Package ‘VennDiagram’

October 12, 2022

Version 1.7.3
Type Package
Title Generate High-Resolution Venn and Euler Plots
Date 2022-04-11
Author Hanbo Chen
Maintainer Paul Boutros <pboutros@mednet.ucla.edu>
Imports methods
Depends R (>= 3.5.0), grid (>= 2.14.1), futile.logger
Description A set of functions to generate high-resolution Venn and Euler plots. Includes handling for several special cases, including two-case scaling, and extensive customization of plot shape and structure.
License GPL-2
LazyLoad yes
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2022-04-12 23:32:28 UTC

R topics documented:

VennDiagram-package .. 2
calculate.overlap ... 2
draw.pairwise.venn .. 3
draw.quad.venn ... 7
draw.quintuple.venn ... 10
draw.single.venn ... 13
draw.triple.venn .. 16
get.venn.partitions .. 19
make.truth.table ... 21
venn.diagram .. 21

Index 35
VennDiagram-package
Venn diagram plotting

Description

Functions to plot high-resolution and highly-customizable Venn and Euler plots.

Details

- **Package**: VennDiagram
- **Type**: Package
- **Version**: 1.6.0
- **Date**: 2013-04-10
- **License**: GPL-2
- **LazyLoad**: yes

Author(s)

Author: Hanbo Chen <Hanbert.Chen@mail.utoronto.ca>
Maintainer: Dr. Paul C. Boutros <Paul.Boutros@utoronto.ca>

calculate.overlap
Calculate Overlap

Description

Determine the groupings of values as they would be presented in the venn diagram.

Usage

```r
calculate.overlap(x)
```

Arguments

- **x**: A list of vectors (e.g., integers, chars), with each component corresponding to a separate circle in the Venn diagram

Details

This function mostly complements the venn.diagram() function for the case where users want to know what values are grouped into the particular areas of the venn diagram.
Value

Returns a list of lists which contain the values assigned to each of the areas of a venn diagram.

Author(s)

Christopher Lalansingh

Examples

```r
# A simple single-set diagram
cardiome <- letters[1:10]
superset <- letters[8:24]
overlap <- calculate.overlap($x = list(
  "Cardiome" = cardiome,
  "SuperSet" = superset
))
```

draw.pairwise.venn
Draw a Venn Diagram with Two Sets

Description

Creates a Venn diagram with two sets. Creates Euler diagrams when the dataset meets certain conditions.

Usage

draw.pairwise.venn(area1, area2, cross.area, category = rep("", 2), euler.d = TRUE, scaled = TRUE, inverted = FALSE, ext.text = TRUE, ext.percent = rep(0.05, 3), lwd = rep(2, 2), lty = rep("solid", 2), col = rep("black", 2), fill = NULL, alpha = rep(0.5, 2), label.col = rep("black", 3), cex = rep(1, 3), fontface = rep("plain", 3), fontfamily = rep("serif", 3), cat.pos = c(-50, 50), cat.dist = rep(0.025, 2), cat.cex = rep(1, 2), cat.col = rep("black", 2), cat.fontface = rep("plain", 2), cat.fontfamily = rep("serif", 2), cat.just = rep(list(c(0.5, 0.5)), 2), cat.default.pos = "outer", cat.prompts = FALSE, ext.pos = rep(0, 2), ext.dist = rep(0, 2), ext.line.lty = "solid", ext.length = rep(0.95, 2), ext.line.lwd = 1, rotation.degree = 0, rotation.centre = c(0.5, 0.5), ind = TRUE, sep.dist = 0.05, offset = 0, cex.prop = NULL, print.mode = "raw", sigdigs = 3, ...)
Arguments

