Package ‘UStatBookABSC’

December 27, 2016

Title A Companion Package to the Book “U-Statistics, M-Estimation and Resampling”

Version 1.0.0

Author Snigdhansu Chatterjee <chattP1Y@umnNedu>

Maintainer Snigdhansu Chatterjee <chattP1Y@umnNedu>

Description A set of functions leading to multivariate response L1 regression.

This includes functions on computing Euclidean inner products and norms, weighted least squares estimates on multivariate responses, function to compute fitted values and residuals. This package is a companion to the book “U-Statistics, M-estimation and Resampling”, by Arup Bose and Snigdhansu Chatterjee, to appear in 2017 as part of the “Texts and Readings in Mathematics” (TRIM) series of Hindustan Book Agency and Springer-Verlag.

Depends R (>= 3.2.3)

Suggests MASS

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 5.0.1.9000

NeedsCompilation no

Repository CRAN

Date/Publication 2016-12-27 17:50:42

R topics documented:

- CCU12_Precip
- FitAndResiduals
- IdentityMatrix
- InnerProduct
- L1Regression
- Norm
- WLS

Index 7
CCU12_Precip | Precipitation for June-September 2012 recorded in Kolkata

Description
Precipitation for June-September 2012 recorded in Kolkata

Usage
data(CCU12_Precip)

Format
A data frame with columns
- **Date**: The data in Year-Month-Day format
- **Precip**: Precipitation in millimeters
- **TMax**: Maximum temperature, in Celsius
- **TMin**: Minimum temperature, in Celsius

Examples
```
Precip <- CCU12_Precip$Precip
TMax <- CCU12_Precip$TMax
plot(TMax, Precip)
```

FitAndResiduals | Computes a linear regression fit and residuals on possibly multivariate responses

Description
Computes a linear regression fit and residuals on possibly multivariate responses

Usage
```
FitAndResiduals(Y, X, BetaHat)
```

Arguments
- **Y**: a numeric matrix, to act as response
- **X**: a numeric matrix, to act as covariates
- **BetaHat**: a numeric matrix, to act as slope
IdentityMatrix

Value

a list consisting of two vectors, the fitted values and residuals

Examples

```r
## Not run:
DataY = cbind(CC12_Precip$Precip, CC12_Precip$TMax);
DataX = cbind(rep(1, length(CC12_Precip$Precip)), CC12_Precip$TMin)
BetaHat.New = WLS(DataY, DataX)
Results.New = FitAndResiduals(DataY, DataX, BetaHat.New);

## End(Not run)
```

Description

Obtains the identity matrix of dimension \(n \)

Usage

```r
IdentityMatrix(n)
```

Arguments

- **n**: an integer

Value

an identity matrix

Examples

```r
I.3 = IdentityMatrix(3)
print(I.3)
```
InnerProduct

Description

Computes the Euclidean inner product

Usage

```
InnerProduct(a, b, na.rm)
```

Arguments

- `a`: a numeric vector
- `b`: another numeric vector
- `na.rm`: logical

Value

a real number

Examples

```
x <- c(1, 2, 3)
y <- c(3, 0, 1)
InnerProduct(x, y)
```

L1Regression

Description

Computes a L1 multivariate regression. This is the equivalent of median regression when the response is possibly multivariate.

Usage

```
L1Regression(Data.Y, Data.X, Weights,
InitialValue = "WLS", MaxIteration, epsilon, lambda)
```
Norm

Arguments

Data.Y a numeric matrix, to act as response
Data.X a numeric matrix, to act as covariates
Weights a numeric matrix, to act as weights
InitialValue a character, to denote how the initial estimate will be computed currently the only available option is WLS
MaxIteration an integer, for the maximum number of iterations allowed
epsilon a positive real number, as tolerance value for convergence
lambda a real number between 0 and 1, to control the amount of update allowed in each iteration

Value

a list consisting of the iteration value at the last step, the difference in norms between the last two iterations, and the estimate of slope

Examples

Not run:
DataY = cbind(CCU12_Precip$Precip, CCU12_Precip$TMax);
DataX = cbind(rep(1, length(CCU12_Precip$Precip)), CCU12_Precip$TMin)
A2 = L1Regression(DataY, DataX)

End(Not run)

<table>
<thead>
<tr>
<th>Norm</th>
<th>Computes the Euclidean norm</th>
</tr>
</thead>
</table>

Description

Computes the Euclidean norm

Usage

Norm(a, na.rm)

Arguments

a a numeric vector
na.rm logical

Value

a real number
Examples

```r
x <- c(1, 2)
Norm(x)
```

WLS

Computes a weighted least squares linear regression on possibly multivariate responses

Description

Computes a weighted least squares linear regression on possibly multivariate responses

Usage

```r
WLS(Y, X, W)
```

Arguments

- `Y`: a numeric matrix, to act as response
- `X`: a numeric matrix, to act as covariates
- `W`: a numeric matrix, to act as weights

Value

a vector of regression coefficients

Examples

```r
## Not run:
DataY = cbind(CCUI2_Precip$Precip, CCUI2_Precip$TMax);
DataX = cbind(rep(1, length(CCUI2_Precip$Precip)), CCUI2_Precip$TMin)
BetaHat.New = WLS(DataY, DataX)

## End(Not run)
```
Index

*Topic datasets
 CCU12_Precip, 2

CCU12_Precip, 2
FitAndResiduals, 2
IdentityMatrix, 3
InnerProduct, 4
L1Regression, 4
Norm, 5
WLS, 6