Package ‘VLTimeCausality’

October 12, 2022

Title Variable-Lag Time Series Causality Inference Framework

Version 0.1.4

Description A framework to infer causality on a pair of time series of real numbers based on variable-lag Granger causality and transfer entropy. Typically, Granger causality and transfer entropy have an assumption of a fixed and constant time delay between the cause and effect. However, for a non-stationary time series, this assumption is not true. For example, considering two time series of velocity of person A and person B where B follows A. At some time, B stops tying his shoes, then running to catch up A. The fixed-lag assumption is not true in this case. We propose a framework that allows variable-lags between cause and effect in Granger causality and transfer entropy to allow them to deal with variable-lag non-stationary time series. Please see Chainarong Amornbunchornvej, Elena Zheleva, and Tanya Berger-Wolf (2021) <doi:10.1145/3441452> when referring to this package in publications.

License GPL-3

BugReports https://github.com/DarkEyes/VLTimeSeriesCausality/issues

Language en-US

Encoding UTF-8

LazyData false

Depends R (>= 3.5.0), dtw, tseries, RTransferEntropy

Imports ggplot2 (>= 3.0)

Suggests knitr, rmarkdown, markdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Repository CRAN

Date/Publication 2022-01-24 10:52:50 UTC
Description

checkMultipleSimulationVLtimeseries is a support function that can compare two adjacency matrices: groundtruth and inferred matrices. It re

Usage

checkMultipleSimulationVLtimeseries(trueAdjMat, adjMat)

Arguments

tureAdjMat a groundtruth matrix.
adjMat an inferred matrix.

Value

This function returns a list of precision prec, recall rec, and F1 score F1 of inferred vs. groundtruth matrices.

Examples

```r
## Generate simulation data
#G<-matrix(FALSE,10,10) # groundtruth
#G[1,c(4,7,8,10)]<-TRUE
#G[2,c(5,7,9,10)]<-TRUE
#G[3,c(6,8,9,10)]<-TRUE
#TS <- MultipleSimulationVLtimeseries()
#out<-multipleVLGrangerFunc(TS)
#checkMultipleSimulationVLtimeseries(trueAdjMat=G,adjMat=out$adjMat)
```
followingRelation

Description

followingRelation is a function that infers whether \(Y \) follows \(X \).

Usage

\[
\text{followingRelation}(Y, X, \text{timeLagWindow}, \text{lagWindow} = 0.2)
\]

Arguments

- \(Y \) is a numerical time series of a follower
- \(X \) is a numerical time series of a leader
- \(\text{timeLagWindow} \) is a maximum possible time delay in the term of time steps.
- \(\text{lagWindow} \) is a maximum possible time delay in the term of percentage of length(\(X \)). If \(\text{timeLagWindow} \) is missing, then \(\text{timeLagWindow}=\text{ceiling}(\text{lagWindow} \times \text{length}(X)) \). The default is 0.2.

Value

This function returns a list of following relation variables below.

- \(\text{follVal} \) is a following-relation value s.t. if \(\text{follVal} \) is positive, then \(Y \) follows \(X \). If \(\text{follVal} \) is negative, then \(X \) follows \(Y \). Otherwise, if \(\text{follVal} \) is zero, there is no following relation between \(X, Y \).
- \(\text{nX} \) is a time series that is rearranged from \(X \) by applying the lags \(\text{optIndexVec} \) in order to imitate \(Y \).
- \(\text{optDelay} \) is the optimal time delay inferred by cross-correlation of \(X, Y \). It is positive if \(Y \) is simply just a time-shift of \(X \) (e.g. \(Y[t]=X[t-\text{optDelay}] \)).
- \(\text{optCor} \) is the optimal correlation of \(Y[t]=X[t-\text{optDelay}] \) for all \(t \).
- \(\text{optIndexVec} \) is a time series of optimal warping-path from DTW that is corrected by cross correlation. It is approximately that \(Y[t]=X[t-\text{optIndexVec}[t]] \).
- \(\text{VLval} \) is a percentage of elements in \(\text{optIndexVec} \) that is not equal to \(\text{optDelay} \).
- \(\text{ccfout} \) is an output object of \text{ccf} function.