area1 The size of the first set
area2 The size of the second set
cross.area The size of the intersection between the sets
category A vector (length 2) of strings giving the category names of the sets
euler.d Boolean indicating whether to draw Euler diagrams when conditions are met or not (Venn Diagrams with moveable circles)
scaled Boolean indicating whether to scale circle sizes in the diagram according to set sizes or not (euler.d must be true to enable this)
inverted Boolean indicating whether the diagram should be mirrored long the vertical axis or not
ext.text Boolean indicating whether to place area labels outside the circles in case of small partial areas or not
ext.percent A vector (length 3) indicating the proportion that a partial area has to be smaller than to trigger external text placement. The elements allow for individual control of the areas in the order of area1, area2 and intersect area.
lwd A vector (length 2) of numbers giving the line width of the circles’ circumferences
lty A vector (length 2) giving the line dash pattern of the circles’ circumferences
col A vector (length 2) giving the colours of the circles’ circumferences
fill A vector (length 2) giving the colours of the circles’ areas
alpha A vector (length 2) giving the alpha transparency of the circles’ areas
label.col A vector (length 3) giving the colours of the areas’ labels
cex A vector (length 3) giving the size of the areas’ labels
fontface A vector (length 3) giving the fontface of the areas’ labels
fontfamily A vector (length 3) giving the fontfamily of the areas’ labels
cat.pos A vector (length 2) giving the positions (in degrees) of the category names along the circles, with 0 (default) at the 12 o’clock location
cat.dist A vector (length 2) giving the distances (in npc units) of the category names from the edges of the circles (can be negative)
cat.cex A vector (length 2) giving the size of the category names
cat.col A vector (length 2) giving the colours of the category names
cat.fontface A vector (length 2) giving the fontface of the category names
cat.fontfamily A vector (length 2) giving the fontfamily of the category names
cat.just List of 2 vectors of length 2 indicating horizontal and vertical justification of each category name
cat.default.pos One of c('outer', 'text') to specify the default location of category names (cat.pos and cat.dist are handled differently)
cat.prompts Boolean indicating whether to display help text on category name positioning or not
ext.pos A vector (length 1 or 2) giving the positions (in degrees) of the external area labels along the circles, with 0 (default) at 12 o’clock
ext.dist A vector (length 1 or 2) giving how far to place the external area labels relative to its anchor point
ext.line.lty A vector (length 1 or 2) giving the dash pattern of the lines connecting the external area labels to their anchor points
ext.length A vector (length 1 or 2) giving the proportion of the lines connecting the external area labels actually drawn
ext.line.lwd A vector (length 1 or 2) giving the width of the lines connecting the external area labels to their anchor points
rotation.degree Number of degrees to rotate the entire diagram
rotation.centre A vector (length 2) indicating (x,y) of the rotation centre
ind Boolean indicating whether the function is to automatically draw the diagram before returning the gList object or not
sep.dist Number giving the distance between circles in case of an Euler diagram showing mutually exclusive sets
offset Number between 0 and 1 giving the amount of offset from the centre in case of an Euler diagram showing inclusive sets
cex.prop A function or string used to rescale areas
print.mode Can be either 'raw' or 'percent'. This is the format that the numbers will be printed in. Can pass in a vector with the second element being printed under the first
sigdigs If one of the elements in print.mode is 'percent', then this is how many significant digits will be kept
... Additional arguments to be passed, including margin, which indicates amount of whitespace around the final diagram in npc units

Details

Euler diagrams are drawn for mutually exclusive sets (cross.area == 0), inclusive sets (area1 == 0 or area2 == 0), and coincidental sets (area1 == 0 and area2 == 0) if euler.d == TRUE. The function defaults to placing the larger set on the left. inverted or rotation.degree can be used to reverse this.

Value

Returns an object of class gList containing the grid objects that make up the diagram. Also displays the diagram in a graphical device unless specified with ind = FALSE. Grid::grid.draw can be used to draw the gList object in a graphical device.
Author(s)

Hanbo Chen

Examples

A simple two-set diagram
venn.plot <- draw.pairwise.venn(100, 70, 30, c("First", "Second"));
grid.draw(venn.plot);
grid.newpage();

Same diagram as above, but without scaling
venn.plot <- draw.pairwise.venn(100, 70, 30, c("First", "Second"), scaled = FALSE);
grid.draw(venn.plot);
grid.newpage();

A more complicated diagram Demonstrating external area labels
venn.plot <- draw.pairwise.venn(
 area1 = 100,
 area2 = 70,
 cross.area = 68,
 category = c("First", "Second"),
 fill = c("blue", "red"),
 lty = "blank",
 cex = 2,
 cat.cex = 2,
 cat.pos = c(285, 105),
 cat.dist = 0.09,
 cat.just = list(c(-1, -1), c(1, 1)),
 ext.pos = 30,
 ext.dist = -0.05,
 ext.length = 0.85,
 ext.line.lwd = 2,
 ext.line.lty = "dashed"
);
grid.draw(venn.plot);
grid.newpage();

Demonstrating an Euler diagram
venn.plot <- draw.pairwise.venn(
 area1 = 100,
 area2 = 70,
 cross.area = 0,
 category = c("First", "Second"),
 cat.pos = c(0, 180),
 euler.d = TRUE,
 sep.dist = 0.03,
 rotation.degree = 45
);

Writing to file
tiff(
 filename = tempfile(
draw.quad.venn

 pattern = 'Pairwise_Venn_diagram',
 fileext = '.tiff'
),
 compression = "lzw";
grid.draw(venn.plot);
dev.off();

Description

 Creates a Venn diagram with four sets.

