Package ‘VLTimeCausality’

January 24, 2022

Title Variable-Lag Time Series Causality Inference Framework

Version 0.1.4

Description A framework to infer causality on a pair of time series of real numbers based on variable-lag Granger causality and transfer entropy. Typically, Granger causality and transfer entropy have an assumption of a fixed and constant time delay between the cause and effect. However, for a non-stationary time series, this assumption is not true. For example, considering two time series of velocity of person A and person B where B follows A. At some time, B stops tying his shoes, then running to catch up A. The fixed-lag assumption is not true in this case. We propose a framework that allows variable-lags between cause and effect in Granger causality and transfer entropy to allow them to deal with variable-lag non-stationary time series. Please see Chainarong Amornbunchornvej, Elena Zhelueva, and Tanya Berger-Wolf (2021) <doi:10.1145/3441452> when referring to this package in publications.

License GPL-3

BugReports https://github.com/DarkEyes/VLTimeSeriesCausality/issues

Language en-US

Encoding UTF-8

LazyData false

Depends R (>= 3.5.0), dtw, tseries, RTransferEntropy

Imports ggplot2 (>= 3.0)

Suggests knitr, rmarkdown, markdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Repository CRAN

Date/Publication 2022-01-24 10:52:50 UTC
checkMultipleSimulationVLtimeseries is a support function that can compare two adjacency matrices: groundtruth and inferred matrices. It returns a list of precision \(\text{prec} \), recall \(\text{rec} \), and F1 score \(\text{F1} \) of inferred vs. groundtruth matrices.

Usage

```r
checkMultipleSimulationVLtimeseries(trueAdjMat, adjMat)
```

Arguments

- **trueAdjMat**: a groundtruth matrix.
- **adjMat**: an inferred matrix.

Value

This function returns a list of precision \(\text{prec} \), recall \(\text{rec} \), and F1 score \(\text{F1} \) of inferred vs. groundtruth matrices.

Examples

```r
## Generate simulation data
#G <- matrix(FALSE, 10, 10) # groundtruth
#G[1,c(4,7,8,10)] <- TRUE
#G[2,c(5,7,9,10)] <- TRUE
#G[3,c(6,8,9,10)] <- TRUE
#TS <- MultipleSimulationVLtimeseries()
#out <- multipleVLGrangerFunc(TS)
#checkMultipleSimulationVLtimeseries(trueAdjMat = G, adjMat = out$adjMat)
```
followingRelation

Description

followingRelation is a function that infers whether Y follows X.

Usage

followingRelation(Y, X, timeLagWindow, lagWindow = 0.2)

Arguments

Y is a numerical time series of a follower
X is a numerical time series of a leader
timeLagWindow is a maximum possible time delay in the term of time steps.
lagWindow is a maximum possible time delay in the term of percentage of length(X). If timeLagWindow is missing, then timeLagWindow = ceiling(lagWindow*length(X)). The default is 0.2.

Value

This function returns a list of following relation variables below.

follVal is a following-relation value s.t. if follVal is positive, then Y follows X. If follVal is negative, then X follows Y. Otherwise, if follVal is zero, there is no following relation between X, Y.
nX is a time series that is rearranged from X by applying the lags optIndexVec in order to imitate Y.
optDelay is the optimal time delay inferred by cross-correlation of X, Y. It is positive if Y is simply just a time-shift of X (e.g. Y[t]=X[t-optDelay]).
optCor is the optimal correlation of Y[t]=X[t-optDelay] for all t.
optIndexVec is a time series of optimal warping-path from DTW that is corrected by cross correlation. It is approximately that Y[t]=X[t-optIndexVec[t]].
VLval is a percentage of elements in optIndexVec that is not equal to optDelay.
ccfout is an output object of ccf function.

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-followingRelation(Y=TS$Y,X=TS$X)
GrangerFunc is a Granger Causality function. It tests whether \(X \) Granger-causes \(Y \).

