are computed. Probabilities can be predicted from the data used for estimating the model or for a new data set with the same structure.

**Usage**

```r
S3 method for class 'UPG.Logit'
predict(object = NULL, ..., newdata = NULL, q = c(0.025, 0.975))
```

**Arguments**

- `object`: an object of class `UPG.Logit`.
- `...`: other predict parameters.
- `newdata`: a matrix or a `data.frame` containing new explanatory data. The number of columns and the variable ordering must be the same as in the explanatory data used for estimation to generate valid predictions. If no new data is provided, `predict` will return predicted probabilities for the data used for estimating the model.
- `q`: a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

**Value**

Returns a list containing posterior means of predicted probabilities as well as the desired credible interval.

**Author(s)**

Gregor Zens

**See Also**

- `summary.UPG.Logit` to summarize a UPG.Logit object and create tables. `plot.UPG.Logit` to plot a UPG.Logit object. `coef.UPG.Logit` to extract coefficients from a UPG.Logit object.

**Examples**

```r
estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
```
\[
X = lfp[,-1]
\]
results.logit = UPG(y = y, X = X, model = "logit")

# extract predicted probabilities
predict(results.logit)

---

**predict.UPG.MNL**  
*Predicted probabilities from UPG.MNL objects*

**Description**

predict generates predicted probabilities from a UPG.MNL object. In addition, credible intervals for these probabilities are computed. Probabilities can be predicted from the data used for estimating the model or for a new data set with the same structure.

**Usage**

```r
S3 method for class 'UPG.MNL'
predict(object = NULL, ..., newdata = NULL, q = c(0.025, 0.975))
```

**Arguments**

- `object`: an object of class UPG.MNL.
- `...`: other predict parameters.
- `newdata`: a matrix or a data.frame containing new explanatory data. The number of columns and the variable ordering must be the same as in the explanatory data used for estimation to generate valid predictions. If no new data is provided, predict will return predicted probabilities for the data used for estimating the model.
- `q`: a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

**Value**

Returns a list containing posterior means of predicted probabilities as well as the desired credible interval.

**Author(s)**

Gregor Zens

**See Also**

- `summary.UPG.MNL` to summarize a UPG.MNL object and create tables.  
- `plot.UPG.MNL` to plot a UPG.MNL object.  
- `coef.UPG.MNL` to extract coefficients from a UPG.MNL object.
predict.UPG.Probit

Examples

# estimate a multinomial logit model using example data
library(UPG)
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl"

# extract predicted probabilities
predict(results.mnl)

predict.UPG.Probit Predicted probabilities from UPG.Probit objects

Description

predict generates predicted probabilities from a UPG.Probit object. In addition, credible intervals for these probabilities are computed. Probabilities can be predicted from the data used for estimating the model or for a new data set with the same structure.

Usage

## S3 method for class 'UPG.Probit'
predict(object = NULL, ..., newdata = NULL, q = c(0.025, 0.975))

Arguments

object an object of class UPG.Probit.
... other predict parameters.
newdata a matrix or a data.frame containing new explanatory data. The number of columns and the variable ordering must be the same as in the explanatory data used for estimation to generate valid predictions. If no new data is provided, predict will return predicted probabilities for the data used for estimating the model.
q a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

Value

Returns a list containing posterior means of predicted probabilities as well as the desired credible interval.

Author(s)

Gregor Zens
print.UPG.Binomial

See Also

summary.UPG.Probit to summarize a UPG.Probit object and create tables. plot.UPG.Probit to plot a UPG.Probit object. coef.UPG.Probit to extract coefficients from a UPG.Probit object.

Examples

# estimate a probit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.probit = UPG(y = y, X = X, model = "probit")

# extract predicted probabilities
predict(results.probit)

print.UPG.Binomial  

Description

print provides some basic information about a UPG.Binomial object.

