Package ‘VAR.etp’

August 31, 2023

Type Package
Title VAR Modelling: Estimation, Testing, and Prediction
Version 1.1
Date 2023-08-31
Author Jae. H. Kim
Maintainer Jae H. Kim <jaekim8080@gmail.com>
Description A collection of the functions for estimation, hypothesis testing, prediction for stationary vector autoregressive models.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-31 08:40:02 UTC

R topics documented:

- VAR.etp-package .. 2
- dat ... 2
- data1 .. 3
- PR.Fore ... 3
- PR.IARM .. 4
- PR.order .. 5
- Rmatrix .. 6
- VAR.BaBPR ... 7
- VAR.Boot .. 9
- VAR.BPR .. 10
- VAR.est ... 11
- VAR.FOR .. 12
- VAR.Fore .. 13
- VAR.irf .. 14
- VAR.LR .. 15
- VAR.Pope .. 16
- VAR.Rest .. 17
- VAR.select ... 19
- VAR.Select ... 20
VAR.etp-package | VAR Modelling: Estimation, Testing, and Prediction

Description

Estimation, Hypothesis Testing, Prediction in Stationary Vector Autoregressive Models

Details

Package: VAR.etp
Type: Package
Version: 1.1
Date: 2023-08-31
License: GPL-2

The data set dat.rda is from Lutkepohl’s book.
It is German Macrod ata in log difference.
Bootstrap bias-correction and prediction intervals are also included.
Estimation and Forecasting based on Predictive Regression is also included.

Author(s)

Jae H. Kim
Maintainer: Jae H. Kim

dat

German investment income consumption in log difference

Description

Lutkepohl’s data

Usage

data(dat)

References

Examples

data(dat)
data1

stock return data used in Kim (2014)

Description

stock return data used in Kim (2014)

Usage

```r
data(data1)
```

References

Examples

```r
data(data1)
```

PR.Fore

Improved Augmented Regression Method for Predictive Regression

Description

Function for forecasting based on Improved ARM

Usage

```r
PR.Fore(x, y, M, h = 10)
```

Arguments

- `x`: predictor or matrix of predictors in column
- `y`: variable to be predicted, usually stock return
- `M`: Estimation results of the function PR.IARM
- `h`: forecasting period

Details

Function for forecasting based on Improved ARM

Value

```r
Fore
```

Out-of sample and dynamic forecasts for `y` and `x`
Note

Author(s)
jae H. Kim

References

Examples
```r
data(data1)
# Replicating Table 5 (excess return)
y=data1$ret.nyse.vw*100-data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100); k=ncol(x)
p=4
Rmat1=Rmatrix(p,k,type=1,index=1); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec
M=PR.IARM(x,y,p,Rmat,rvec)
PRF=PR.Fore(x,y,M)
```

PR.IARM

Improved Augmented Regression Method (IARM) for Predictive Regression

Description
Function for Improved ARM (IARM) estimation and testing

Usage
```r
PR.IARM(x, y, p, Rmat = diag(k * p), rvec = matrix(0, nrow = k * p))
```

Arguments
- **x**: predictor or a matrix of predictors in column
- **y**: variable to be predicted, usually data1 return
- **p**: AR order
- **Rmat**: Restriction matrix, refer to function Rmatrix
- **rvec**: Restriction matrix, refer to function Rmatrix

Details
PR.order

Value
- **LS**: Ordinary Least Squares Estimators
- **IARM**: IARM Estimators
- **AR**: AR parameter estimators
- **ARc**: Bias-corrected AR parameter estimators
- **Fstats**: Fstats and their p-values
- **Covbc**: Covariance matrix of the IARM estimators (for the predictive coefficients only)

Note

Author(s)
Jae H. Kim

References

Examples
```r
data(data1)
# Replicating Table 5 (excess return) of Kim (2014)
y=data1$ret.nyse.vw*100 -data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100);
Rmat1=Rmatrix(p=1,k=2,type=1,index=0); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec
M=PR.IARM(x,y,p=1,Rmat,rvec)
```

