Package ‘VLMC’

October 12, 2022

Version 1.4-3-1
Date 2019-04-29
Author Martin Maechler <maechler@stat.math.ethz.ch>
Maintainer Martin Maechler <maechler@stat.math.ethz.ch>
Title Variable Length Markov Chains (‘VLMC’) Models
Description Functions, Classes & Methods for estimation, prediction, and simulation (bootstrap) of Variable Length Markov Chain (‘VLMC’) Models.
Imports stats, MASS
BuildResaveData no
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-04-29 21:30:11 UTC

R topics documented:

alpha2int ... 2
alphabet .. 3
as.dendrogram.vlmc ... 3
bnrfl .. 4
deviance.vlmc .. 6
draw.vlmc .. 7
id2ctxt .. 8
int2char .. 9
logLik .. 10
OZrain ... 11
predict.vlmc ... 13
prt.vvec .. 15
RCplot ... 16
residuals.vlmc ... 17
simulate.vlmc .. 19
summary.vlmc .. 20
alpha2int

‘Single Character’ <–> Integer Conversion for Discrete Data

Description

Simple conversion functions for discrete data (e.g., time series), between \(0:k\) integers and single letter characters.

Usage

alpha2int(x, alpha)
int2alpha(i, alpha)

Arguments

x character vector of single letters.
alpha the alphabet, as one character string.
i integer vector of numbers in \(0:k\).

Value

alpha2int(x,*) returns an integer vector of the same length as x, consisting of values from \(0:k\) where \(k + 1\) is the length of the alphabet, nchar(alpha).

int2alpha(i,*) returns a vector of single letter character of the same length as i.

See Also

vlmc, and int2char() and its inverse, char2int(), both working with multi-character strings instead of vectors of single characters; further, alphabet.

Examples

alphabet <- "abcdefg hi j k"
(ch <- sample(letters[1:10], 30, replace = TRUE))
(ic <- alpha2int(ch, alphabet))
stopifnot(int2alpha(ic, alphabet) == ch)
The Alphabet in Use

Description

Return the alphabet in use, as a vector of “characters”.

Usage

alphabet(x, ...)
S3 method for class 'vlmc'
alphabet(x, ...)

Arguments

x any R object, currently only available for vlmc ones.
...
potential further arguments passed to and from methods.

Value

a character vector, say r, with length equal to the alphabet size. Currently, typically all r[i] are strings of just one character.

See Also

alpha2int for conversion to and from integer codings.

Examples

data(bnrf1)
vb <- vlmc(bnrf1EB, cutoff = 5)
alphabet(vb) # |--> "a" "c" "g" "t"

Dendrogram Construction from VLMCs

Description

This is a method for the as.dendrogram generic function

Usage

S3 method for class 'vlmc'
as.dendrogram(object, ...)

Arguments

- object: a vlmc object.
- ... further arguments passed to and from methods.

Value

An object of class dendrogram, i.e. a nested list described on that page.

See Also

- as.dendrogram
- plot.dendrogram

Examples

data(presidents)
dpr <- factor(cut(presidents, c(0,45,70,100)), exclude=NULL)# NA = 4th level
(vlmc.pres <- vlmc(dpr))
draw(vlmc.pres)
(dv.dpr <- as.dendrogram(vlmc.pres))
str(dv.dpr)
str(unclass(dv.dpr))

plot(dv.dpr, type ="tr", nodePar = list(pch=c(1,16), cex = 1.5))

Artificial example
f1 <- c(1,0,0,0) ; f2 <- rep(1:0, 2)
(dt1 <- c(f1,f1,f2,f1,f2,f2,f1))
(vlmc.dt1c01 <- vlmc(dts = dt1, cutoff.prune = 0.1))
(dvlmc <- as.dendrogram(vlmc.dt1c01))

str(dvlmc)

not so useful:
plot(dvlmc, nodePar= list(pch=c(1,16)))
complete disaster:
plot(dvlmc, type ="tr", nodePar= list(pch=c(1,16)))

but this is not (yet) so much better (want the same angles to left
and right!!
plot(dvlmc, type ="tr", nodePar = list(pch=c(1,16)), center=TRUE,main = format(vlmc.dt1c01$call))
mtext(paste("dt1 =", gsub(" ",",deparse(dt1,width=100))))
bnrf1

Description

Two gene DNA data “discrete time series”,

- `bnrf1EB` the BNRF1 gene from the Epstein-Barr virus,
- `bnrf1HV` the BNRF1 gene from the herpes virus.