Usage

## S3 method for class 'UPG.Binomial'
print(x, ...)

Arguments

x  
an object of class UPG.Binomial.

...  
other print parameters.

Author(s)

Gregor Zens

See Also

summary.UPG.Binomial to summarize a UPG.Binomial object and create tables. predict.UPG.Binomial to predict probabilities using a UPG.Binomial object. plot.UPG.Binomial to plot a UPG.Binomial object.
# estimate a binomial logit model using example data
library(UPG)
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[,-c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial")
print(results.binomial)

Examples

# estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")
print(results.logit)

print.UPG.Logit

Print information for UPG.Logit objects

Description

print provides some basic information about a UPG.Logit object.

Usage

## S3 method for class 'UPG.Logit'
print(x, ...)

Arguments

x:
an object of class UPG.Logit.

...:
other print parameters.

Author(s)

Gregor Zens

See Also

summary.UPG.Logit to summarize a UPG.Logit object and create tables.
predict.UPG.Logit to predict probabilities using a UPG.Logit object.
plot.UPG.Logit to plot a UPG.Logit object.

Examples

# estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")
print(results.logit)
Description

print provides some basic information about a UPG.MNL object.

Usage

```r
S3 method for class 'UPG.MNL'
print(x, ...)
```

Arguments

- `x` an object of class UPG.MNL.
- `...` other print parameters.

Author(s)

Gregor Zens

See Also

- `summary.UPG.MNL` to summarize a UPG.MNL object and create tables.
- `predict.UPG.MNL` to predict probabilities using a UPG.MNL object.
- `plot.UPG.MNL` to plot a UPG.MNL object.

Examples

```r
estimate a multinomial logit model using example data
library(UPG)
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl")
print(results.mnl)
```
Description

print provides some basic information about a UPG.Probit object.

Usage

```r
S3 method for class 'UPG.Probit'
print(x, ...)
```

Arguments

- `x` an object of class UPG.Probit.
- `...` other print parameters.

Author(s)

Gregor Zens

See Also

- `summary.UPG.Probit` to summarize a UPG.Probit object and create tables.
- `predict.UPG.Probit` to predict probabilities using a UPG.Probit object.
- `plot.UPG.Probit` to plot a UPG.Probit object.

Examples

```r
estimate a probit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,2]
results.probit = UPG(y = y, X = X, model = "probit")
print(results.probit)
```
**program**  
*Students program choices.*

**Description**

A dataset containing the choice among general program, vocational program and academic program for 200 high school students as well as some explanatory variables.

**Usage**

**program**

**Format**

A data frame with 200 rows and 5 variables:

- **program**: a vector of program choices
- **intercept**: an intercept term
- **female**: binary indicator for female students
- **ses**: socioeconomic status, 1 is lowest
- **write**: writing score of student

**Source**

Original dataset is known as 'hsbdemo' and has been sourced from [https://stats.oarc.ucla.edu/stat/data/hsbdemo.dta](https://stats.oarc.ucla.edu/stat/data/hsbdemo.dta).

**summary.UPG.Binomial**  
*Estimation results and tables for UPG.Binomial objects*

**Description**

`summary` generates a summary of estimation results for `UPG.Binomial` objects. Point estimates, estimated standard deviation as well as credible intervals for each variable are tabulated. In addition, an indicator quickly shows whether the credible interval includes zero or not. Moreover, LaTeX, HTML and pandoc tables can be quickly generated via `knitr`.
Usage

```r
S3 method for class 'UPG.Binomial'
summary(
 object = NULL,
 ...,
 q = c(0.025, 0.975),
 names = NULL,
 digits = 2,
 include = NULL,
 table = NULL,
 cap = NULL
)
```

Arguments

- `object`: an object of class `UPG.Binomial`.
- `...`: other summary parameters.
- `q`: a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.
- `names`: a character vector indicating names for the variables used in the output.
- `digits`: number of digits to be included in output. Last digit will be rounded using `round`.
- `include`: can be used to summarize and tabulate only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.
- `table`: can be used to return a LaTeX table (`'latex'`), a Word table (`'pandoc'`) and HTML tables (`'html'`) via `knitr`. Include package "booktabs" in LaTeX preamble for LaTeX tables.
- `cap`: character vector that can be used to specify the table caption.