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
# Run the function
out<-followingRelation(Y=TS$Y,X=TS$X)
```
GrangerFunc is a Granger Causality function. It tests whether X Granger-causes Y.

Usage

```r
GrangerFunc(
  Y,
  X,
  maxLag = 1,
  alpha = 0.05,
  autoLagflag = TRUE,
  gamma = 0.5,
  family = gaussian
)
```

Arguments

- **Y**: is a numerical time series of effect
- **X**: is a numerical time series of cause
- **maxLag**: is a maximum possible time delay. The default is 1.
- **alpha**: is a significance level of F-test to determine whether X Granger-causes Y. The default is 0.05.
- **autoLagflag**: is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
- **gamma**: is a parameter to determine whether X Granger-causes Y using BIC difference ratio.
- **family**: is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns of whether X Granger-causes Y.

- **ftest**: F-statistic of Granger causality.
- **p.val**: A p-value from F-test.
- **BIC_H0**: Bayesian Information Criterion (BIC) derived from Y regressing on Y past.
- **BIC_H1**: Bayesian Information Criterion (BIC) derived from Y regressing on Y,X past.
- **XgCsY**: The flag is true if X Granger-causes Y using BIC difference ratio where BIC_diffRatio >= gamma.
MultipleSimulationVLtimeseries

XgCsY_ftest The flag is true if X Granger-causes Y using F-test where p.val>=alpha.
XgCsY_BIC The flag is true if X Granger-causes Y using BIC where BIC_H0>=BIC_H1.
maxLag A maximum possible time delay.
H0 glm object of Y regressing on Y past.
H1 glm object of Y regressing on Y, X past.
BICDiffRatio Bayesian Information Criterion difference ratio: (BIC_H0-BIC_H1)/BIC_H0.

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-GrangerFunc(Y=TS$Y,X=TS$X)

Description

MultipleSimulationVLtimeseries is a support function for generating a set of time series TS[,1],...TS[,10]. TS[,1],TS[,2],TS[,3] are causes X time series that are generated independently. The rest of time series are Y time series that are effects of some causes TS[,1],TS[,2],TS[,3]. TS[,1] causes TS[,4],TS[,7],TS[,8], and TS[,10]. TS[,2] causes TS[,5],TS[,7],TS[,9], and TS[,10]. TS[,3] causes TS[,6],TS[,8],TS[,9], and TS[,10].

Usage

MultipleSimulationVLtimeseries(
 n = 200,
 lag = 5,
 YstFixInx = 110,
 YfnFixInx = 170,
 XpointFixInx = 100,
 arimaFlag = TRUE,
 seedVal = -1
)

Arguments

n is length of time series.
lag is a time lag between X and Y s.t. Y[t] is approximately X[t-lag].
YstFixInx is the starting point of variable lag part.
YfnFixInx is the end point of variable lag part.
XpointFixInx is a point in X s.t. $Y_{[\text{YstFixInx}:\text{YfnFixInx}]} = X_{\text{XpointFixInx}}$.

arimaFlag is ARMA model flag. If it is true, then X is generated by ARMA model. If it is false, then X is generated by sampling of the standard normal distribution.

seedVal is a seed parameter for generating random noise.

Value

This function returns a list of time series TS.

Examples

```r
# Generate simulation data
TS <- MultipleSimulationVLtimeseries()
```

Description

multipleVLGrangerFunc is a function that infers Variable-lag Granger Causality of all pairwise(s) of m time series $TS[,1],...TS[,m]$.

Usage

```r
multipleVLGrangerFunc(
  TS,
  maxLag,
  alpha = 0.05,
  gamma = 0.3,
  autoLagflag = TRUE,
  causalFlag = 0,
  VLflag = TRUE,
  family = gaussian
)
```

Arguments

- **TS** is a numerical time series of effect where $TS[t,k]$ is an element at time t of kth time series.
- **maxLag** is a maximum possible time delay. The default is $0.2*\text{length}(Y)$.
- **alpha** is a significance level of F-test to determine whether X Granger-causes Y. The default is 0.05.
- **gamma** is a parameter to determine whether X Granger-causes Y using BIC difference ratio. The default is 0.3.
autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

causalFlag is a choice of criterion for inferring causality: causalFlag=0 for BIC difference ratio, causalFlag=1 for f-test, or causalFlag=2 for BIC.

VLflag is a flag of Granger causality choice: either VLflag=TRUE for VL-Granger or VLflag=FALSE for Granger causality.

family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns a list of an adjacency matrix of causality where adjMat[i,j] is true if TS[,i] causes TS[,j].

Examples