Usage

```r
data(bnrf1)
```

Format

The EB sequence is of `length` 3954, whereas the HV has 3741 nucleotides. Both are R `factor`s with the four levels `c("a","c","g","t")`.

Author(s)

Martin Maechler (packaging for R).

Source

See the references, data are online at http://anson.ucdavis.edu/~shumway/tsa.html

References

Examples

```r
data(bnrf1)
bnrf1EB[1:500]
table(bnrf1EB)
table(bnrf1HV)
n <- length(bnrf1HV)
table(t = bnrf1HV[-1], "t-1" = bnrf1HV[-n])
plot(as.integer(bnrf1EB[1:500]), type = "b")

## Simplistic gene matching:
percent.eq <- sapply(0:200,
  function(i) 100 * sum(bnrf1EB[(1+i):(n+i)] == bnrf1HV))/n
plot.ts(percent.eq)
```
deviance.vlmc

Compute the Deviance of a Fitted VLMC Object

Description

Compute the Deviance, i.e., -2 log[likelihood(*)] of a fitted VLMC object. The log-likelihood is also known as “entropy”.

Usage

S3 method for class 'vlmc'
deviance(object, ...)

Arguments

object typically the result of vlmc(.).

... possibly further arguments (none at the moment).

Value

A number, the deviance, i.e., -2log.likelihood(*). where the log.likelihood is really what we currently have as entropy().

Author(s)

Martin Maechler

See Also

entropy, vlmc, residuals.vlmc

Examples

e = example(vlmc)
d = deviance(vlmc.pres)

devianceR <- function(object)
{ dn <- dimnames(pr <- predict(object))
 -2 * sum(log(pr[cbind(2:nrow(pr), match(dn[[1]][-1], dn[[2]]))]))
}
all.equal(deviance(vlmc.pres), devianceR(vlmc.pres), tol = 1e-14)
Description

Draws a `vlmc` object, typically the result of `vlmc(.)`, to the R console, using one line per node.

Usage

```r
draw(x, ...)
## S3 method for class 'vlmc'
draw(x, kind = 3, flag = TRUE, show.hidden = 0,
    cumulative = TRUE, delta = cumulative, debug = FALSE, ...)
```

Arguments

- `x` typically the result of `vlmc(.)`.
- `kind` integer code for the "kind of drawing", in \{0,1,2,3\}.
- `flag` logical; ..
- `show.hidden` integer code; if not 0, give some indications about hidden (final) nodes
- `cumulative` logical indicating if the cumulative counts should be shown for nonterminal nodes; the 'delta's can only be computed from the cumulative counts, i.e., cumulative = FALSE should be used only by the knowing one.
- `delta` logical indicating if delta, i.e. $\delta(n, p(n))$ should be computed and printed for each (non-root) node n with parent $p(n)$. Note that this does not really make sense when cumulative = FALSE.
- `debug` logical; if TRUE, some extraneous progress information is printed to the R console.
- `...` (potentially more arguments)

Details

Note that the counts internally are stored "non-cumulatively", i.e., as difference counts which is useful for likelihood (ratio) computations. In the internal C code, the difference counts are originally computed by the `comp_difference()` function after tree generation. `draw(*, cumulative = TRUE)` internally calls the C function `cumulate()` for the cumulative sums.

Value

nothing is returned.

Author(s)

Martin Maechler
id2ctxt

VLMC Context ID Conversion

Description
Utility for converting a vlmc state ID to the corresponding context. Of rare interest to the average user.

Usage
id2ctxt(id, m=nchar(alpha), alpha=NULL)

Arguments
id integer, a context ID such as optionally returned by predict.vlmc.
m integer, the alphabet length. Defaults to nchar(alpha), the alphabet size if that is given.
alpha alphabet string

Value
a list (if alpha is not specified) or character vector of the same length as id, giving the context (as integer vector or single string) of the corresponding id

See Also
predict.vlmc(*, type = "ID").

Examples
id2ctxt(c(2,3,5,9), alpha = "Ab")
str(id2ctxt(c(2,3,5,9), 2))
int2char

Character - Integer Conversion

Description

Simple conversion utilities for character to integer conversion and vice versa.

Usage

```r
text = c("vlmc", paste(letters, collapse=""))
int2char(text)
text = c(0:3, 3:1)
int2char(text, "abcd")
text = c(1:0,3:3)
int2char(text, "abc")
```

Arguments

- `i`
 integer vectors, typically in `0:m` when `alpha` has `m + 1` letters.

- `alpha`
 character string with several letters, representing the alphabet.

- `x`
 character string, typically with letters from `alpha`.