Usage

draw.quad.venn(area1, area2, area3, area4, n12, n13, n14, n23, n24,
 n34, n123, n124, n134, n234, n1234, category = rep("",
 4), lwd = rep(2, 4), lty = rep("solid", 4), col =
 rep("black", 4), fill = NULL, alpha = rep(0.5, 4),
 label.col = rep("black", 15), cex = rep(1, 15),
 fontface = rep("plain", 15), fontfamily = rep("serif",
 15), cat.pos = c(-15, 15, 0, 0), cat.dist = c(0.22,
 0.22, 0.11, 0.11), cat.col = rep("black", 4), cat.cex
 = rep(1, 4), cat.fontface = rep("plain", 4),
 cat.fontfamily = rep("serif", 4), cat.just =
 rep(list(c(0.5, 0.5)), 4), rotation.degree = 0,
 rotationcentre = c(0.5, 0.5), ind = TRUE, cex.prop =
 NULL, print.mode = "raw", sigdigs = 3, direct.area =
 FALSE, area.vector = 0, ...)

Arguments

 area1 The size of the first set
 area2 The size of the second set
 area3 The size of the third set
 area4 The size of the fourth set
 n12 The size of the intersection between the first and the second set
 n13 The size of the intersection between the first and the third set
 n14 The size of the intersection between the first and the fourth set
 n23 The size of the intersection between the second and the third set
 n24 The size of the intersection between the second and the fourth set
 n34 The size of the intersection between the third and the fourth set
 n123 The size of the intersection between the first, second and third sets
The size of the intersection between the first, second and fourth sets
The size of the intersection between the first, third and fourth sets
The size of the intersection between the second, third and fourth sets
The size of the intersection between all four sets

A vector (length 4) of strings giving the category names of the sets
A vector (length 4) of numbers giving the line width of the circles’ circumferences
A vector (length 4) giving the dash pattern of the circles’ circumferences
A vector (length 4) giving the colours of the circles’ circumferences
A vector (length 4) giving the colours of the circles’ circumferences
A vector (length 4) giving the alpha transparency of the circles’ areas
A vector (length 4) giving the colours of the areas’ labels
A vector (length 15) giving the size of the areas’ labels
A vector (length 15) giving the fontface of the areas’ labels
A vector (length 15) giving the fontfamily of the areas’ labels
A vector (length 4) giving the positions (in degrees) of the category names along the circles, with 0 (default) at 12 o’clock
A vector (length 4) giving the distances (in npc units) of the category names from the edges of the circles (can be negative)
A vector (length 4) giving the size of the category names
A vector (length 4) giving the colours of the category names
A vector (length 4) giving the fontface of the category names
A vector (length 4) giving the fontfamily of the category names
List of 4 vectors of length 2 indicating horizontal and vertical justification of each category name

Number of degrees to rotate the entire diagram
A vector (length 2) indicating (x,y) of the rotation centre
Boolean indicating whether the function is to automatically draw the diagram before returning the gList object or not
A function or string used to rescale areas
Can be either ‘raw’ or ‘percent’. This is the format that the numbers will be printed in. Can pass in a vector with the second element being printed under the first
If one of the elements in print.mode is ‘percent’, then this is how many significant digits will be kept
If this is equal to true, then the vector passed into area.vector will be directly assigned to the areas of the corresponding regions. Only use this if you know which positions in the vector correspond to which regions in the diagram
An argument to be used when direct.area is true. These are the areas of the corresponding regions in the Venn Diagram
Additional arguments to be passed, including margin, which indicates amount of whitespace around the final diagram in npc units
Details

The function defaults to placing the ellipses so that area1 corresponds to lower left, area2 corresponds to lower right, area3 corresponds to middle left and area4 corresponds to middle right. Refer to the example below to see how the 31 partial areas are ordered. Arguments with length of 15 (label.col, cex, fontface, fontfamily) will follow the order in the example.

Value

Returns an object of class gList containing the grid objects that make up the diagram. Also displays the diagram in a graphical device unless specified with ind = FALSE. Grid::grid.draw can be used to draw the gList object in a graphical device.