Usage

\[
\text{GrangerFunc}(\\
Y, \\
X, \\
\text{maxLag} = 1, \\
\text{alpha} = 0.05, \\
\text{autoLagflag} = \text{TRUE}, \\
\gamma = 0.5, \\
\text{family} = \text{gaussian} \\
)
\]

Arguments

- \(Y \) is a numerical time series of effect
- \(X \) is a numerical time series of cause
- \(\text{maxLag} \) is a maximum possible time delay. The default is 1.
- \(\text{alpha} \) is a significance level of F-test to determine whether \(X \) Granger-causes \(Y \). The default is 0.05.
- \(\text{autoLagflag} \) is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
- \(\gamma \) is a parameter to determine whether \(X \) Granger-causes \(Y \) using BIC difference ratio.
- \(\text{family} \) is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns of whether \(X \) Granger-causes \(Y \).

- \(\text{ftest} \) is the F-statistic of Granger causality.
- \(\text{p.val} \) is a p-value from F-test.
- \(\text{BIC}_H0 \) is Bayesian Information Criterion (BIC) derived from \(Y \) regressing on \(Y \) past.
- \(\text{BIC}_H1 \) is Bayesian Information Criterion (BIC) derived from \(Y \) regressing on \(Y,X \) past.
- \(XgCsY \) is the flag is true if \(X \) Granger-causes \(Y \) using BIC difference ratio where \(\text{BIC}\text{diffRatio} \geq \gamma \).
The flag is true if X Granger-causes Y using F-test where $p.val>=\alpha$.

The flag is true if X Granger-causes Y using BIC where $BIC_{H0}>BIC_{H1}$.

A maximum possible time delay.

A glm object of Y regressing on Y past.

A glm object of Y regressing on Y, X past.

Bayesian Information Criterion difference ratio: $(BIC_{H0}-BIC_{H1})/BIC_{H0}$.

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-GrangerFunc(Y=TS$Y, X=TS$X)

Description

`MultipleSimulationVLtimeseries` is a support function for generating a set of time series $TS[,1],...,TS[,10]$. $TS[,1],TS[,2],TS[,3]$ are causes X time series that are generated independently. The rest of time series are Y time series that are effects of some causes $TS[,1],TS[,2],TS[,3]$. $TS[,1]$ causes $TS[,4],TS[,7],TS[,8]$, and $TS[,10]$. $TS[,2]$ causes $TS[,5],TS[,7],TS[,9]$, and $TS[,10]$. $TS[,3]$ causes $TS[,6],TS[,8],TS[,9]$, and $TS[,10]$.

Usage

```r
MultipleSimulationVLtimeseries(
  n = 200,
  lag = 5,
  YstFixInx = 110,
  YfnFixInx = 170,
  XpointFixInx = 100,
  arimaFlag = TRUE,
  seedVal = -1
)
```

Arguments

- `n` is length of time series.
- `lag` is a time lag between X and Y s.t. $Y[t]$ is approximately $X[t-lag]$.
- `YstFixInx` is the starting point of variable lag part.
- `YfnFixInx` is the end point of variable lag part.
XpointFixInx is a point in X s.t. Y[YstFixInx:YfnFixInx] = X[XpointFixInx].

arimaFlag is ARMA model flag. If it is true, then X is generated by ARMA model. If it is false, then X is generated by sampling of the standard normal distribution.

seedVal is a seed parameter for generating random noise.

Value

This function returns a list of time series TS.

Examples

```r
# Generate simulation data
TS <- MultipleSimulationVLtimeseries()
```

Description

`multipleVLGrangerFunc` is a function that infers Variable-lag Granger Causality of all pairwisces of m time series TS[,1],...TS[,m].