Value

- `int2char()` gives a string (length 1 character) with as many characters as `length(i)`, by 0-indexing into the alphabet `alpha`.

- `char2int()` gives an integer vector of length `nchar(x)` of integer codes according to `alpha` (starting at `0`).

See Also

`int2alpha()` (which is used by `int2char`) and its inverse, `int2alpha()`, both working with vectors of single characters instead of multi-character strings.

Examples

```r
char2int("vlmc", paste(letters, collapse=""))
int2char(c(0:3, 3:1), "abcd")
int2char(c(1:0,3:3), "abc") # to eat ;-)"
Description

Compute the log-likelihood or “entropy” of a fitted \texttt{vlmc} object. This is a method for the generic \texttt{logLik}.

Usage

\begin{verbatim}
entropy(object)
## S3 method for class 'vlmc'
logLik(object, ...)
entropy2(ivlmc1, ivlmc2, alpha.len = ivlmc1[1])
\end{verbatim}

Arguments

- \texttt{object} typically the result of \texttt{vlmc}(..).
- \texttt{ivlmc1, ivlmc2} two \texttt{vlmc} (sub) trees, see \texttt{vlmc}.
- \texttt{alpha.len} positive integer specifying the alphabet length.
- \texttt{...} (potentially more arguments; required by generic)

Details

The \texttt{logLik.vlmc()} method computes the log likelihood for a fitted \texttt{vlmc} object. \texttt{entropy} is an alias for \texttt{logLik} for reasons of back compatibility.

\texttt{entropy2} is less clear ... ... [\texttt{FIXME}] ... ...

Value

a negative number, in some contexts typically further divided by \texttt{log(x$alpha.len)}.

Note that the \texttt{logLik} method is used by the default method of the \texttt{AIC} generic function (from R version 1.4.x), and hence provides \texttt{AIC(object)} for \texttt{vlmc} objects. Also, since \texttt{vlmc} version 1.3-13, \texttt{BIC()} works as well.

Author(s)

Martin Maechler

See Also

\texttt{deviance.vlmc, vlmc, draw.vlmc}. 

\emph{Log Likelihood of and between VLMC objects}
Examples

dd <- cumsum(rpois(999, 1.5)) %% 10
(vd <- vlmc(dd))
entropy(vd)# the bare number
logLik(vd)
logLik(vdL <- vlmc(dd, cutoff = 3))
entropy2(vd$vlmc.vec,
   vdL$vlmc.vec)

## AIC model selection:
(f1 <- c(1,0,0,0) # as in example(vlmc)
(f2 <- rep(1:0,2)
(dt1 <- c(f1,f1,f2,f1,f2,f2,f1))
AIC(print(vlmc(dt1)))
AIC(print(vlmc(dt1, cutoff = 2.6)))
AIC(print(vlmc(dt1, cutoff = 0.4)))))# these two differ "not really"
AIC(print(vlmc(dt1, cutoff = 0.1)))

## Show how to compute it from the fitted conditional probabilities :
logLikR <- function(x) {
    dn <- dimnames(pr <- predict(x))
    sum(log(pr[cbind(2:nrow(pr), match(dn[[1]][-1], dn[[2]]))]))
}
all.equal( logLikR(vd),
          c(logLik (vd)), tol=1e-10) # TRUE, they do the same

## Compare different ones: [cheap example]:
example(draw)
for(n in ls())
  if(is.vlmc(get(n))) {
    vv <- get(n)
    cat(n,":",formatC(logLik(vv) / log(vv$alpha.len),
                   format= "f", wid=10),"n")
  }

OZrain

**Daily Rainfall in Melbourne, Australia, 1981-1990**

**Description**

Amount of daily rainfall in Melbourne, Australia, 1981-1990, measured in millimeters. The amounts are integers with many zeros and three days of more than 500mm rain.

**Usage**

data(OZrain)
Format

A time-series of length 3653 with the amount of daily rainfall in mm. Because of the two leap years 1984 and '88, we have constructed it with ts(.*, start=1981, frequency=365.25, end = 1981+ (3653 - 1)/365.25).

Note

There must be one extra observation since for the ten years with two leap years, there are only 3652 days. In 61 out of 100 days, there’s no rain.

Source


Examples

data(OZrain)
(n <- length(OZrain)) ## should be 1 more than
ISOdate(1990,12,31) - ISOdate(1981, 1,1)# but it’s 2 ..

has.rain <- OZrain > 0

summary(OZrain[has.rain])# Median = 18, Q3 = 50

table(rain01 <- as.integer(has.rain))
table(rain4c <- cut(OZrain, c(-.1, 0.5, 18.5, 50.1, 1000)))

AIC(v1 <- vlmc(rain01))# cutoff = 1.92
AIC(v00 <- vlmc(rain01, cut = 1.4))
AIC(v0 <- vlmc(rain01, cut = 1.5))

hist(OZrain)
hist(OZrain, breaks = c(0,1,5,10,50,1000), ylim = c(0,100))

plot(OZrain, main = "Rainfall 1981-1990 in Melbourne")
plot(OZrain, log="y", main = "Non-0 Rainfall [LOG scale]")

LOZ <- lowess(log10(OZrain[has.rain]), f= .05)
lines(time(OZrain)[has.rain], 10^LOZ$y, col = 2, lwd = 2)
predict.vlmc  Prediction of VLMC for (new) Series

Description
Compute predictions on a fitted VLMC object for each (but the first) element of another discrete time series. Computes by default a matrix of prediction probabilities. The argument type allows other predictions such as the most probable "class" or "response", the context length (tree "depth"), or an "ID" of the corresponding context.