Author(s)

Hanbo Chen

Examples

```r
# Reference four-set diagram
venn.plot <- draw.quad.venn(
  area1 = 72,
  area2 = 86,
  area3 = 50,
  area4 = 52,
  n12 = 44,
  n13 = 27,
  n14 = 32,
  n23 = 38,
  n24 = 32,
  n34 = 20,
  n123 = 18,
  n124 = 17,
  n134 = 11,
  n234 = 13,
  n1234 = 6,
  category = c("First", "Second", "Third", "Fourth"),
  fill = c("orange", "red", "green", "blue"),
  lty = "dashed",
  cex = 2,
  cat.cex = 2,
  cat.col = c("orange", "red", "green", "blue")
);

# Writing to file
tiff(
  filename = tempfile(
    pattern = "Quad_Venn_diagram",
    fileext = ".tiff"
  ),
  compression = "lzw"
);
```
grid.draw(venn.plot);
dev.off();

draw.quintuple.venn

Draw a Venn Diagram with Five Sets

Description

Creates a Venn diagram with five sets.

Usage

draw.quintuple.venn(area1, area2, area3, area4, area5, n12, n13, n14, n15,
n23, n24, n25, n34, n35, n45, n123, n124, n125, n134,
n135, n145, n234, n235, n245, n345, n1234, n1235,
n1245, n1345, n2345, n12345, category = rep("", 5),
1wd = rep(2, 5), lty = rep("solid", 5), col =
rep("black", 5), fill = NULL, alpha = rep(0.5, 5),
label.col = rep("black", 31), cex = rep(1, 31),
fontface = rep("plain", 31), fontfamily = rep("serif",
31), cat.pos = c(0, 287.5, 215, 145, 70), cat.dist =
rep(0.2, 5), cat.col = rep("black", 5), cat.cex =
rep(1, 5), cat.fontface = rep("plain", 5),
cat.fontfamily = rep("serif", 5), cat.just =
rep(list(c(0.5, 0.5)), 5), rotation.degree = 0,
rotation.centre = c(0.5, 0.5), ind = TRUE, cex.prop =
NULL, print.mode = "raw", sigdigs = 3, direct.area =
FALSE, area.vector = 0, ...)

Arguments

area1 The size of the first set
area2 The size of the second set
area3 The size of the third set
area4 The size of the fourth set
area5 The size of the fifth set
n12 The size of the intersection between the first and the second set
n13 The size of the intersection between the first and the third set
n14 The size of the intersection between the first and the fourth set
n15 The size of the intersection between the first and the fifth set
n23 The size of the intersection between the second and the third set
n24 The size of the intersection between the second and the fourth set
n25 The size of the intersection between the second and the fifth set
draw.quintuple.venn

n34 The size of the intersection between the third and the fourth set
n35 The size of the intersection between the third and the fifth set
n45 The size of the intersection between the fourth and the fifth set
n123 The size of the intersection between the first, second and third sets
n124 The size of the intersection between the first, second and fourth sets
n125 The size of the intersection between the first, second and fifth sets
n134 The size of the intersection between the first, third and fourth sets
n135 The size of the intersection between the first, third and fifth sets
n145 The size of the intersection between the first, fourth and fifth sets
n234 The size of the intersection between the second, third and fourth sets
n235 The size of the intersection between the second, third and fifth sets
n245 The size of the intersection between the second, fourth and fifth sets
n345 The size of the intersection between the third, fourth and fifth sets
n1234 The size of the intersection between the first, second, third and fourth sets
n1235 The size of the intersection between the first, second, third and fifth sets
n1245 The size of the intersection between the first, second, fourth and fifth sets
n1345 The size of the intersection between the first, third, fourth and fifth sets
n2345 The size of the intersection between the second, third, fourth and fifth sets
n12345 The size of the intersection between all five sets

category A vector (length 5) of strings giving the category names of the sets
lwd A vector (length 5) of numbers giving the line width of the circles’ circumferences
lty A vector (length 5) giving the dash pattern of the circles’ circumferences
col A vector (length 5) giving the colours of the circles’ circumferences
fill A vector (length 5) giving the colours of the circles’ areas
alpha A vector (length 5) giving the alpha transparency of the circles’ areas
label.col A vector (length 31) giving the colours of the areas’ labels
cex A vector (length 31) giving the size of the areas’ labels
fontface A vector (length 31) giving the fontface of the areas’ labels
fontfamily A vector (length 31) giving the fontfamily of the areas’ labels
cat.pos A vector (length 5) giving the positions (in degrees) of the category names along the circles, with 0 (default) at 12 o’clock
cat.dist A vector (length 5) giving the distances (in npc units) of the category names from the edges of the circles (can be negative)
cat.cex A vector (length 5) giving the size of the category names
cat.col A vector (length 5) giving the colours of the category names
cat.fontface A vector (length 5) giving the fontface of the category names
cat.fontfamily A vector (length 5) giving the fontfamily of the category names
cat.just: List of 5 vectors of length 2 indicating horizontal and vertical justification of each category name