```r
## Generate simulation data
#TS <- MultipleSimulationVLtimeseries()
## Run the function
#out<-multipleVLGrangerFunc(TS)
```

Description

multipleVLTransferEntropy is a function that infers Variable-lag Transfer Entropy of all pairwises of m time series TS[,1],...TS[,m].

Usage

```r
multipleVLTransferEntropy(
    TS, 
    maxLag, 
    nboot = 0, 
    lx = 1, 
    ly = 1, 
    VLflag = TRUE, 
    autoLagflag = TRUE, 
    alpha = 0.05
)
```
Arguments

TS is a numerical time series of effect where TS[t,k] is an element at time t of kth time series.

maxLag is a maximum possible time delay. The default is 0.2*length(Y).
nboot is a number of times of bootstrapping for RTransferEntropy::transfer_entropy() function.

lx, ly are lag parameters of RTransferEntropy::transfer_entropy().

VLflag is a flag of Granger causality choice: either VLflag=TRUE for VL-Granger or VLflag=FALSE for Granger causality.

autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

alpha is a significant-level threshold for TE bootstrapping by Dimpfl and Peter (2013).

Value

This function returns a list of an adjacency matrix of causality where adjMat[i,j] is true if TS[,i] causes TS[,j].

Examples

```r
## Generate simulation data
#out1<-SimpleSimulationVLtimeseries()
#TS<-cbind(out1$X,out1$Y)
## Run the function
#out2<-multipleVLTransferEntropy(TS,maxLag=1)
```

plotTimeSeries is a function for visualizing time series

Usage

plotTimeSeries(X, Y, strTitle = "Time Series Plot", TSnames)

Arguments

X is a 1st numerical time series

Y is a 2nd numerical time series. If it is not supplied, the function plots only X.

strTitle is a string of the plot title

TSnames is a list of legend of X,Y where TSnames[1] is a legend of X and TSnames[2] is a legend of Y.
Value

This function returns an object of ggplot class.

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
# Run the function
plotTimeSeries(Y=TS$Y, X=TS$X)
```

Description

SimpleSimulationVLtimeseries is a support function for generating time series \(X, Y \) where \(X \) VL-Granger-causes \(Y \).

Usage

```r
SimpleSimulationVLtimeseries(
  n = 200,
  lag = 5,
  YstFixInx = 110,
  YfnFixInx = 170,
  XpointFixInx = 100,
  arimaFlag = TRUE,
  seedVal = -1,
  expflag = FALSE,
  causalFlag = TRUE
)
```

Arguments

- **n**: is length of time series.
- **lag**: is a time lag between \(X \) and \(Y \) s.t. \(Y[t] \) is approximately \(X[t-\text{lag}] \).
- **YstFixInx**: is the starting point of variable lag part.
- **YfnFixInx**: is the end point of variable lag part.
- **XpointFixInx**: is a point in \(X \) s.t. \(Y[YstFixInx:YfnFixInx] = X[XpointFixInx] \).
- **arimaFlag**: is ARMA model flag. If it is true, then \(X \) is generated by ARMA model. If it is false, then \(X \) is generated by sampling of the standard normal distribution.
- **seedVal**: is a seed parameter for generating random noise. If it is not -1, then the random seed is set with \text{seedVal}.
expflag is the flag to set the relation between \(Y[i+\text{lag}]\) and \(X[i]\). If it is false, \(Y, X\) has a linear relation, otherwise, they have an exponential relation.

causalFlag is a flag. If it is true, then \(X\) causes \(Y\). Otherwise, \(X, Y\) have no causal relation.

Value

This function returns a list of time series \(X, Y\) where \(X\) VL-Granger-causes \(Y\).