Description
Function to select the order p by AIC or BIC

Usage
```r
PR.order(x, y, pmax = 10)
```

Arguments
- **x**: predictor or a matrix of predictors in column
- **y**: variable to be predicted, usually stock return
- **pmax**: maximum order for order selection
Details

Value

| p.aic | order chosen by AIC |
| p.aic | order chosen by BIC |

Note

Author(s)

Jae H. Kim

References

Examples

```r
data(data1)
# Replicating Table 5 (excess return)
y=data1$ret.nyse.vw*100 -data1$tbill*100
x=cbind(log(data1$dy.nyse), data1$tbill*100); k=ncol(x)
p=PR.order(x,y,pmax=10)$p.bic; # AR(1)
```

Rmatrix

Improved Augmented Regression Method for Predictive Regression

Description

Function to generate restriction matrices

Usage

```r
Rmatrix(p, k, type = 1, index = 0)
```
VAR.BaBPR

Arguments

- \(p \)
 AR order
- \(k \)
 number of predictors
- \(\text{type} \)
 \(\text{type} = 1: \text{H}0: b_1=b_2=b_3=0; \text{type} = 2: \text{H}0: b_1+b_2+b_3=0 \)
- \(\text{index} \)
 \(\text{index}=0 : \text{H}0 \) applies for all parameters; \(\text{index}=k : \text{H}0 \) applies for kth predictor

Details

Function to generate restriction matrices

Value

- \(\text{Rmat} \)
 this value should be passed to PR.IARM
- \(\text{rvec} \)
 this value should be passed to PR.IARM

Author(s)

Jae H. Kim

References

Examples

\[\text{Rmat1=Rmatrix(p=1,k=1,type=2,index=1); Rmat=Rmat1$Rmat; rvec=Rmat1$rvec} \]

VAR.BaBPR

Bootstrap-after-Bootstrap Prediction Intervals for VAR(p) Model

Description

Bias-correction given with stationarity Correction

Usage

\[\text{VAR.BaBPR(x, p, h, nboot = 500, nb = 200, type = "const", alpha = 0.95)} \]
Arguments

- **x**: data matrix in column
- **p**: AR order
- **h**: forecasting period
- **nboot**: number of 2nd-stage bootstrap iterations
- **nb**: number of 1st-stage bootstrap iterations
- **type**: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
- **alpha**: 100(1-alpha) percent prediction intervals

Details

Bias-correction given with stationarity Correction

Value

<table>
<thead>
<tr>
<th>Intervals</th>
<th>Prediction Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast</td>
<td>Point Forecasts</td>
</tr>
<tr>
<td>alpha</td>
<td>Probability Content of Prediction Intervals</td>
</tr>
</tbody>
</table>

Note

Bias-correction given with stationarity Correction

Author(s)

Jae H. Kim

References

Examples

```r
data(dat)
VAR.BaBPR(dat,p=2,h=10,nboot=200,nb=100,type="const",alpha=0.95)
# nboot and nb are set to low numbers for fast execution in the example
# In actual implementation, use higher numbers such as nboot=1000, nb=200
```
VAR.Boot

Description

The function returns bias-corrected parameter estimators and bias estimators based on the bootstrap.

Usage

```r
VAR.Boot(x, p, nb = 200, type = "const")
```

Arguments

- `x`: data matrix in column
- `p`: AR order
- `nb`: number of bootstrap iterations
- `type`: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend

Details

Kilian’s (1998) stationarity-correction is used for bias-correction.