rotation.degree: Number of degrees to rotate the entire diagram

rotation.centre: A vector (length 2) indicating (x,y) of the rotation centre

ind: Boolean indicating whether the function is to automatically draw the diagram before returning the gList object or not

cex.prop: A function or string used to rescale areas

print.mode: Can be either 'raw' or 'percent'. This is the format that the numbers will be printed in. Can pass in a vector with the second element being printed under the first

sigdigs: If one of the elements in print.mode is 'percent', then this is how many significant digits will be kept

direct.area: If this is equal to true, then the vector passed into area.vector will be directly assigned to the areas of the corresponding regions. Only use this if you know which positions in the vector correspond to which regions in the diagram

area.vector: An argument to be used when direct.area is true. These are the areas of the corresponding regions in the Venn Diagram

...: Additional arguments to be passed, including margin, which indicates amount of whitespace around the final diagram in npc units

Details

The function defaults to placing the ellipses representing the areas 1 to 5 in a counterclockwise fashion. Refer to the example below to see how the 31 partial areas are ordered. Arguments with length of 31 (label.col, cex, fontface, fontfamily) will follow the order in the example.

Value

Returns an object of class gList containing the grid objects that make up the diagram. Also displays the diagram in a graphical device unless specified with ind = FALSE. Grid::grid.draw can be used to draw the gList object in a graphical device.

Author(s)

Hanbo Chen

Examples

Reference five-set diagram
venn.plot <- draw.quintuple.venn(
 area1 = 301,
 area2 = 321,
 area3 = 311,
 area4 = 321,
 area5 = 301,
draw.single.venn

```r
n12 = 188,
n13 = 191,
n14 = 184,
n15 = 177,
n23 = 194,
n24 = 197,
n25 = 190,
n34 = 190,
n35 = 173,
n45 = 186,
n123 = 112,
n124 = 108,
n125 = 108,
n134 = 111,
n135 = 104,
n145 = 104,
n234 = 111,
n235 = 107,
n245 = 110,
n345 = 100,
n1234 = 61,
n1235 = 59,
n1245 = 59,
n1345 = 58,
n2345 = 57,
n12345 = 31,
category = c("A", "B", "C", "D", "E"),
fill = c("dodgerblue", "goldenrod1", "darkorange1", "seagreen3", "orchid3"),
cat.col = c("dodgerblue", "goldenrod1", "darkorange1", "seagreen3", "orchid3"),
cat.cex = 2,
margin = 0.05,
cex = c(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,
1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8,
0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8, 1, 0.8),
ind = TRUE
);

# Writing to file
tiff(
    filename = tempfile(
        pattern = 'Quintuple_Venn_diagram',
        fileext = '.tiff'
    ),
    compression = "lzw"
);

grid.draw(venn.plot);
dev.off();
```

draw.single.venn Draw a Venn Diagram with a Single Set
Description

Creates a Venn diagram with a single set.

