Package ‘VDSM’

October 12, 2022

Type Package

Title Visualization of Distribution of Selected Model

Version 0.1.1

Description Although model selection is ubiquitous in scientific discovery, the stability and uncertainty of the selected model is often hard to evaluate. How to characterize the random behavior of the model selection procedure is the key to understand and quantify the model selection uncertainty. This R package offers several graphical tools to visualize the distribution of the selected model. For example, Gplot(), Hplot(), VDSM_scatterplot() and VDSM_heatmap(). To the best of our knowledge, this is the first attempt to visualize such a distribution. About what distribution of selected model is and how it work please see Qin, Y. and Wang, L. (2021) “Visualization of Model Selection Uncertainty” <https://homepages.uc.edu/~qinyn/VDSM/VDSM.html>.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Imports ggplot2, plyr, dplyr, grid, viridis, gridExtra, knitr, stats

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Linna Wang [aut, cre],
Yichen Qin [aut]

Maintainer Linna Wang <wang219@mail.uc.edu>

Repository CRAN

Date/Publication 2021-04-16 09:00:02 UTC

R topics documented:

CheckInput ... 2
CheckInput

Description

Check if the input is valid or not

Usage

CheckInput(X, f, p)

Arguments

X A m*p matrix which each row represents one unique model with the elements either 0 or 1.

f A vector with m elements contain each model’s frequency in X.

p The number of variate in the model

Value

The standardized matrix

DSM_plot

DSM_plot plot the naive visualization of the distribution of selected model

Description

DSM_plot plot the naive visualization of the distribution of selected model
Usage

DSM_plot(
 X,
 f,
 p,
 Anchor.model = NULL,
 circlesize = NULL,
 linewidth = NULL,
 fontsize = NULL
)

Arguments

X A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f A vector with m elements which represent each model’s frequency in X.
p The number of variate in the model
Anchor.model A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
circlesize customize the size of the circle in the plot, default is 10.
linewidth Customize the width of the line in the plot, default is 1.
fontsize Customize the size of the font in the circles, default is 1.5.

Value

A summarized information of the grouped models.

Examples

data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
DSM_example1 = DSM_plot(X,f,p)

Description

This small data set contains the frequencies of those m=30 models in exampleX data set.

Usage

e.examplef
Format

One vector representing the information of \(f \).

exampleX

Description

This small data set contains \(m=30 \) unique models and \(p=8 \) variates.

Usage

`exampleX`

Format

One matrix containing the information of \(X \).

Gplot

Description

Plotting Gplot.

Usage

```r
Gplot(
  X,
  f,
  p,
  Anchor.model = NULL,
  xlim = NULL,
  ylim = NULL,
  circlesize = NULL,
  linewidth = NULL,
  fontsize = NULL
)
```
Arguments

- **X**: A \(m \times p \) matrix which contains \(m \) different \(p \)-dimensional models. All the elements are either 0 or 1.
- **f**: A vector with \(m \) elements which represent each model’s frequency in \(X \).
- **p**: The number of variate in the model.
- **Anchor.model**: A vector containing \(p \) elements with either 1 or 0 value and must be found in \(X \). Default is the model with the highest frequency.
- **xlim**: A vector with two elements which determine the range of x-axis in the plot.
- **ylim**: A vector with two elements which determine the range of y-axis in the plot.
- **circlesize**: Customize the size of the circle in the plot, default is 10.
- **linewidth**: Customize the width of the line in the plot, default is 1.
- **fontsize**: Customize the size of the font in the circles, default is 1.5.

Value

A list with components

- **Gplot.info**: The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.
- **MC.histogram**: The frequency of model complexity.
- **HD.histogram**: The frequency of Hamming distance.

Examples

```r
data(exampleX)
X<-'exampleX'
data(examplef)
f<-'examplef'
p<-'8'
G_example1 = Groupinfo(X,f,p)
G_example2 = Groupinfo(X,f,p,xlim=c(0,7),ylim=c(3,8))
G_example3 = Groupinfo(X,f,p,xlim=c(0,7),ylim=c(3,8),circlesize=15,linewidth=2,fontsize=3)
```

Description

Group the models according to their Hamming distance and Model complexity to the anchor model

Usage

```r
Groupinfo(X, f, p, Anchor.model = NULL)
```
Arguments

\(X \)
A \(m \times p \) matrix which contains \(m \) different \(p \)-dimensional models. All the elements are either 0 or 1.

\(f \)
A vector with \(m \) elements which represent each model’s frequency in \(X \).

\(p \)
The number of variate in the model

\(\text{Anchor.model} \)
A vector containing \(p \) elements with either 1 or 0 value and must be found in \(X \). Default is the model with the highest frequency.

Value

A summarized information of the grouped models.

Description

Plotting Hplot.