Usage
## S3 method for class 'vlmc'
predict(object, newdata,
   type = c("probs", "class", "response", "id.node", "depth", "ALL"),
   se.fit = FALSE,
   allow.subset = TRUE, check.alphabet=TRUE,
   ...)
## S3 method for class 'vlmc'
fitted(object, ...)

Arguments
object typically the result of vlmc(.).
newdata a discrete “time series”, a numeric, character or factor, as the dts argument of vlmc(.).
type character indicating the type of prediction required, options given in the Usage section above, see also the Value section below. The default "probs" returns a matrix of prediction probabilities, whereas "class" or "response" give the corresponding most probable class. The value of this argument can be abbreviated.
se.fit a switch indicating if standard errors are required.
   — NOT YET supported — .
allow.subset logical; if TRUE, newdata may not have all different “alphabet letters” used in x.
check.alphabet logical; if TRUE, consistency of newdata’s alphabet with those of x is checked.
   ... (potentially further arguments) required by generic.

Value
Depending on the type argument,
"probs" an n × m matrix pm of (prediction) probabilities, i.e., all the rows of pm sum to 1.
   pm[i,k] is
   \[ \hat{P}[Y_i = k|Y_{i-1},...] \] (and is therefore NA for i=1). The dimnames of pm are the values of newdata[] and the alphabet letters k.
"class", "response"

the corresponding most probable value of Y[i]; as factor for "class" and as
integer in 0:(m-1) for type = "response". If there is more than one most prob-
able value, the first one is chosen.

"id.node"

an (integer) "ID" of the current context (= node of the tree represented VLMC).

"depth"

the context length, i.e., the depth of the Markov chain, at the current observation
(of newdata).

"ALL"

an object of class "predict.vlmc", a list with the following components,

  ID  integer vector as for type = "id.node",
  probs prediction probability matrix, as above,
  flags integer vector, non-zero for particular states only, rather for debugging.
  ctxt character, ctxt[i] a string giving the context (backwards) for newdata[i],
             using alphabet letters.
  fitted character with fitted values, i.e., the alphabet letter with the highest prob-
             ability, using max.col where ties are broken at random.
  alpha, alpha.len the alphabet (single string) and its length.

which has its own print method (print.predict.vlmc).

Note

The predict method and its possible arguments may still be developed, and we are considering to
return the marginal probabilities instead of NA for the first value(s).

The print method print.predict.vlmc uses fractions from package MASS to display the
probabilities Pr[X = j], for j ∈ {0, 1,...}, as these are rational numbers, shown as fractions of
integers.

See Also

vlmc and residuals.vlmc. For simulation, simulate.vlmc.

Examples

f1 <- c(1,0,0,0)
f2 <- rep(1:0,2)
(dt2 <- rep(c(f1,f1,f2,f1,f2,f2,f1),2))

(vlmc.dt2c15 <- vlmc(dt2, cutoff = 1.5))
draw(vlmc.dt2c15)

## Fitted Values:
all.equal(predict(vlmc.dt2c15, dt2), predict(vlmc.dt2c15))
(pa2c15 <- predict(vlmc.dt2c15, type = "ALL"))

## Depth = context length ([1] : NA):
stopifnot(nchar(pa2c15 $ ctxt)[-1] ==
predict(vlmc.dt2c15, type = "depth")[-1])

same <- (ff1 <- pa2c15 $ fitted) ==
(ff2 <- int2alpha(predict(vlmc.dt2c15, type = "response"), alpha="01"))
which(!same) #-> some are different, since max.col() breaks ties at random!

ndt2 <- c(rep(0,6),f1,f1,f2)
predict(vlmc.dt2c15, ndt2, "ALL")

(newdt2 <- sample(dt2, 17))
pm <- predict(vlmc.dt2c15, newdt2, allow.subset = TRUE)
summary(apply(pm, 1, sum))# all 1

predict(vlmc.dt2c15, newdt2, type = "ALL")

data(bnrf1)
(vbnrf <- vlmc(bnrf1EB))
(pA <- predict(vbnrf, bnrf1EB[1:24], type = "ALL"))
(pc <- predict(vbnrf, bnrf1EB[1:24], type = "class")
pr <- predict(vbnrf, bnrf1EB[1:24], type = "resp")
stopifnot(as.integer (pc[-1]) == 1 + pr[-1],
          as.character(pc[-1]) == strsplit(vbnrf$alpha,NULL)[[1]][1 + pr[-1]])

##-- Example of a "perfect" fit -- just for illustration:
## the default, thresh = 2 doesn't fit perfectly(i=38)
(vlmc.dt2c0th1 <- vlmc(dt2, cutoff = 0, thresh = 1))

## "Fitted" = "Data" (but the first which can't be predicted):
stopifnot(dt2[-1] == predict(vlmc.dt2c0th1,type = "response")[-1])
Examples