Usage

draw.single.venn(area, category = "", lwd = 2, lty = "solid", col = "black", fill = NULL, alpha = 0.5, label.col = "black", cex = 1, fontface = "plain", fontfamily = "serif", cat.pos = 0, cat.dist = 0.025, cat.cex = 1, cat.col = "black", cat.fontface = "plain", cat.fontfamily = "serif", cat.just = list(c(0.5, 0.5)), cat.default.pos = "outer", cat.prompts = FALSE, rotation.degree = 0, rotation.centre = c(0.5, 0.5), ind = TRUE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>The size of the set</td>
</tr>
<tr>
<td>category</td>
<td>The category name of the set</td>
</tr>
<tr>
<td>lwd</td>
<td>width of the circle’s circumference</td>
</tr>
<tr>
<td>lty</td>
<td>dash pattern of the circle’s circumference</td>
</tr>
<tr>
<td>col</td>
<td>Colour of the circle’s circumference</td>
</tr>
<tr>
<td>fill</td>
<td>Colour of the circle’s area</td>
</tr>
<tr>
<td>alpha</td>
<td>Alpha transparency of the circle’s area</td>
</tr>
<tr>
<td>label.col</td>
<td>Colour of the area label</td>
</tr>
<tr>
<td>cex</td>
<td>size of the area label</td>
</tr>
<tr>
<td>fontface</td>
<td>fontface of the area label</td>
</tr>
<tr>
<td>fontfamily</td>
<td>fontfamily of the area label</td>
</tr>
<tr>
<td>cat.pos</td>
<td>The position (in degrees) of the category name along the circle, with 0 (default) at 12 o’clock</td>
</tr>
<tr>
<td>cat.dist</td>
<td>The distance (in npc units) of the category name from the edge of the circle (can be negative)</td>
</tr>
<tr>
<td>cat.cex</td>
<td>size of the category name</td>
</tr>
<tr>
<td>cat.col</td>
<td>Colour of the category name</td>
</tr>
<tr>
<td>cat.fontface</td>
<td>fontface of the category name</td>
</tr>
<tr>
<td>cat.fontfamily</td>
<td>fontfamily of the category name</td>
</tr>
<tr>
<td>cat.just</td>
<td>List of 1 vector of length 2 indicating horizontal and vertical justification of the category name</td>
</tr>
<tr>
<td>cat.default.pos</td>
<td>One of c(’outer’, ’text’) to specify the default location of category names (cat.pos and cat.dist are handled differently)</td>
</tr>
<tr>
<td>cat.prompts</td>
<td>Boolean indicating whether to display help text on category name positioning or not</td>
</tr>
</tbody>
</table>
Details

This function mostly complements other functions in the VennDiagram package that draws multi-set diagrams by providing a function that draws single-set diagrams with similar graphical options.

Value

Returns an object of class gList containing the grid objects that make up the diagram. Also displays the diagram in a graphical device unless specified with ind = FALSE. Grid::grid.draw can be used to draw the gList object in a graphical device.

Author(s)

Hanbo Chen

Examples

```r
# A simple single-set diagram
venn.plot <- draw.single.venn(100, "First");
grid.draw(venn.plot);
grid.newpage();

# A more complicated diagram
venn.plot <- draw.single.venn(
  area = 365,
  category = "All\nDays",
  lwd = 5,
  lty = "blank",
  cex = 3,
  label.col = "orange",
  cat.cex = 4,
  cat.pos = 180,
  cat.dist = -0.20,
  cat.col = "white",
  fill = "red",
  alpha = 0.15
);
grid.draw(venn.plot);
grid.newpage();

# Writing to file
tiff(
```
filename = tempfile(
 pattern = 'Single_Venn_diagram',
 fileext = '.tiff',
),
compression = "lzw"
);

venn.plot <- draw.single.venn(100, "First", ind = FALSE);
grid.draw(venn.plot);
dev.off();

draw.triple.venn

Draw a Venn Diagram with Three Sets

Description

Creates a Venn diagram with three sets. Creates Euler diagrams when the dataset meets certain conditions.

Usage

draw.triple.venn(area1, area2, area3, n12, n23, n13, n123, category = rep("", 3), rotation = 1, reverse = FALSE, euler.d = TRUE, scaled = TRUE, lwd = rep(2, 3), lty = rep("solid", 3), col = rep("black", 3), fill = NULL, alpha = rep(0.5, 3), label.col = rep("black", 7), cex = rep(1, 7), fontface = rep("plain", 7), fontfamily = rep("serif", 7), cat.pos = c(-40, 40, 180), cat.dist = c(0.05, 0.05, 0.025), cat.col = rep("black", 3), cat.cex = rep(1, 3), cat.fontface = rep("plain", 3), cat.fontfamily = rep("serif", 3), cat.just = list(c(0.5, 1), c(0.5, 1), c(0.5, 0)), cat.default.pos = "outer", cat.prompts = FALSE, rotation.degree = 0, rotation.centre = c(0.5, 0.5), ind = TRUE, sep.dist = 0.05, offset = 0, cex.prop = NULL, print.mode = "raw", sigdigs = 3, direct.area = FALSE, area.vector = 0, ...