Usage

```r
multipleVLGrangerFunc(
  TS,
  maxLag,
  alpha = 0.05,
  gamma = 0.3,
  autoLagflag = TRUE,
  causalFlag = 0,
  VLflag = TRUE,
  family = gaussian
)
```

Arguments

- **TS** is a numerical time series of effect where TS[t,k] is an element at time t of kth time series.
- **maxLag** is a maximum possible time delay. The default is 0.2*length(Y).
- **alpha** is a significance level of F-test to determine whether X Granger-causes Y. The default is 0.05.
- **gamma** is a parameter to determine whether X Granger-causes Y using BIC difference ratio. The default is 0.3.
autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

causalFlag is a choice of criterion for inferring causality: causalFlag=0 for BIC difference ratio, causalFlag=1 for f-test, or causalFlag=2 for BIC.

VLflag is a flag of Granger causality choice: either VLflag=TRUE for VL-Granger or VLflag=FALSE for Granger causality.

family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns a list of an adjacency matrix of causality where adjMat[i,j] is true if TS[,i] causes TS[,j].

Examples

```r
## Generate simulation data
#TS <- MultipleSimulationVLtimeseries()
## Run the function
#out<-multipleVLGrangerFunc(TS)
```

Description

`multipleVLTransferEntropy` is a function that infers Variable-lag Transfer Entropy of all pairwises of m time series TS[1],...TS[m].

Usage

```r
multipleVLTransferEntropy(
    TS,
    maxLag,
    nboot = 0,
    lx = 1,
    ly = 1,
    VLflag = TRUE,
    autoLagflag = TRUE,
    alpha = 0.05
)
```
plotTimeSeries is a function for visualizing time series

Usage

plotTimeSeries(X, Y, strTitle = "Time Series Plot", TSnames)

Arguments

X is a 1st numerical time series
Y is a 2nd numerical time series. If it is not supplied, the function plots only X.
strTitle is a string of the plot title
TSnames is a list of legend of X,Y where TSnames[1] is a legend of X and TSnames[2] is a legend of Y.
SimpleSimulationVLtimeseries

Value

This function returns an object of ggplot class.

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
plotTimeSeries(Y=TS$Y,X=TS$X)

Description

SimpleSimulationVLtimeseries is a support function for generating time series X,Y where X VL-Granger-causes Y.

Usage

SimpleSimulationVLtimeseries(
 n = 200,
 lag = 5,
 YstFixInx = 110,
 YfnFixInx = 170,
 XpointFixInx = 100,
 arimaFlag = TRUE,
 seedVal = -1,
 expflag = FALSE,
 causalFlag = TRUE
)

Arguments

- **n** is length of time series.
- **lag** is a time lag between X and Y s.t. $Y[t]$ is approximately $X[t-lag]$.
- **YstFixInx** is the starting point of variable lag part.
- **YfnFixInx** is the end point of variable lag part.
- **XpointFixInx** is a point in X s.t. $Y[YstFixInx:YfnFixInx]=X[XpointFixInx]$.
- **arimaFlag** is ARMA model flag. If it is true, then X is generated by ARMA model. If it is false, then X is generated by sampling of the standard normal distribution.
- **seedVal** is a seed parameter for generating random noise. If it is not -1, then the rnorm is set the random seed with seedVal.
expflag is the flag to set the relation between $Y[i+\text{lag}]$ and $X[i]$. If it is false Y,X has a linear relation, otherwise, they have an exponential relation.

causalFlag is a flag. If it is true, then X causes Y. Otherwise, X,Y have no causal relation.

Value

This function returns a list of time series X,Y where X VL-Granger-causes Y.

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
```

TSNANNearestNeighborPropagation is a function that fills NA values with nearest real values in the past (or future if the first position of time series is NA), for time series X.

Usage

```
TSNANNearestNeighborPropagation(X)
```

Arguments

X is a T-by-D matrix numerical time series

Value

This function returns a list of following relation variables below.

$X\text{out}$ is a T-by-D matrix numerical time series that all NAN have been filled with nearest real values.

Examples