```r
example(vlmc)
str(vv <- vlmc.dt1$vlmc)
prt.vvec(vv[-1], n = 2)
prt.vvec(vv[-1], n = 2, pad = " | ")
```

RCplot

Residuals vs Context plot

Description

Plots the residuals of a fitted VLMC model against the contexts, i.e., produces a boxplot of residuals for all contexts used in the model fit.

This has proven to be useful function, and the many optional arguments allow quite a bit of customization. However, the current implementation is somewhat experimental and the defaults have been chosen from only a few examples.

Usage

```r
RCplot(x, r2 = residuals(x, "deviance")^2,
 alphabet = x$alpha, lab.horiz = k <= 20,
 do.call = TRUE,
 cex.axis = if (k <= 20) 1 else if (k <= 40) 0.8 else 0.6,
 y.fact = if (.Device == "postscript") 1.2 else 0.75,
 col = "gray70", xlab = "Context", main = NULL,
 med.pars = list(col = "red", pch = 12, cex = 1.25 * cex.axis),
 ylim = range(0, r2, finite = TRUE),
 ...)```

Arguments

- `x`: an R object of class `vlmc`.
- `r2`: numeric vector, by default of squared deviance residuals of `x`, but conceptually any (typically non-negative) vector of the appropriate length.
- `alphabet`: the alphabet to use for labeling the contexts, via `id2ctxt`.
- `lab.horiz`: logical indicating if the context labels should be written horizontally or vertically.
- `do.call`: logical indicating if the `vlmc` call should be put as subtitle.
- `cex.axis`: the character expansion for axis labeling, see also `par`. The default is only approximately good.
- `y.fact`: numeric factor for expanding the space to use for the context labels (when `lab.horiz` is false).
- `col`: color used for filling the boxes.
- `xlab`: x axis label (with default).
residuals.vlmc

main main title to be used, NULL entailing a sensible default.
med.pars graphical parameters to be used for coding of medians that are almost 0.
ylim y range limits for plotting.
... further arguments to be passed to plot().

Value

Invisibly, a list with components

k the number of contexts (and hence box plots) used.
fID a factor (as used in the internal call to plot.factor).
rp a list as resulting from the above call to plot.factor().

Author(s)

Martin Maechler

References

See Also

summary.vlmc for other properties of a VLMC model.

Examples

e example(vlmc)
RCplot(vlmc.pres)
RCplot(vlmc.dt1c01)## << almost perfect fit (0 resid.)

residuals.vlmc Compute Residuals of a Fitted VLMC Object

Description

Compute residuals of a fitted vlmc object.
This is yet a matter of research and may change in the future.

Usage

S3 method for class 'vlmc'
residuals(object,
 type = c("classwise",
 "deviance", "pearson", "working", "response", "partial"),
 y = object$y, ...)
Arguments

object typically the result of `vlmc(.)`.

`type` The type of residuals to compute, defaults to "classwise" which returns an \(n \times m\) matrix, see below. The other types only make sense when the discrete values of \(y\) are ordered which always includes the binary case \((m = 2)\). The "deviance" residuals \(r\) are defined similarly as for logistic regression, see below.

"pearson", "working" and "response" are currently identical and give the difference of the underlying integer code (of the discrete data).