Arguments

- **area1**
The size of the first set
- **area2**
The size of the second set
- **area3**
The size of the third set
- **n12**
The size of the intersection between the first and the second set
- **n23**
The size of the intersection between the second and the third set
- **n13**
The size of the intersection between the first and the third set
n123 The size of the intersection between all three sets
category A vector (length 3) of strings giving the category names of the sets
rotation 1 (default), 2, or 3 indicating clockwise rotation of the three sets from the default arrangement
reverse Boolean indicating whether the diagram should be mirrored long the vertical axis or not
euler.d Boolean indicating whether to draw Euler diagrams when conditions are met or not (Venn Diagrams with moveable circles)
scaled Boolean indicating whether to scale circle sizes in certain Euler diagrams according to set sizes or not (euler.d must be true to enable this)
lwd A vector (length 3) of numbers giving the width of the circles’ circumferences
lty A vector (length 3) giving the dash pattern of the circles’ circumferences
col A vector (length 3) giving the colours of the circles’ circumferences
fill A vector (length 3) giving the colours of the circles’ areas
alpha A vector (length 3) giving the alpha transparency of the circles’ areas
label.col A vector (length 7) giving the colours of the areas’ labels
cex A vector (length 7) giving the size of the areas’ labels
fontface A vector (length 7) giving the fontface of the areas’ labels
fontfamily A vector (length 7) giving the fontfamily of the areas’ labels
cat.pos A vector (length 3) giving the positions (in degrees) of the category names along the circles, with 0 (default) at 12 o’clock
cat.dist A vector (length 3) giving the distances (in npc units) of the category names from the edges of the circles (can be negative)
cat.cex A vector (length 3) giving the size of the category names
cat.col A vector (length 3) giving the colours of the category names
cat.fontface A vector (length 3) giving the fontface of the category names
cat.fontfamily A vector (length 3) giving the fontfamily of the category names
cat.just List of 3 vectors of length 2 indicating horizontal and vertical justification of each category name
cat.default.pos One of c(‘outer’, ’text’) to specify the default location of category names (cat.pos and cat.dist are handled differently)
cat.prompts Boolean indicating whether to display help text on category name positioning or not
rotation.degree Number of degrees to rotate the entire diagram
rotation.centre A vector (length 2) indicating (x,y) of the rotation centre
ind Boolean indicating whether the function is to automatically draw the diagram before returning the gList object or not
sep.dist Number between 0 and 1 giving the distance between circles in certain Euler diagrams with mutually exclusive sets

offset Number giving the amount of offset from the centre in certain Euler diagrams with inclusive sets

cex.prop A function or string used to rescale areas

print.mode Can be either 'raw' or 'percent'. This is the format that the numbers will be printed in. Can pass in a vector with the second element being printed under the first

sigdigs If one of the elements in print.mode is 'percent', then this is how many significant digits will be kept

direct.area If this is equal to true, then the vector passed into area.vector will be directly assigned to the areas of the corresponding regions. Only use this if you know which positions in the vector correspond to which regions in the diagram

area.vector An argument to be used when direct.area is true. These are the areas of the corresponding regions in the Venn Diagram

... Additional arguments to be passed, including margin, which indicates amount of whitespace around the final diagram in npc units

Details

Euler diagrams are drawn for 19 special cases if euler.d == TRUE. Certain Euler diagrams make use of the scaled, sep.dist, or offset arguments specific to two-set Venn diagrams where appropriate. The function defaults to placing the three circles in a triangular arrangement with two sets on top and one set below. The circles correspond to area1, area2 and area3 in a clockwise fashion with area1 on the top left. N.B. General scaling for three-set Venn diagrams are disabled due to potentially misleading visual representation of the data. To re-enable, assign any value to variable overrideTriple.

Value

Returns an object of class gList containing the grid objects that make up the diagram. Also displays the diagram in a graphical device unless specified with ind = FALSE. Grid::grid.draw can be used to draw the gList object in a graphical device.

Author(s)

Hanbo Chen

Examples

A simple three-set diagram
venn.plot <- draw.triple.venn(65, 75, 85,
 35, 15, 25, 5, c("First", "Second", "Third"));
grid.draw(venn.plot);
grid.newpage();

A more complicated diagram
venn.plot <- draw.triple.venn(

get.venn.partitions

Get the size of individual partitions in a Venn diagram

Description

Partitions a list into Venn regions.

Usage

get.venn.partitions(x, force.unique = TRUE, keep.elements = TRUE,
 hierarchical = FALSE)

Arguments

x

A list of vectors.

force.unique

A logical value. Should only unique values be considered?
keep.elements A logical value. Should the elements in each region be returned?

hierarchical A logical value. Changed the way overlapping elements are treated if force.unique is TRUE.

Value

A data frame with \(\text{length}(x) \) columns and \(2^\text{length}(x) \) rows. The first \(\text{length}(x) \) columns are all logical; see `make.truth.table` for more details. There are three additional columns:

..set.. A set theoretical description of the Venn region. (Note that in some locales under Windows, the data.frame print method fails to correctly display the Unicode symbols for set union and set intersection. This is a bug in R, not this function.)

