Package ‘VLTimeCausality’

December 20, 2019

Title Variable-Lag Time Series Causality Inference Framework

Version 0.1.0

Description A framework to infer causality on a pair of time series of real numbers based on variable-lag Granger causality and transfer entropy. Typically, Granger causality and transfer entropy have an assumption of a fixed and constant time delay between the cause and effect. However, for a non-stationary time series, this assumption is not true. For example, considering two time series of velocity of person A and person B where B follows A. At some time, B stops tying his shoes, then running to catch up A. The fixed-lag assumption is not true in this case. We propose a framework that allows variable-lags between cause and effect in Granger causality and transfer entropy to allow them to deal with variable-lag non-stationary time series. Please see Chainarong Amornbunchornvej, Elena Zheleva, and Tanya Berger-Wolf (2019) <https://www.cs.uic.edu/~elena/pubs/amornbunchornvej-dsaa19.pdf> when referring to this package in publications.

License GPL-3

BugReports https://github.com/DarkEyes/VLTimeSeriesCausality/issues

Language en-US

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0), dtw, tseries, RTransferEntropy

Imports ggplot2 (>= 3.0)

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.0.0

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]
 (<https://orcid.org/0000-0003-3131-0370>)

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Repository CRAN

Date/Publication 2019-12-20 13:50:08 UTC
R topics documented:

checkMultipleSimulationVLtimeseries ... 2
followingRelation ... 3
GrangerFunc ... 4
MultipleSimulationVLtimeseries ... 5
multipleVLGrangerFunc ... 6
multipleVLTransferEntropy ... 7
plotTimeSeries ... 8
SimpleSimulationVLtimeseries ... 9
VLGrangerFunc .. 10
VLTransferEntropy ... 11

Index 13

checkMultipleSimulationVLtimeseries

checkMultipleSimulationVLtimeseries

Description

checkMultipleSimulationVLtimeseries is a support function that can compare two adjacency matrices: groundtruth and inferred matrices. It re

Usage

checkMultipleSimulationVLtimeseries(trueAdjMat, adjMat)

Arguments

trueAdjMat a groundtruth matrix.
adjMat an inferred matrix.

Value

This function returns a list of precision prec, recall rec, and F1 score F1 of inferred vs. groundtruth matrices.

Examples

Generate simulation data
G<-matrix(FALSE,10,10) # groundtruth
G[1,c(4,7,8,10)]<-TRUE
G[2,c(5,7,9,10)]<-TRUE
G[3,c(6,8,9,10)]<-TRUE
TS <- MultipleSimulationVLtimeseries()
out<-multipleVLGrangerFunc(TS)
checkMultipleSimulationVLtimeseries(trueAdjMat=G,adjMat=out$adjMat)
followingRelation

Description

followingRelation is a function that infers whether Y follows X.

Usage

followingRelation(Y, X, timeLagWindow, lagWindow = 0.2)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>is a numerical time series of a follower</td>
</tr>
<tr>
<td>X</td>
<td>is a numerical time series of a leader</td>
</tr>
<tr>
<td>timeLagWindow</td>
<td>is a maximum possible time delay in the term of time steps.</td>
</tr>
<tr>
<td>lagWindow</td>
<td>is a maximum possible time delay in the term of percentage of length(X). If</td>
</tr>
<tr>
<td></td>
<td>timeLagWindow is missing, then timeLagWindow = ceiling(lagWindow * length(X)).</td>
</tr>
<tr>
<td></td>
<td>The default is 0.2.</td>
</tr>
</tbody>
</table>

Value

This function returns a list of following relation variables below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>follVal</td>
<td>is a following-relation value s.t. if follVal is positive, then Y follows X. If</td>
</tr>
<tr>
<td></td>
<td>follVal is negative, then X follows Y. Otherwise, if follVal is zero, there is no</td>
</tr>
<tr>
<td></td>
<td>following relation between X, Y.</td>
</tr>
<tr>
<td>nX</td>
<td>is a time series that is rearranged from X by applying the lags optIndexVec in</td>
</tr>
<tr>
<td></td>
<td>order to imitate Y.</td>
</tr>
<tr>
<td>optDelay</td>
<td>is the optimal time delay inferred by cross-correlation of X, Y. It is positive if Y</td>
</tr>
<tr>
<td></td>
<td>is simply just a time-shift of X (e.g. Y[t] = X[t−optDelay]).</td>
</tr>
<tr>
<td>optCor</td>
<td>is the optimal correlation of Y[t] = X[t−optDelay] for all t.</td>
</tr>
<tr>
<td>optIndexVec</td>
<td>is a time series of optimal warping-path from DTW that is corrected by cross</td>
</tr>
<tr>
<td></td>
<td>correlation. It is approximately that Y[t] = X[t−optIndexVec[t]].</td>
</tr>
<tr>
<td>VLval</td>
<td>is a percentage of elements in optIndexVec that is not equal to optDelay.</td>
</tr>
<tr>
<td>ccfout</td>
<td>is an output object of ccf function.</td>
</tr>
</tbody>
</table>