Note that "partial" residuals are not yet defined!

\(y\) discrete time series with respect to which the residuals are to be computed.

... possibly further arguments (none at the moment).

Value

If `type = "classwise"` (the default), a numeric matrix of dimension \(n \times m\) of values \(I_{i,j} - p_{i,j}\) where the indicator \(I_{i,j}\) is 1 iff \(y[i] == a[j]\) and \(a\) is the alphabet (or levels) of \(y\), and \(p_{i,j}\) are the elements of the estimated (1-step ahead) predicted probabilities, \(p \leftarrow \text{predict(object)}\). Hence, for each \(i\), the only positive residual stands for the observed class.

For all other types, the result is a numeric vector of the length of the original time-series (with first element NA).

For `type = "deviance"`, \(r_i = \pm \sqrt{-2 \log(P_i)}\) where \(P_i\) is the predicted probability for the \(i\)-th observation which is the same as \(p_{i,y_i}\) above (now assuming \(y_i \in \{1, 2, \ldots, m\}\). The sum of the squared deviance residuals is the deviance of the fitted model.

Author(s)

Martin Maechler

See Also

`vlmc`, `deviance.vlmc`, and `RCplot` for a novel residual plot.

Examples

```r
example(vlmc)
rp <- residuals(vlmc.pres)
stopifnot(all(abs(apply(rp[-1,],1,sum)) < 1e-15))
matplot(seq(presidents), rp, ylab = "residuals", type="l")
## `"Tukey-Anscombe"' (the following is first stab at plot method):
matplot(fitted(vlmc.pres), rp, ylab = "residuals", xaxt = "n",
type="b", pch=vlmc.pres$alpha)
axis(1, at = 0:(vlmc.pres$alpha.len-1),
labels = strsplit(vlmc.pres$alpha,"\"[[1]\)]

summary(rd <- residuals(vlmc.pres, type = "dev"))
rd[1:7]
## sum of squared dev.residuals === deviance :
```
all.equal(sum(rd[-1] ^ 2),
 deviance(vlmc.pres))

simulate.vlmc

Simulate a Discrete Time Series from fitted VLMC model

Description

Simulate from fitted VLMC model – basis of the VLMC bootstrap

Usage

S3 method for class 'vlmc'
simulate(object, nsim = 1, seed = NULL, n,
 n.start = 4 * object$size[['context']],
 integer.return = FALSE, keep.RSeed = TRUE, ...)

Arguments

object typically the result of vlmc().
simulate
 non-negative integer, giving the length of the result. Note that n is deprecated
 and just there for back compatibility.
simulate
seed random seed initializer; see simulate.
n.start the number of initial values to be discarded (because of initial effects).
integer.return logical; if TRUE, the result will be an integer vector with values in 0:(k-1);
 otherwise the resulting vector consists of letters from the alphabet x$alpha.
keep.RSeed logical indicating if the seed should be stored with the result (as 'required' by the
generic simulate). Only set this FALSE with good reasons (back compatibility).
...
 (potentially further arguments for other simulate methods.

Details

The .Random.seed is used and updated as with other random number generation routines such as rbinom.
Note that if you want to simulate from a given start sequence x0, you’d use predict.vlmc(x, x0,
type= "response") — actually not quite yet.

Value

A "simulate.vlmc" object, basically a vector of length nsim. Either integer or character,
depending on the integer.return argument, see above. Further, if keep.RSeed was true (as by
default), a "seed" attribute with the random seed at the start of the simulation, for reproducibility.

Author(s)

Martin Maechler
summary.vlmc

See Also
vlmc and predict.vlmc.

Examples

```r
example(vlmc)

simulate(vlmc.dt1, 100)
simulate(vlmc.dt1c01, 100, int = TRUE)
# n.start = 0: 1st few observations will resemble the data
simulate(vlmc.dt1c01, 20, n.start=0, int = TRUE)
```

summary.vlmc
Summary of Fitted Variable Length Markov Chain (VLMC)

Description
Compute (and print) a summary of a vlmc object which is typically the result of `vlmc(...)`.

Usage

```r
## S3 method for class 'vlmc'
summary(object, ...)
## S3 method for class 'summary.vlmc'
print(x, digits = getOption("digits"),
      vvec.printing = FALSE, ...)
```

Arguments

- `object` an R object of class vlmc.
- `x` an R object of class summary.vlmc.
- `digits` integer giving the number of significant digits for printing numbers.
- `vvec.printing` logical indicating if the vvec component should be printed recursively via `prt.vvec()`.
- `...` potentially further arguments [Generic].