Value

- `coef`: coefficient matrix
- `resid`: matrix of residuals
- `sigu`: residual covariance matrix
- `Bias`: Bootstrap Bias Estimator

Author(s)

Jae H. Kim

References

Examples

```r
data(dat)
VAR.Boot(dat, p=2, nb=200, type="const")
```
Description

No Bias-correction is given

Usage

\texttt{VAR.BPR(x, p, h, nboot = 500, type = "const", alpha = 0.95)}

Arguments

- \texttt{x}: data matrix in column
- \texttt{p}: AR order
- \texttt{h}: forecasting period
- \texttt{nboot}: number of bootstrap iterations
- \texttt{type}: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
- \texttt{alpha}: 100(1-alpha) percent prediction intervals

Details

Bootstrap Prediction Intervals for VAR(p) Model

Value

<table>
<thead>
<tr>
<th>Intervals</th>
<th>Prediction Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecast</td>
<td>Point Forecasts</td>
</tr>
<tr>
<td>alpha</td>
<td>Probability Content of Prediction Intervals</td>
</tr>
</tbody>
</table>

Note

No Bias-correction is given

Author(s)

Jae H. Kim

References

VAR.est

Examples

data(dat)
VAR.BPR(dat,p=2,h=10,nboot=200,type="const",alpha=0.95)
nboot is set to a low number for fast execution in the example
In actual implementation, use higher number such as nboot=1000

VAR.est

Estimation of unrestricted VAR(p) model parameters

Description

This function returns least-squares estimation results for VAR(p) model

Usage

VAR.est(x, p, type = "const")

Arguments

x data matrix in column
p AR order
type "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend

Details

VAR estimation

Value

coef coefficient matrix
resid matrix of residuals
sigu residual covariance matrix
zzmat data moment matrix
zmat data moment matrix
tratio matrix of tratio corresponding to coef matrix

Note

See Chapter 3 of Lutkepohl (2005)

Author(s)

Jae H. Kim
References

Examples

```r
# replicating Section 3.2.3 of of Lutkepohl (2005)
data(dat)
M=VAR.est(dat,p=2,type="const")
print(M$coef)
print(M$tratio)
```

Description

Generate point forecasts and prediction intervals

Usage

```r
VAR.FOR(x, p, h, type = "const", alpha = 0.95)
```

Arguments

- **x**: data matrix in column
- **p**: VAR order
- **h**: Forecasting Periods
- **type**: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
- **alpha**: 100(1-alpha) percent prediction intervals

Details

Prediction Intervals are based on normal approximation

Value

- **Intervals**: Prediction Intervals, out-of-sample and dynamic
- **Forecast**: Point Forecasts, out-of-sample and dynamic
- **alpha**: Probability Content of Prediction Intervals

Note

See Chapter 3 of Lutkepohl (2005)
VAR.Fore

Author(s)

Jae H. Kim

References

Examples

```r
# replicating Section 3.5.3 of Lutkepohl (2005)
data(dat)
VAR.FOR(dat, p=2, h=10, type="const", alpha=0.95)
```

Description

Generate point forecasts using the estimated VAR coefficient matrix

Usage

```r
VAR.Fore(x, b, p, h, type = "const")
```

Arguments

- `x`: data matrix in column
- `b`: matrix of coefficients from VAR.est or VAR.Rest
- `p`: VAR order
- `h`: Forecasting Periods
- `type`: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend

Details

Generate point forecasts using the estimated VAR coefficient matrix

Value

`Fore` Point Forecasts, out-of-sample and dynamic

Note

See Chapter 3 of Lutkepohl (2005)

Author(s)

Jae H. Kim
References

Examples

replicating Section 3.5.3 of Lutkepohl (2005)
data(dat)
b=VAR.est(dat,p=2,type="const")$coef
VAR.Fore(dat,b,p=2,h=10,type="const")

VAR.irf
Orthogonalized impulse response functions from an estimated VAR(p) model

Description
This function returns Orthogonalized impulse response functions

Usage
VAR.irf(b, p, sigu, h=10, graphs=FALSE)

Arguments
b VAR coefficient matrix, from VAR.est or similar estimation function
p VAR order
sigu VAR residual covariance matrix, from VAR.est or similar estimation function
h response horizon, the default is set to 10
graphs logical, if TRUE, show the impulse-response functions, the default is FALSE