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
# Run the function
out <- followingRelation(Y = TS$Y, X = TS$X)
```
GrangerFunc is a Granger Causality function. It tests whether X Granger-causes Y.

Usage

GrangerFunc(
 Y,
 X,
 maxLag = 1,
 alpha = 0.05,
 autoLagflag = TRUE,
 gamma = 0.5,
 family = gaussian
)

Arguments

- Y is a numerical time series of effect
- X is a numerical time series of cause
- maxLag is a maximum possible time delay. The default is 1.
- alpha is a significance level of F-test to determine whether X Granger-causes Y. The default is 0.05.
- autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
- gamma is a parameter to determine whether X Granger-causes Y using BIC difference ratio.
- family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns of whether X Granger-causes Y.

- ftest F-statistic of Granger causality.
- BIC_H0 Bayesian Information Criterion (BIC) derived from Y regressing on Y past.
- BIC_H1 Bayesian Information Criterion (BIC) derived from Y regressing on Y,X past.
- XgCsY The flag is true if X Granger-causes Y using BIC difference ratio where BIC_diffRatio \geq gamma.
XgCsY_ftest The flag is true if X Granger-causes Y using F-test where p.val>=alpha.
XgCsY_BIC The flag is true if X Granger-causes Y using BIC where BIC_H0>=BIC_H1.
maxLag A maximum possible time delay.
H0 glm object of Y regressing on Y past.
H1 glm object of Y regressing on Y,X past.
BICDiffRatio Bayesian Information Criterion difference ratio: (BIC_H0-BIC_H1)/BIC_H0.

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-GrangerFunc(Y=TS$Y,X=TS$X)

Description

MultipleSimulationVLtimeseries is a support function for generating a set of time series TS[,1],...TS[,10]. TS[,1],TS[,2],TS[,3] are causes X time series that are generated independently. The rest of time series are Y time series that are effects of some causes TS[,1],TS[,2],TS[,3], TS[,1] causes TS[,4],TS[,7],TS[,8], and TS[,10]. TS[,2] causes TS[,5],TS[,7],TS[,9], and TS[,10]. TS[,3] causes TS[,6],TS[,8],TS[,9], and TS[,10].

Usage

MultipleSimulationVLtimeseries(
 n = 200,
 lag = 5,
 YstFixInx = 111,
 YfnFixInx = 150,
 XpointFixInx = 100,
 arimaFlag = TRUE
)

Arguments

n is length of time series.
lag is a time lag between X and Y s.t. Y[t] is approximately X[t-lag].
YstFixInx is the starting point of variable lag part.
YfnFixInx is the end point of variable lag part.
XpointFixInx is a point in X s.t. Y[YstFixInx:YfnFixInx]= X[XpointFixInx].
arimaFlag is ARMA model flag. If it is true, then X is generated by ARMA model. If it is false, then X is generated by sampling of the standard normal distribution.
Value

This function returns a list of time series TS.

Examples

```r
# Generate simulation data
TS <- MultipleSimulationVLtimeseries()
```

Description

`multipleVLGrangerFunc` is a function that infers Variable-lag Granger Causality of all pairwise of m time series TS[,1], ...TS[,m].

Usage

```r
multipleVLGrangerFunc(TS,
maxLag,
alpha = 0.05,
gamma = 0.3,
autoLagflag = TRUE,
causalFlag = 0,
VLflag = TRUE,
family = gaussian)
```

Arguments

- **TS** is a numerical time series of effect where TS[t,k] is an element at time t of kth time series.
- **maxLag** is a maximum possible time delay. The default is 0.2*length(Y).
- **alpha** is a significance level of F-test to determine whether X Granger-causes Y. The default is 0.05.
- **gamma** is a parameter to determine whether X Granger-causes Y using BIC difference ratio. The default is 0.3.
- **autoLagflag** is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
- **causalFlag** is a choice of criterion for inferring causality: causalFlag=0 for BIC difference ratio, causalFlag=1 for f-test, or causalFlag=2 for BIC.
VLflag is a flag of Granger causality choice: either VLflag=TRUE for VL-Granger or VLflag=FALSE for Granger causality.

family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns a list of an adjacency matrix of causality where adjMat[i,j] is true if TS[,i] causes TS[,j].

Examples

Generate simulation data
TS <- MultipleSimulationVLtimeseries()
Run the function
out<-multipleVLGrangerFunc(TS)
plotTimeSeries

lX, lY are lag parameters of RTransferEntropy::transfer_entropy().
VLflag is a flag of Granger causality choice: either VLflag = TRUE for VL-Granger or VLflag = FALSE for Granger causality.
autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

Value

This function returns a list of an adjacency matrix of causality where adjMat[i,j] is true if TS[,i] causes TS[,j].

Examples

Generate simulation data
out1 <- SimpleSimulationVLtimeseries()
TS <- cbind(out1$X, out1$Y)
Run the function
out2 <- multipleVLTransferEntropy(TS, maxLag = 1)

plotTimeSeries

Description

plotTimeSeries is a function for visualizing time series

Usage

plotTimeSeries(X, Y, strTitle = "Time Series Plot", TSnames)

Arguments

X is a 1st numerical time series
Y is a 2nd numerical time series. If it is not supplied, the function plots only X.
strTitle is a string of the plot title
TSnames is a list of legend of X,Y where TSnames[1] is a legend of X and TSnames[2] is a legend of Y.

Value

This function returns an object of ggplot class.
Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
# Run the function
plotTimeSeries(Y=TS$Y, X=TS$X)
```