Value

Returns a `knitr_kable` object containing the summary table.

Author(s)

Gregor Zens

See Also

- `plot.UPG.Binomial` to plot a UPG.Binomial object. `predict.UPG.Binomial` to predict probabilities using a UPG.Binomial object. `coef.UPG.Binomial` to extract coefficients from a UPG.Binomial object.
Examples

```r
estimate a binomial logit model using example data
library(UPG)
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[, -c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial")

basic summary of regression results
summary(results.binomial)

generate a LaTeX table with subset of variables and custom names
summary(results.binomial, include = c(1, 3),
 names = c("V. kept 1", "V. kept 3"),
 table = "latex")
```

Description

`summary` generates a summary of estimation results for `UPG.Logit` objects. Point estimates, estimated standard deviation as well as credible intervals for each variable are tabulated. In addition, an indicator quickly shows whether the credible interval includes zero or not. Moreover, LaTeX, HTML and pandoc tables can be quickly generated via `knitr`.

Usage

```r
S3 method for class 'UPG.Logit'
summary(
 object = NULL,
 ..., q = c(0.025, 0.975),
 names = NULL,
 digits = 2,
 include = NULL,
 table = NULL,
 cap = NULL
)
```

Arguments

- `object` an object of class `UPG.Logit`
- `...` other summary parameters.
**summary.UPG.Logit**

q       a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.

names  a character vector indicating names for the variables used in the output.

digits number of digits to be included in output. Last digit will be rounded using round.

include can be used to summarize and tabulate only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.

table can be used to return a LaTeX table ('latex'), a Word table ('pandoc') and HTML tables ('html') via knitr. Include package "booktabs" in LaTeX preamble for LaTeX tables.

cap character vector that can be used to specify the table caption.

**Value**

Returns a knitr_kable object containing the summary table.

**Author(s)**

Gregor Zens

**See Also**

plot.UPG.Logit to plot a UPG.Logit object. predict.UPG.Logit to predict probabilities using a UPG.Logit object. coef.UPG.Logit to extract coefficients from a UPG.Logit object.

**Examples**

```r
estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1] # generate a LaTeX table with subset of variables and custom names
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")

basic summary of regression results
summary(results.logit)

generate a LaTeX table with subset of variables and custom names
summary(results.logit, include=c(1,3), names=c("V. kept 1", "V. kept 3"), table="latex")
```

# estimate a logit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit")

# basic summary of regression results
summary(results.logit)

# generate a LaTeX table with subset of variables and custom names
summary(results.logit, include=c(1,3), names=c("V. kept 1", "V. kept 3"), table="latex")
Description

summary generates a summary of estimation results for UPG.MNL objects. Point estimates, estimated standard deviation as well as credible intervals for each variable are tabulated. In addition, an indicator quickly shows whether the credible interval includes zero or not. Moreover, LaTeX, HTML and pandoc tables can be quickly generated via knitr.

Usage

```r
S3 method for class 'UPG.MNL'
summary(
 object = NULL,
 ..., q = c(0.025, 0.975),
 groups = NULL,
 names = NULL,
 digits = 2,
 include = NULL,
 table = NULL,
 cap = NULL
)
```

Arguments

- `object`: an object of class UPG.MNL.
- `...`: other summary parameters.
- `q`: a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.
- `groups`: a character vector indicating names for the groups, excluding the baseline. The group names must correspond to the ordering in the dependent variable used for estimation.
- `names`: a character vector indicating names for the variables used in the output.
- `digits`: number of digits to be included in output. Last digit will be rounded using round.
- `include`: can be used to summarize and tabulate only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.
- `table`: can be used to return a LaTeX table ("latex"), a Word table ("pandoc") and HTML tables ("html") via knitr. Include package "booktabs" in LaTeX preamble for LaTeX tables.
- `cap`: character vector that can be used to specify the table caption.
Value

Returns a knitr_kable object containing the summary table.