Value

`summary.vlmc()` returns an object of class "summary.vlmc" for which there's a print method. It is basically a list containing all of object, plus additionally

- `confusion.table` the symmetric contingency table of data vs fitted.
- `depth.stats` statistics of Markov chain depth along the data; currently just `summary(predict(object, type="depth"))`.
- `R2` the R^2 statistic, i.e. the percentage (in [0,1]) of correctly predicted data.
See Also

vlmc, draw.vlmc.

Examples

data(bnrf1)
vb <- vlmc(bnrf1EB)
svb <- summary(vb)
svb

vlmc

Fit a Variable Length Markov Chain (VLMC)

Description

Fit a Variable Length Markov Chain (VLMC) to a discrete time series, in basically two steps:
First a large Markov Chain is generated containing (all if threshold.gen = 1) the context states of
the time series. In the second step, many states of the MC are collapsed by pruning the correspond-
ing context tree.

Currently, the “alphabet” may contain can at most 26 different “character”s.

Usage

vlmc(dts,
cutoff.prune = qchisq(alpha.c, df=max(.1, alpha.len-1), lower.tail=FALSE)/2,
alpha.c = 0.05,
threshold.gen = 2,
code1char = TRUE, y = TRUE, debug = FALSE, quiet = FALSE,
dump = 0, ctl.dump = c(width.ct = 1+log10(n), nmax.set = -1))

is.vlmc(x)
S3 method for class 'vlmc'
print(x, digits = max(3,getOption("digits") - 3), ...)

Arguments

dts a discrete “time series”; can be a numeric, character or factor.
cutoff.prune non-negative number; the cutoff used for pruning; defaults to half the \(\alpha \)-quantile
of a chisq distribution, where \(\alpha = \text{alpha.c} \), the following argument:
alpha.c number in (0,1) used to specify cutoff.prune in the more intuitive \(\chi^2 \) quantile
scale; defaulting to 5%.
threshold.gen integer \(\geq 1 \) (usually left at 2). When generating the initial large tree, only
generate nodes with count \(\geq \text{threshold.gen} \).
code1char logical; if true (default), the data dts will beFIXME.........
y logical; if true (default), the data dts will be returned. This allows to ensure that residuals (residuals.vlmc) and “k-step ahead” predictions can be computed from the result.

dump integer in 0:2. If positive, the pruned tree is dumped to stderr; if 2, the initial unpruned tree is dumped as well.

ctl.dump integer of length 2, say ctl[1:2] controlling the above dump when dump > 0. ctl[1] is the width (number of characters) for the “counts”, ctl[2] the maximal number of set elements that are printed per node; when the latter is not positive (by default), currently max(6, 15 - \log_{10}(n)) is used.

x a fitted "vlmc" object.

digits integer giving the number of significant digits for printing numbers.

Value

A "vlmc" object, basically a list with components

nobs length of data series when fit. (was named "n" in earlier versions.)

cutoff, prune the arguments (or their defaults).

alpha.len the alphabet size.

alpha the alphabet used, as one string.

size a named integer vector of length (>=) 4, giving characteristic sizes of the fitted VLMC. Its named components are

"ord.MC" the (maximal) order of the Markov chain,
"context" the “context tree size”, i.e., the number of leaves plus number of “hidden nodes”;
"nr.leaves" is the number of leaves, and
"total" the number of integers needed to encode the VLMC tree, i.e., length(vlmc.vec) (see below).

vlmc.vec integer vector, containing (an encoding of) the fitted VLMC tree.

y if y = TRUE, the data dts, as character, using the letters from alpha.

call the call vlmc(.) used.

Note

Set cutoff = 0, thresh = 1 for getting a “perfect fit”, i.e. a VLMC which perfectly re-predicts the data (apart from the first observation). Note that even with cutoff = 0 some pruning may happen, for all (terminal) nodes with δ=0.

Author(s)

Martin Maechler
References

See Also
draw.vlmc, entropy, simulate.vlmc for “VLMC bootstrapping”.