Details
VAR impulse response functions

Value
impmat matrix that contains orthogonalized impulse-responses

Note
See Lutkepohl (2005) for details

Author(s)
Jae H. Kim
VAR.LR

References

Examples

#repeating Table 3.4 and Figure 3.11 Lutkepohl (2005)
data(dat)
M=VAR.est(dat,p=2,type="const")
b=M$coef; sigu=M$sigu
VAR.irf(b,p=2,sigu,graphs=TRUE)

VAR.LR

The Likelihood Ratio test for parameter restrictions

Description
Likelihood Ratio test for zero parameter restrictions based on system VAR estimation
Bootstrap option is available: iid bootstrap or wild bootstrap
Bootstrap is conducted under the null hypothesis using estimated GLS estimation: see Kim (2014)

Usage

VAR.LR(x, p, restrict0, restrict1, type = "const",bootstrap=0, nb=500)

Arguments

x data matrix in column
p VAR order
restrict0 Restriction matrix under H0
restrict1 Restriction matrix under H1, if "full", the full VAR is estimated under H1
type "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
bootstrap 0 for no bootstrap; 1 for iid bootstrap; 2 for wild bootstrap
nb the number of bootstrap iterations

Details
Restriction matrix is of m by 3 matrix where m is the number of restrictions. A typical row of this matrix (k,i,j), which means that (i,j) element of Ak matrix is set to 0. Ak is a VAR coefficient matrix (k = 1,...,p).
The bootstrap test is conducted using the GLS estimation under the parameter restrictions implied by the null hypothesis: see Kim (2014) for details.
Kim (2014) found that the bootstrap based on OLS can show inferior small sample properties.
There are two versions of the bootstrap: the first is based on the iid resampling and the second based on wild bootstrapping.
The Wild bootstrap is conducted with Mammen’s two-point distribution.
VAR.Pope

Bias-correction for VAR parameter estimators based on Pope’s formula

Description

The function returns bias-corrected parameter estimators and Bias estimators based on Pope’s asymptotic formula

Usage

VAR.Pope(x, p, type = "const")

Arguments

x data matrix in column
p AR order

References

Examples

data(dat)
#replicating Table 4.4 of Lutkepohl (2005)
restrict1="full"
restrict0 = rbind(c(4,1,1), c(4,1,2), c(4,1,3), c(4,2,1),
c(4,2,2),c(4,2,3),c(4,3,1),c(4,3,2),c(4,3,3))
VAR.LR(dat,p=4,restrict0,restrict1,type="const")
Details

Kilian’s (1998) stationarity-correction is used for bias-correction

Value

coeff Bias-corrected coefficient matrix
resid matrix of residuals
singu residual covariance matrix
Bias Bias Estimate

Author(s)

Jae H. Kim

References

Examples

data(dat)
VAR.Pope(dat, p=2, type="const")

Description

Estimation of VAR with 0 restrictions on parameters

Usage

VAR.Rest(x, p, restrict, type = "const", method = "gls")
Arguments

- x: data matrix in column
- p: VAR order
- restrict: Restriction matrix under H0
- type: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
- method: "ols" for OLS estimation, "gls" for EGLS estimation

Details

Restriction matrix is of m by 3 matrix where m is the number of restrictions. A typical row of this matrix (k,i,j), which means that (i,j) element of Ak matrix is set to 0. Ak is a VAR coefficient matrix (k = 1,...,p).

Value

- coef: coefficient matrix
- resid: matrix of residuals
- sigu: residual covariance matrix
- zmat: data matrix
- tstat: matrix of tratio corresponding to coef matrix

Note

See Chapter 5 of Lutkepohl

Author(s)

Jae H. Kim

References

Examples

data(dat)
replicating Section 5.2.10 of Lutkepohl (2005)
restrict = rbind(c(1,1,2),c(1,1,3),c(1,2,1),c(1,2,2), c(1,3,1),
 c(2,1,2),c(2,1,3), c(2,2,1), c(2,2,2), c(2,2,3), c(2,3,1), c(2,3,3),
 c(3,1,2), c(3,1,3), c(3,2,1), c(3,2,2), c(3,2,3), c(3,3,1), c(3,3,2),
 c(4,1,2), c(4,1,3), c(4,2,1), c(4,2,2), c(4,2,3), c(4,3,1), c(4,3,2), c(4,3,3))
M= VAR.Rest(dat,p=4,restrict,type="const",method="gls")
print(M$coef)
print(M$tstat)
VAR.select