Author(s)

Gregor Zens

See Also

plot.UPG.MNL to plot a UPG.MNL object. predict.UPG.MNL to predict probabilities using a UPG.MNL object. coef.UPG.MNL to extract coefficients from a UPG.MNL object.

Examples

```r
estimate a multinomial logit model using example data
library(UPG)
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl")

basic summary of regression results
summary(results.mnl)

generate a LaTeX table with subset of variables and custom names
summary(results.mnl,
 include=c(1,3),
 groups=c("Alpha","Beta"),
 names=c("V. kept 1", "V. kept 3"),
 table="latex")
```

Description

`summary.UPG.Probit` generates a summary of estimation results for UPG.Probit objects. Point estimates, estimated standard deviation as well as credible intervals for each variable are tabulated. In addition, an indicator quickly shows whether the credible interval includes zero or not. Moreover, LaTeX, HTML and pandoc tables can be quickly generated via knitr.

Usage

```r
S3 method for class 'UPG.Probit'
summary(
 object = NULL,
    ```
...,
  q = c(0.025, 0.975),
  names = NULL,
  digits = 2,
  include = NULL,
  table = NULL,
  cap = NULL
)

Arguments

  object                     an object of class UPG.Probit.
  ...                      other summary parameters.
  q                       a numerical vector of length two providing the posterior quantiles to be extracted. Default are 0.025 and 0.975 quantiles.
  names                    a character vector indicating names for the variables used in the output.
  digits                   number of digits to be included in output. Last digit will be rounded using round.
  include                  can be used to summarize and tabulate only a subset of variables. Specify the columns of X that should be kept in the plot. See examples for further information.
  table                    can be used to return a LaTeX table ('latex'), a Word table ('pandoc') and HTML tables ('html') via knitr. Include package "booktabs" in LaTeX preamble for LaTeX tables.
  cap                      character vector that can be used to specify the table caption.

Value

  Returns a knitr_kable object containing the summary table.

Author(s)

  Gregor Zens

See Also

  plot.UPG.Probit to plot a UPG.Probit object. predict.UPG.Probit to predict probabilities using a UPG.Probit object. coef.UPG.Probit to extract coefficients from a UPG.Probit object.

Examples

  # estimate a probit model using example data
  library(UPG)
  data(lfp)
  y = lfp[,1]
  X = lfp[,-1]
  results.probit = UPG(y = y, X = X, model = "probit")
# basic summary of regression results
summary(results.probit)

# generate a LaTeX table with subset of variables and custom names
summary(results.probit,  
    include=c(1, 3),  
    names=c("V. kept 1", "V. kept 3"),  
    table="latex")

titanic

## Grouped Titanic survival data.

### Description

A dataset containing the number of survivals and the total number of persons by passenger class, age group and gender.

### Usage

titanic

### Format

A data frame with 78 rows and 6 variables:

- **survived**: number of passengers that survived
- **total**: number of total passengers
- **intercept**: an intercept term
- **pclass**: passenger class (3 is lowest)
- **female**: binary indicator for female passenger groups
- **age.group**: age group indicator (0-5yrs, 5-10yrs, ...)

### Source

Description

UPG estimates Bayesian regression models for binary or categorical outcomes using samplers based on marginal data augmentation.

Usage