```r
# Load example data
z<-1:20
z[2:5]<-NA
z<-TSNANNearestNeighborPropagation(z)
```
VLGrangerFunc

Description

VLGrangerFunc is a Variable-lag Granger Causality function. It tests whether X VL-Granger-causes Y.

Usage

VLGrangerFunc(
 Y,
 X,
 alpha = 0.05,
 maxLag,
 gamma = 0.5,
 autoLagflag = TRUE,
 family = gaussian
)

Arguments

Y is a numerical time series of effect
X is a numerical time series of cause
alpha is a significance level of f-test to determine whether X Granger-causes Y. The default is 0.05.
maxLag is a maximum possible time delay. The default is 0.2*length(Y).
gamma is a parameter to determine whether X Granger-causes Y using BIC difference ratio. The default is 0.5.
autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns of whether X Granger-causes Y.

f.test F-statistic of Granger causality.
BIC_H0 Bayesian Information Criterion (BIC) derived from Y regressing on Y past.
BIC_H1 Bayesian Information Criterion (BIC) derived from Y regressing on Y,X past.
VLTransferEntropy

VLTransferEntropy

Description

VLTransferEntropy is a Variable-lag Transfer Entropy function. It tests whether \(X \) VL-Transfer-Entropy-causes \(Y \).

Usage

\[
VLTransferEntropy(Y, X, maxLag, nboot = 0, lx = 1, ly = 1, VLflag = TRUE, autoLagflag = TRUE, alpha = 0.05)
\]

Arguments

- \(Y \) is a numerical time series of effect
- \(X \) is a numerical time series of cause
- \(\text{maxLag} \) is a maximum possible time delay. The default is \(0.2*\text{length}(Y) \).
- \(\text{nboot} \) is the number of bootstrap samples. The default is 0.
- \(\text{lx} \) is the number of lags for \(X \). The default is 1.
- \(\text{ly} \) is the number of lags for \(Y \). The default is 1.
- \(\text{VLflag} \) is a logical indicating whether to use variable-lag Transfer Entropy. The default is TRUE.
- \(\text{autoLagflag} \) is a logical indicating whether to determine the optimal lag automatically. The default is TRUE.
- \(\text{alpha} \) is the significance level. The default is 0.05.

Examples

\[
\begin{align*}
\text{# Generate simulation data} \\
\text{TS} & \leftarrow \text{SimpleSimulationVLtimeseries()} \\
\text{# Run the function} \\
\text{out} & \leftarrow \text{VLGrangerFunc}(Y = \text{TS}Y, X = \text{TS}X)
\end{align*}
\]
nboot is a number of times of bootstrapping for RTransferEntropy::transfer_entropy() function.

lx, ly are lag parameters of RTransferEntropy::transfer_entropy().

VLflag is a flag of Transfer Entropy choice: either VLflag=TRUE for VL-Transfer Entropy or VLflag=FALSE for Transfer Entropy.

autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

alpha is a significant-level threshold for TE bootstrapping by Dimpfl and Peter (2013).

Value

This function returns of whether X (VL-)Transfer-Entropy-causes Y.

TEratio is a Transfer Entropy ratio. If it is greater than one , then X causes Y.

res is an object of output from RTransferEntropy::transfer_entropy()

 follOut is a list of variables from function followingRelation.

XgCsY_trns The flag is true if X (VL-)Transfer-Entropy-causes Y using Transfer Entropy ratio ratio where TEratio >1 if X causes Y. Additionally, if nboot>1, the flag is true only when pval<=alpha.

pval It is a p-value for TE bootstrapping by Dimpfl and Peter (2013).

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-'VLTransferEntropy(Y=TS$Y,X=TS$X)
Index

checkMultipleSimulationVLtimeseries, 2
followingRelation, 3
GrangerFunc, 4
MultipleSimulationVLtimeseries, 5
multipleVLGrangerFunc, 6
multipleVLTransferEntropy, 7
plotTimeSeries, 8
SimpleSimulationVLtimeseries, 9
TSNANNearestNeighborPropagation, 10
VLGrangerFunc, 11
VLTransferEntropy, 12