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
```

Description

TSNANNNearestNeighborPropagation is a function that fills NA values with nearest real values in the past (or future if the first position of time series is NA), for time series \(X\).

Usage

```r
TSNANNNearestNeighborPropagation(X)
```

Arguments

- **X** is a T-by-D matrix numerical time series

Value

This function returns a list of following relation variables below.

- **Xout** is a T-by-D matrix numerical time series that all NAN have been filled with nearest real values.

Examples

```r
# Load example data
z<-1:20
z[2:5]<-NA
z<-TSNANNNearestNeighborPropagation(z)
```
Description

VLGrangerFunc is a Variable-lag Granger Causality function. It tests whether X VL-Granger-causes Y.

Usage

VLGrangerFunc(
 Y,
 X,
 alpha = 0.05,
 maxLag,
 gamma = 0.5,
 autoLagflag = TRUE,
 family = gaussian
)

Arguments

Y is a numerical time series of effect
X is a numerical time series of cause
alpha is a significance level of f-test to determine whether X Granger-causes Y. The default is 0.05.
maxLag is a maximum possible time delay. The default is 0.2*length(Y).
gamma is a parameter to determine whether X Granger-causes Y using BIC difference ratio. The default is 0.5.
autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.
family is a parameter of family of function for Generalized Linear Models function (glm). The default is gaussian.

Value

This function returns of whether X Granger-causes Y.

ftest F-statistic of Granger causality.
BIC_H0 Bayesian Information Criterion (BIC) derived from Y regressing on Y past.
BIC_H1 Bayesian Information Criterion (BIC) derived from Y regressing on Y,X past.
VLTransferEntropy

The flag is true if \(X \) Granger-causes \(Y \) using BIC difference ratio where \(\text{BICDiffRatio} \geq \gamma \).

The flag is true if \(X \) Granger-causes \(Y \) using f-test where \(p\text{-val} \geq \alpha \).

The flag is true if \(X \) Granger-causes \(Y \) using BIC where \(\text{BIC}_{\text{H}0} \geq \text{BIC}_{\text{H}1} \).

A maximum possible time delay.

A glm object of \(Y \) regressing on \(Y \) past.

A glm object of \(Y \) regressing on \(Y, X \) past.

is a list of variables from function followingRelation.

Bayesian Information Criterion difference ratio: \((\text{BIC}_{\text{H}0} - \text{BIC}_{\text{H}1}) / \text{BIC}_{\text{H}0} \).

Examples

```r
# Generate simulation data
TS <- SimpleSimulationVLtimeseries()
# Run the function
out <- VLGrangerFunc(Y = TS$Y, X = TS$X)
```

Description

VLTransferEntropy is a Variable-lag Transfer Entropy function. It tests whether \(X \) VL-Transfer-Entropy-causes \(Y \).

Usage

```r
VLTransferEntropy(
  Y,
  X,
  maxLag,
  nboot = 0,
  lx = 1,
  ly = 1,
  VLflag = TRUE,
  autoLagflag = TRUE,
  alpha = 0.05
)
```

Arguments

- \(Y \): is a numerical time series of effect
- \(X \): is a numerical time series of cause
- \(\text{maxLag} \): is a maximum possible time delay. The default is \(0.2 \times \text{length}(Y) \).
VLTransferEntropy

nboot is a number of times of bootstrapping for RTransferEntropy::transfer_entropy() function.

lx, ly are lag parameters of RTransferEntropy::transfer_entropy().

VLflag is a flag of Transfer Entropy choice: either VLflag=TRUE for VL-Transfer Entropy or VLflag=FALSE for Transfer Entropy.

autoLagflag is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality.

alpha is a significant-level threshold for TE bootstrapping by Dimpfl and Peter (2013).

Value

This function returns of whether X (VL-)Transfer-Entropy-causes Y.

TEmatio is a Transfer Entropy ratio. If it is greater than one, then X causes Y.

res is an object of output from RTransferEntropy::transfer_entropy()

follOut is a list of variables from function followingRelation.

XgCsY_trns The flag is true if X (VL-)Transfer-Entropy-causes Y using Transfer Entropy ratio ratio where TEmatio>1 if X causes Y. Additionally, if nboot>1, the flag is true only when pval<=alpha.

pval It is a p-value for TE bootstrapping by Dimpfl and Peter (2013).

Examples

Generate simulation data
TS <- SimpleSimulationVLtimeseries()
Run the function
out<-VLTransferEntropy(Y=TS$Y,X=TS$X)
Index

checkMultipleSimulationVLtimeseries, 2
followingRelation, 3
GrangerFunc, 4
MultipleSimulationVLtimeseries, 5
multipleVLGrangerFunc, 6
multipleVLTransferEntropy, 7
plotTimeSeries, 8
SimpleSimulationVLtimeseries, 9
TSNANearestNeighborPropagation, 10
VLGrangerFunc, 11
VLTransferEntropy, 12