```r
UPG(y, X, model, Ni = NULL, baseline = NULL, draws = 1000, burnin = 1000, A0 = 4, B0 = 4, d0 = 2.5, D0 = 1.5, G0 = 100, verbose = TRUE, gamma.boost = TRUE, delta.boost = TRUE, beta.start = NULL)
```

Arguments

- **y**: a binary vector for probit and logit models. A character, factor or numeric vector for multinomial logit models. A numerical vector of the number of successes for the binomial model.
- **X**: a matrix of explanatory variables including an intercept in the first column. Rows are individuals, columns are variables.
- **model**: indicates the model to be estimated. 'probit' for the probit model, 'logit' for the logit model, 'mnl' for the multinomial logit model or 'binomial' for the binomial logit model.
- **Ni**: a vector containing the number of trials when estimating a binomial logit model.
- **baseline**: a string that can be used to change the baseline category in MNL models. Default baseline is the most commonly observed category.
- **draws**: number of saved Gibbs sampler iterations. Default is 1000 for illustration purposes, you should use more when estimating a model (e.g. 10,000).
- **burnin**: number of burned Gibbs sampler iterations. Default is 1000 for illustration purposes, you should use more when estimating a model (e.g. 2,000).
A0  prior variance for the intercept, 4 is the default.
B0  prior variance for the coefficients, 4 is the default.
d0  prior shape for working parameter delta, 2.5 is the default.
D0  prior rate for working parameter delta, 1.5 is the default.
G0  prior variance for working parameter gamma, 100 is the default.
verbose  logical variable indicating whether progress should be printed during estimation.
gamma.boost  logical variable indicating whether location-based parameter expansion boosting should be used.
delta.boost  logical variable indicating whether scale-based parameter expansion boosting should be used.
beta.start  provides starting values for beta (e.g. for use within Gibbs sampler). Baseline coefficients need to be zero for multinomial model.

Value
Depending on the estimated model, UPG() returns a UPG.Probit, UPG.Logit, UPG.MNL or UPG.Binomial object.

Author(s)
Gregor Zens

See Also
summary.UPG.Probit to summarize a UPG.Probit object and to create tables. predict.UPG.Logit to predict probabilities using a UPG.Logit object. plot.UPG.MNL to plot a UPG.MNL object.

Examples

# load package
library(UPG)

# estimate a probit model using example data
# warning: use more burn-ins, burnin = 100 is just used for demonstration purposes
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.probit = UPG(y = y, X = X, model = "probit", burnin = 100)

# estimate a logit model using example data
# warning: use more burn-ins, burnin = 100 is just used for demonstration purposes
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.logit = UPG(y = y, X = X, model = "logit", burnin = 100)

# estimate a MNL model using example data
# warning: use more burn-ins, burnin = 100 is just used for demonstration purposes
data(program)
y = program[,1]
X = program[,-1]
results.mnl = UPG(y = y, X = X, model = "mnl", burnin = 100)

# estimate a binomial logit model using example data
# warning: use more burn-ins, burnin = 100 is just used for demonstration purposes
data(titanic)
y = titanic[,1]
Ni = titanic[,2]
X = titanic[,,-c(1,2)]
results.binomial = UPG(y = y, X = X, Ni = Ni, model = "binomial", burnin = 100)

UPG.Diag

MCMC Diagnostics for UPG.Probit, UPG.Logit, UPG.MNL and UPG.Binomial objects using coda

Description

UPG.Diag computes a number of MCMC diagnostics based on the Markov chains that are contained in the model output returned by UPG.

Usage

UPG.Diag(object = NULL)

Arguments

object an object of class UPG.Probit, UPG.Logit, UPG.MNL or UPG.Binomial.

Value

Returns a list containing effective sample size, effective sampling rate and inefficiency factors for each coefficient. In addition, maximum, minimum and median of these measures are returned.

Author(s)

Gregor Zens

Examples

# estimate a probit model using example data
library(UPG)
data(lfp)
y = lfp[,1]
X = lfp[,-1]
results.probit = UPG(y = y, X = X, model = "probit")
# compute MCMC diagnostics
UPG.Diag(results.probit)

__UPG.Diag.Binomial__  
**MCMC Diagnostics for UPG.Binomial objects**

**Description**

**UPG.Diag.Binomial** computes inefficiency factors, effective sample size and effective sampling rate based on the posterior distributions in a UPG.Binomial object.

**Usage**