Order Selection for VAR models

Description
AIC, HQ, or SC can be used

Usage
VAR.select(x, type = "const", ic = "aic", pmax)

Arguments
- **x**: data matrix in column
- **type**: "const" for the AR model with intercept only, "const+trend" for the AR model with intercept and trend
- **ic**: choose one of "aic", "sc", "hq"
- **pmax**: the maximum VAR order

Details
Order Selection Criterion

Value
- **IC**: Values of information criterion for VAR models
- **p**: AR order selected

Note
See Chapter 4 of Lutkepohl

Author(s)
Jae H. Kim

References

Examples
```r
data(dat)
# replicating Section 4.3.1 of Lutkepohl (2005)
VAR.select(dat,pmax=4,ic="aic")
```
VAR.Wald
Wald test for parameter restrictions

Description

Wald test for zero parameter restrictions based on system VAR estimation.
Bootstrap option is available: iid bootstrap or wild bootstrap.
Bootstrap is conducted under the null hypothesis using estimated GLS estimation: see Kim (2014).

Usage

```r
VAR.Wald(x, p, restrict, type = "const", bootstrap=0, nb=500)
```

Arguments

- **x**: data matrix in column
- **p**: VAR order
- **restrict**: Restriction matrix under H0
- **type**:
 - "const" for the AR model with intercept only
 - "const+trend" for the AR model with intercept and trend
- **bootstrap**:
 - 0 for no bootstrap
 - 1 for iid bootstrap
 - 2 for wild bootstrap
- **nb**: the number of bootstrap iterations

Details

Restriction matrix is of m by 3 matrix where m is the number of restrictions. A typical row of this matrix (k,i,j), which means that (i,j) element of Ak matrix is set to 0. Ak is a VAR coefficient matrix (k = 1,....p). Under H1, the model is full VAR.

The bootstrap test is conducted using the GLS estimation under the parameter restrictions implied by the null hypothesis: see Kim (2014) for details.

Kim (2014) found that the bootstrap based on OLS can show inferior small sample properties.

There are two versions of the bootstrap: the first is based on the iid resampling and the second based on wild bootstrapping.

The Wild bootstrap is conducted with Mammen's two-point distribution.

Value

- **Fstat**: Wald test statistic
- **pval**: p-value of the test based on F-distribution
- **Boot.pval**: p-value of the test based on bootstrapping

Note

See Chapter 3 of Lutkepohl
Author(s)
Jae H. Kim

References

Examples
```
data(dat)
#replicating Section 3.6.2 of Lutkepohl (2005)
restrict = rbind( c(1,1,2),c(1,1,3), c(2,1,2),c(2,1,3))
VAR.Wald(dat,p=2,restrict,type="const")
```
Index

* **package**
 - VAR.etp-package, 2
* **ts**
 - dat, 2
 - datal, 3
 - PR.IARM, 4
 - PR.order, 5
 - Rmatrix, 6
 - VAR.BaBPR, 7
 - VAR.Boot, 9
 - VAR.BPR, 10
 - VAR.est, 11
 - VAR.FOR, 12
 - VAR.Fore, 13
 - VAR.irf, 14
 - VAR.LR, 15
 - VAR.Pope, 16
 - VAR.Rest, 17
 - VAR.select, 19
 - VAR.Wald, 20
* **ys**
 - PR.Fore, 3
 - PR.Fore, 3
 - PR.IARM, 4
 - PR.order, 5
 - Rmatrix, 6
 - VAR.BaBPR, 7
 - VAR.Boot, 9
 - VAR.BPR, 10
 - VAR.est, 11
 - VAR.etp (VAR.etp-package), 2
 - VAR.etp-package, 2
 - VAR.FOR, 12
 - VAR.Fore, 13