Package ‘VBJM’

September 2, 2023

Type Package
Title Variational Inference for Joint Model
Version 0.1.0
Author Jiehuan Sun [aut, cre]
Maintainer Jiehuan Sun <jiehuan.sun@gmail.com>
Description The shared random effects joint model is one of the most widely used approaches to study the associations between longitudinal biomarkers and a survival outcome and make dynamic risk predictions using the longitudinally measured biomarkers. One major limitation of joint models is that they could be computationally expensive for complex models where the number of the shared random effects is large. This package can be used to fit complex multivariate joint models using our newly developed algorithm Jieqi Tu and Jiehuan Sun (2023) <doi:10.1002/sim.9619>, which is based on Gaussian variational approximate inference and is computationally efficient.
Depends R (>= 3.6.0)
Imports Rcpp (>= 1.0.0), survival(>= 3.2), statmod(>= 1.4), pracma(>= 2.2), Matrix(>= 1.3)
LinkingTo Rcpp, RcppArmadillo, RcppEnsmallen
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-02 08:20:02 UTC

R topics documented:

 control_list .. 2
 LongData .. 2
 SurvData .. 3
 VBJM_fit .. 4
Index

| control_list | control_list |

Description

This list contains a list of parameters specifying the joint model.

Details

- ID_name the variable name for the patient ID in both longitudinal data and survival data.
- item_name the variable name for the longitudinal outcomes in the longitudinal data.
- value_name the variable name for the longitudinal measurements in the longitudinal data.
- time_name the variable name for the measurement timepoints in the longitudinal data.
- fix_cov a set of variables names indicating the covariates of fixed-effects in the longitudinal submodel. If NULL, not baseline covariates are included.
- random_cov a set of variables names indicating the covariates of random-effects in the longitudinal submodel. If NULL, not baseline covariates are included.
- FUN a function specifying the time-related basis functions in the longitudinal submodel.
- ran_time_ind a vector of integers specifying which time-related basis functions are also included with random-effects in the longitudinal submodel.
- surv_time_name the variable name for the survival time in the survival data.
- surv_status_name the variable name for the censoring indicator in the survival data.
- surv_cov a set of variables names specifying the baseline covariates in the survival submodel.
- n_points an integer indicating the number of nodes being used in the Gaussian quadrature.

Author(s)

Jiehuan Sun <jiehuan.sun@gmail.com>

LongData

Simulated Longitudinal Data

Description

This dataset contains longitudinal outcomes.

Usage
data(VBJMdata)
SurvData

Format
A data frame with 48700 rows and 4 variables

Details
- ID patient ID
- item types of longitudinal outcome
- years measurement timepoints
- value measurements

Author(s)
Jiehuan Sun <jiehuan.sun@gmail.com>

Simulated Survival Data

Description
This dataset contains survival outcome.

Usage
data(VBJMdata)

Format
A data frame with 100 rows and 4 variables

Details
- ID patient ID
- fstat censoring indicator
- ftime survival time
- x baseline covariates

Author(s)
Jiehuan Sun <jiehuan.sun@gmail.com>
VBJM_fit

The function to fit VBJM.

Description

The function is used to fit joint models using variational inference algorithm.

Usage

```r
VBJM_fit(
  LongData = NULL,
  SurvData = NULL,
  marker.name = NULL,
  control_list = NULL,
  maxiter = 100,
  eps = 1e-04
)
```

Arguments

- `LongData` a data frame containing the longitudinal data (see `LongData`).
- `SurvData` a data frame containing the survival data (see `SurvData`).
- `marker.name` a vector indicating which set of longitudinal biomarkers to be analyzed. If NULL, all biomarkers in LongData will be used.
- `control_list` a list of parameters specifying the joint model (see `control_list`).
- `maxiter` the maximum number of iterations.
- `eps` threshold for convergence.

Value

return a data frame with estimates, standard errors, and 95% CIs for each of the following parameters, where VAR indicates the corresponding variable name.

- `VAR_alpha` the parameters for the effects of biomarkers in the survival submodel, where VAR indicates the names for the biomarkers.
- `Weibull_shape` the shape parameter in the Weibull baseline hazard in the survival submodel.
- `Weibull_scale` the scale parameter in the Weibull baseline hazard in the survival submodel.
- `Surv_gamma_VAR` the parameters for the effects of baseline covariates in the survival submodel.
- `VAR_fix` the parameters for the fixed-effects in the longitudinal submodel.

References

Jieqi Tu and Jiehuan Sun (2023). "Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome". Statistics in Medicine, 42(3), 316-330.
Examples

data(VBJMdata)
flex_time_fun <- function(x= NULL){
 xx = matrix(x, ncol = 1)
 colnames(xx) = c("year_1")
 xx
}
ran_time_ind = 1 ## random time-trend effects
control_list = list(
 ID_name = "ID", item_name = "item",
 value_name = "value", time_name = "years",
 fix_cov = NULL, random_cov = NULL,
 FUN = flex_time_fun, ran_time_ind=ran_time_ind,
 surv_time_name = "ftime", surv_status_name = "fstat",
 surv_cov = "x", n_points = 5
)

takes about one minute.
res = VBJM_fit(LongData=LongData, SurvData=SurvData,
 control_list=control_list)
Index

* data
 control_list, 2
 LongData, 2
 SurvData, 3

control_list, 2, 4
LongData, 2, 4
SurvData, 3, 4
VBJM_fit, 4