Usage

\[
\text{Hplot}(\\
\quad X, \\
\quad f, \\
\quad p, \\
\quad \text{Anchor.model} = \text{NULL}, \\
\quad \text{xlim} = \text{NULL}, \\
\quad \text{ylim} = \text{NULL}, \\
\quad \text{circlesize} = \text{NULL}, \\
\quad \text{linewidth} = \text{NULL}, \\
\quad \text{fontsize} = \text{NULL} \\
\)
\]

Arguments

\(X \)
A \(m \times p \) matrix which contains \(m \) different \(p \)-dimensional models. All the elements are either 0 or 1.

\(f \)
A vector with \(m \) elements which represent each model’s frequency in \(X \).

\(p \)
The number of variate in the model

\(\text{Anchor.model} \)
A vector containing \(p \) elements with either 1 or 0 value and must be found in \(X \). Default is the model with the highest frequency.

\(\text{xlim} \)
A vector with two elements which determine the range of x-axis in the plot.

\(\text{ylim} \)
A vector with two elements which determine the range of y-axis in the plot.

\(\text{circlesize} \)
customize the size of the circle in the plot, default is 10.

\(\text{linewidth} \)
Customize the width of the line in the plot, default is 1.

\(\text{fontsize} \)
Customize the size of the font in the circles, default is 1.5.
Value

A list with components

- **Hplot.info**
 The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.

- **Hplus.histogram**
 The frequency of Hamming distance plus.

- **Hminus.histogram**
 The frequency of Hamming distance minus.

Examples

data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
H_example1 = Hplot(X,f,p)
H_example2 = Hplot(X,f,p,xlim=c(0,4),ylim=c(0,2))
H_example3 = Hplot(X,f,p,xlim=c(0,4),ylim=c(0,2),circlesize=15,linewidth=2,fontsize=3)

VDSM_heatmap

Description

Plotting the VDSM-heatmap.

Usage

VDSM_heatmap(
 X,
 f,
 p,
 Anchor.estimate,
 xlim = NULL,
 ylim = NULL,
 Anchor.model = NULL,
 fontsize = NULL
)

Arguments

- **X**
 A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.

- **f**
 A vector with m elements which represent each model’s frequency in X.
p
Anchor.estimate
xlim
ylim
Anchor.model
fontsize

Value
A list with components

Heatmap.info
The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.

Hplus.histogram
The frequency of Hamming distance plus.

Hminus.weighted.histogram
The frequency of Hamming distance minus-weighted.

Examples

data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
Anchor.estimate=c(3,2.5,2,1.5,1,0,0,0)
Heatmap_example1 = VDSM_heatmap(X,f,p,Anchor.estimate)
Heatmap_example2 = VDSM_heatmap(X,f,p,Anchor.estimate,fontsize=3)
Heatmap_example3 = VDSM_heatmap(X,f,p,Anchor.estimate,xlim=c(0,5),ylim=c(0,5),fontsize=3)

Description
Plotting the VDSM-Scatterplot.

Usage

VDSM_scatterplot(
 X,
 f,
 p,
 Anchor.estimate,
Arguments

X A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f A vector with m elements which represent each model’s frequency in X.
p The number of variate in the model.
Anchor.estimate An estimation for the anchor model.
xlim A vector with two elements which determine the range of x-axis in the plot.
ylim A vector with two elements which determine the range of y-axis in the plot.
Anchor.model A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.
circlesize customize the size of the circle in the plot, default is 10.
fontsize Customize the size of the font in the circles, default is 1.5.

Value

A list with components:

Scatterplot.info The table includes all the information about each group, i.e., the total possible number of models in the group and the actual existing number of model in the group.

Hplus.histogram The frequency of Hamming distance plus.

Hminus.weighted.histogram The frequency of Hamming distance minus-weighted.

Examples

data(exampleX)
X=exampleX
data(examplef)
f=examplef
p=8
Anchor.estimate=c(3,2.5,2,1.5,1,0,0,0)
Scatter_example1 = VDSM_scatterplot(X,f,p,Anchor.estimate)
Scatter_example2 = VDSM_scatterplot(X,f,p,Anchor.estimate,xlim=c(0,5), ylim=c(0,8),circlesize=15,fontsize=2)
VDSM_scatter_heat

Description

Report VDSM-Scatter-heatmap-info.

Usage

VDSM_scatter_heat(X, f, p, Anchor.estimate, Anchor.model = NULL)

Arguments

X A m*p matrix which contains m different p-dimensional models. All the elements are either 0 or 1.
f A vector with m elements which represent each model’s frequency in X.
p The number of variate in the model
Anchor.estimate An estimation for the anchor model
Anchor.model A vector containing p elements with either 1 or 0 value and must be found in X. Default is the model with the highest frequency.

Value

A list of information which helps to plot VDSM-Scatter-heatmap.
Index

* datasets
 examplef, 3
 exampleX, 4

CheckInput, 2

DSM_plot, 2

examplef, 3
exampleX, 4

Gplot, 4
Groupinfo, 5

Hplot, 6

VDSM_heatmap, 7
VDSM_scatter_heat, 10
VDSM_scatterplot, 8