Examples

```r
f1 <- c(1,0,0,0)
f2 <- rep(1:0,2)
(dt1 <- c(f1,f1,f2,f1,f2,f2,f1))

(vlmc.dt1 <- vlmc(dt1))
vlmc(dt1, dump = 1,
    ctl.dump = c(wid = 3, nmax = 20), debug = TRUE)
(vlmc.dt1c01 <- vlmc(dts = dt1, cutoff.prune = .1, dump=1))

data(presidents)
dpres <- cut(presidents, c(0,45,70, 100)) # three values + NA
table(dpres <- factor(dpres, exclude = NULL)) # NA as 4th level
levels(dpres)#-> make the alphabet -> warning
vlmc.pres <- vlmc(dpres, debug = TRUE)
vlmc.pres

## alphabet & and its length:
vlmc.pres$alpha
stopifnot(
    length(print(strsplit(vlmc.pres$alpha,NULL)[[1]])) == vlmc.pres$ alpha.len
)

## You now can use larger alphabets (up to 95) letters:
set.seed(7); it <- sample(40, 20000, replace=TRUE)
v40 <- vlmc(it)
v40
## even larger alphabets now give an error:
il <- sample(100, 10000, replace=TRUE)
ee <- tryCatch(vlmc(il), error= function(e)e)
stopifnot(is(ee, "error"))
```
vlmc.version

Version of VLMC Package

Description

Character string, giving the version number (and date) of the VLMC package.

Examples

```r
vlmc.version
## Not run:
[1] "VLMC 1.3-14; after $Date: 2014/06/03 08:05:21 $ UTC"
## End(Not run)
```

vlmctree

Compute the tree structure of a "vlmc" object

Description

Compute the tree representation of a "vlmc" object as R list.

Usage

```r
vlmctree(x)
```

Arguments

- `x,object` typically the result of `vlmc(...)`.
- `vv` integer vector encoding the fitted vlmc, typically `x$vlmc.vec[-1]`.
- `k` integer, the alphabet size.
- `chk.lev` integer internally used for consistency checking.
- `...` further arguments passed to or from methods.

Details

`.vvec2tree` is the internal (recursive) function building up the tree.
`str.vtree` is a method for the generic `str` function and typically for the output of `vlmctree()`.
For each node, it gives the “parenting level” in braces and the counts.
Value

A list of class "vtree" representing the tree structure recursively. Each “node” of the tree is itself a list with components

- **level**: length-2 integer giving the level in \{0,1,...\}, counted from the root (which is 0) and the parenting level, i.e, the longest branch.
- **count**: integer vector of length `k` where `k` is the number of “letters” in the alphabet.
- **total**: equals to `sum(*) $ count`.
- **child**: a list (of length `k`) of child nodes or **NULL** (i.e. not there).

Author(s)

Martin Maechler

See Also

- *vlmc*

Examples

```r
data(presidents)
dpres <- cut(presidents, c(0,45,70, 100)) # three values + NA
table(dpres <- factor(dpres, exclude = NULL)) # NA as 4th level

(vlmc.prc1 <- vlmc(dpres, cut = 1, debug = TRUE))
str(vv.prc1 <- vlmctree(vlmc.prc1))
```
Index

* character
 alpha2int, 2
 alphabet, 3
 int2char, 9

* datasets
 bnrf1, 4
 OZrain, 11

* data
 vlmctree, 24

* graphs
 as.dendrogram.vlmctree, 3

* hplot
 RCplot, 16

* iplot
 as.dendrogram.vlmctree, 3

* models
 deviance.vlmctree, 6
 draw.vlmctree, 7
 logLik, 10
 predict.vlmctree, 13
 residuals.vlmctree, 17
 simulate.vlmctree, 19
 summary.vlmctree, 20
 vlmctree, 24

* ts
 deviance.vlmctree, 6
 draw.vlmctree, 7
 logLik, 10
 predict.vlmctree, 13
 residuals.vlmctree, 17
 simulate.vlmctree, 19
 summary.vlmctree, 20
 vlmctree, 24

* utilities
 alpha2int, 2
 alphabet, 3
 id2ctxt, 8
INDEX

integer, 2, 19
is.vlmc (vlmc), 21

length, 5
list, 24, 25
logLik, 10, 10
logLik.vlmc (logLik), 10

max.col, 14

NA, 13
nchar, 2, 8
NULL, 25

OZrain, 11

par, 16
plot.dendrogram, 4
plot.factor, 17
predict.vlmc, 8, 13, 19, 20
print, 14
print.predict.vlmc (predict.vlmc), 13
print.summary.vlmc (summary.vlmc), 20
print.vlmc (vlmc), 21
prt.vvec, 15, 20

rbinom, 19
RCplot, 16, 18
residuals.vlmc, 6, 14, 17, 22

simulate, 19
simulate.vlmc, 14, 19, 23
str, 24
str.vtree (vlmctree), 24
summary.vlmc, 15, 17, 20

ts, 12

vlmc, 2–4, 6–8, 10, 13–21, 21, 24, 25
vlmc.version, 24
vlmctree, 24