```r
UPG.Diag.Binomial(object = NULL)
```

**Arguments**

- **object**  
an object of class UPG.Binomial.

**Value**

Returns a list containing effective sample size, effective sampling rate and inefficiency factors for each coefficient.

**Author(s)**

Gregor Zens

__UPG.Diag.Logit__  
**MCMC Diagnostics for UPG.Logit objects**

**Description**

**UPG.Diag.Logit** computes inefficiency factors, effective sample size and effective sampling rate based on the posterior distributions in a UPG.Logit object.

**Usage**

```r
UPG.Diag.Logit(object = NULL)
```

**Arguments**

- **object**  
an object of class UPG.Logit.
**UPG.Diag.MNL**

MCMC Diagnostics for UPG.MNL objects

**Description**

UPG.Diag.MNL computes inefficiency factors, effective sample size and effective sampling rate based on the posterior distributions in a UPG.MNL object.

**Usage**

UPG.Diag.MNL(object = NULL)

**Arguments**

- object: an object of class UPG.MNL.

**Value**

Returns a list containing effective sample size, effective sampling rate and inefficiency factors for each coefficient.

**Author(s)**

Gregor Zens

---

**UPG.Diag.Probit**

MCMC Diagnostics for UPG.Probit objects

**Description**

UPG.Diag.Probit computes inefficiency factors, effective sample size and effective sampling rate based on the posterior distributions in a UPG.Probit object.

**Usage**

UPG.Diag.Probit(object = NULL)

**Value**

Returns a list containing effective sample size, effective sampling rate and inefficiency factors for each coefficient.

**Author(s)**

Gregor Zens
**Arguments**

- object: an object of class `UPG.Probit`.

**Value**

Returns a list containing effective sample size, effective sampling rate and inefficiency factors for each coefficient.

**Author(s)**

Gregor Zens
Index

* datasets
  lfp, 6
  program, 26
  titanic, 33
  coef.UPG.Binomial, 2, 8, 12, 18, 27
  coef.UPG.Logit, 3, 9, 14, 19, 29
  coef.UPG.MNL, 4, 10, 15, 20, 31
  coef.UPG.Probit, 5, 11, 17, 22, 32
  lfp, 6
  logLik.UPG.Binomial, 7
  logLik.UPG.Logit, 8
  logLik.UPG.MNL, 9
  logLik.UPG.Probit, 10
  plot.UPG.Binomial, 3, 8, 11, 18, 22, 27
  plot.UPG.Logit, 4, 9, 13, 19, 23, 29
  plot.UPG.MNL, 5, 10, 14, 20, 24, 31, 35
  plot.UPG.Probit, 6, 11, 16, 22, 25, 32
  predict.UPG.Binomial, 3, 12, 17, 22, 27
  predict.UPG.Logit, 4, 14, 19, 23, 29, 35
  predict.UPG.MNL, 5, 15, 20, 24, 31
  predict.UPG.Probit, 6, 17, 21, 25, 32
  print.UPG.Binomial, 22
  print.UPG.Logit, 23
  print.UPG.MNL, 24
  print.UPG.Probit, 25
  program, 26
  summary.UPG.Binomial, 3, 8, 12, 18, 22, 26
  summary.UPG.Logit, 4, 9, 14, 19, 23, 28
  summary.UPG.MNL, 5, 10, 15, 20, 24, 30
  summary.UPG.Probit, 6, 11, 17, 22, 25, 31, 35
  titanic, 33
  UPG, 34
  UPG.Diag, 36
  UPG.Diag.Binomial, 37
  UPG.Diag.Logit, 37