Description

`SimpleSimulationVLtimeseries` is a support function for generating time series `X,Y` where `X` VL-Granger-causes `Y`.

Usage

```r
SimpleSimulationVLtimeseries(
  n = 200,
  lag = 5,
  YstFixInx = 110,
  YfnFixInx = 170,
  XpointFixInx = 100,
  arimaFlag = TRUE
)
```

Arguments

- `n` is length of time series.
- `lag` is a time lag between `X` and `Y` s.t. `Y[t]` is approximately `X[t-lag]`.
- `YstFixInx` is the starting point of variable lag part.
- `YfnFixInx` is the end point of variable lag part.
- `XpointFixInx` is a point in `X` s.t. `Y[YstFixInx:YfnFixInx]= X[XpointFixInx]`.
- `arimaFlag` is ARMA model flag. If it is true, then `X` is generated by ARMA model. If it is false, then `X` is generated by sampling of the standard normal distribution.

Value

This function returns a list of time series `X,Y` where `X` VL-Granger-causes `Y`.

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
```
VLGrangerFunc

Description

VLGrangerFunc is a Variable-lag Granger Causality function. It tests whether X VL-Granger-causes Y.

Usage

\[
\text{VLGrangerFunc}(Y, X, \text{alpha} = 0.05, \text{maxLag}, \text{gamma} = 0.5, \text{autoLagflag} = \text{TRUE}, \text{family} = \text{gaussian})
\]

Arguments

- Y is a numerical time series of effect
- X is a numerical time series of cause
- alpha is a significance level of f-test to determine whether X Granger-causes Y. The default is 0.05.
- maxLag is a maximum possible time delay. The default is $0.2 \times \text{length}(Y)$.
- gamma is a parameter to determine whether X Granger-causes Y using BIC difference ratio. The default is 0.5.
- autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
- family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns whether X Granger-causes Y.

- ftest F-statistic of Granger causality.
- BIC_H0 Bayesian Information Criterion (BIC) derived from Y regressing on Y past.
- BIC_H1 Bayesian Information Criterion (BIC) derived from Y regressing on Y,X past.
Description

VLTransferEntropy is a Variable-lag Transfer Entropy function. It tests whether X VL-Transfer-Entropy-causes Y.

Usage

```r
VLTransferEntropy(  
  Y,  
  X,  
  maxLag,  
  nboot = 0,  
  lx = 1,  
  ly = 1,  
  VLflag = TRUE,  
  autoLagflag = TRUE  
)
```

Arguments

- **Y**: is a numerical time series of effect
- **X**: is a numerical time series of cause
- **maxLag**: is a maximum possible time delay. The default is 0.2*length(Y).

Examples

```r
# Generate simulation data  
TS <- SimpleSimulationVLtimeseries()  
# Run the function  
out<-VLGrangerFunc(Y=TS$Y,X=TS$X)
```
nboot is a number of times of bootstrapping for RTransferEntropy::transfer_entropy() function.

lx, ly are lag parameters of RTransferEntropy::transfer_entropy().

VLflag is a flag of Transfer Entropy choice: either VLflag=TRUE for VL-Transfer Entropy or VLflag=FALSE for Transfer Entropy.

autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

Value

This function returns of whether X (VL-)Transfer-Entropy-causes Y.

TEratio is a Transfer Entropy ratio. If it is greater than one, then X causes Y.

res is an object of output from RTransferEntropy::transfer_entropy()

follOut is a list of variables from function followingRelation.

XgCsY_trns The flag is true if X (VL-)Transfer-Entropy-causes Y using Transfer Entropy ratio ratio where TEratio >1 if X causes Y.

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-VLTransferEntropy(Y=TS$Y,X=TS$X)
Index

checkMultipleSimulationVLtimeseries, 2
followingRelation, 3
GrangerFunc. 4
MultipleSimulationVLtimeseries, 5
multipleVLGrangerFunc. 6
multipleVLTransferEntropy, 7
plotTimeSeries, 8
SimpleSimulationVLtimeseries, 9
VLGrangerFunc, 10
VLTransferEntropy, 11