..values.. A vector of values contained in the Venn region. Not returned if keep.elements is FALSE.

..count.. An integer of the number of values in the Venn region.

Details

If force.unique is FALSE, then there are two supported methods of grouping categories with duplicated elements in common. If hierarchical is FALSE, then any common elements are gathered into a pool. So if \(x <- \text{list}(a = c(1,1,2,2,3,3), b = c(1,2,3,4,4,5), c = c(1,4)) \) then \((b \cap c)/(a)\) would contain three 4’s. Since the 4’s are pooled, \((b)/(a \cup c)\) contains no 4’s. If hierarchical is TRUE, then \((b \cap c)/(a)\) would contain one 4. Then \((b)/(a \cup c)\) contains one 4.

Author(s)

Richard Cotton.

See Also

`venn.diagram, make.truth.table`

Examples

Compare force.unique options
x <- list(a = c(1, 1, 2, 2, 3), b = c(2, 2, 2, 3, 4, 4))
get.venn.partitions(x)
get.venn.partitions(x, force.unique = FALSE)

Figure 1D from ?venn.diagram
xFig1d = list(
 I = c(1:60, 61:105, 106:140, 141:160, 166:175, 176:180, 181:205, 206:220),
)
make.truth.table

get.venn.partitions(xFig1d)
grid.draw(VennDiagram::venn.diagram(x, NULL, disable.logging = TRUE))

make.truth.table
Make a truth table

Description

Makes a truth table of the inputs.

Usage

`make.truth.table(x)`

Arguments

- `x`
 A short vector.

Value

A data frame with `length(x)` logical vector columns and $2^\text{length(x)}$ rows.

Author(s)

Richard Cotton

See Also

`expand.grid`

Examples

```r
## Not run: make.truth.table(c(a = 1, b = 2, c = 3, d = 4))
```

venn.diagram
Make a Venn Diagram

Description

This function takes a list and creates a publication-quality TIFF Venn Diagram.
Usage

venn.diagram(x, filename, disable.logging = FALSE, height = 3000, width = 3000, resolution = 500, imagetype = "tiff", units = "px", compression = "lzw", na = "stop", main = NULL, sub = NULL, main.pos = c(0.5, 1.05), main.fontface = "plain", main.fontfamily = "serif", main.col = "black", main.cex = 1, main.just = c(0.5, 1), sub.pos = c(0.5, 1.05), sub.fontface = "plain", sub.fontfamily = "serif", sub.col = "black", sub.cex = 1, sub.just = c(0.5, 1), category.names = names(x), force.unique = TRUE, print.mode = "raw", sigdigs = 3, direct.area = FALSE, area.vector = 0, hyper.test = FALSE, total.population = NULL, lower.tail = TRUE, ...)

Arguments

x A list of vectors (e.g., integers, chars), with each component corresponding to a separate circle in the Venn diagram
filename Filename for image output, or if NULL returns the grid object itself
disable.logging Boolean to disable log file output and print to console instead
height Integer giving the height of the output figure in units
width Integer giving the width of the output figure in units
resolution Resolution of the final figure in DPI
imagetype Specification of the image format (e.g. tiff, png or svg)
units Size-units to use for the final figure
compression What compression algorithm should be applied to the final tiff
na Missing value handling method: "none", "stop", "remove"
main Character giving the main title of the diagram
sub Character giving the subtitle of the diagram
main.pos Vector of length 2 indicating (x,y) of the main title
main.fontface Character giving the fontface (font style) of the main title
main.fontfamily Character giving the fontfamily (font type) of the main title
main.col Character giving the colour of the main title
main.cex Number giving the cex (font size) of the main title
main.just Vector of length 2 indicating horizontal and vertical justification of the main title
sub.pos Vector of length 2 indicating (x,y) of the subtitle
sub.fontface Character giving the fontface (font style) of the subtitle
sub.fontfamily Character giving the fontfamily (font type) of the subtitle
sub.col Character Colour of the subtitle
sub.cex Number giving the cex (font size) of the subtitle
sub.just Vector of length 2 indicating horizontal and vertical justification of the subtitle
category.names Allow specification of category names using plotmath syntax
force.unique Logical specifying whether to use only unique elements in each item of the input list or use all elements. Defaults to FALSE
print.mode Can be either 'raw' or 'percent'. This is the format that the numbers will be printed in. Can pass in a vector with the second element being printed under the first
sigdigs If one of the elements in print.mode is 'percent', then this is how many significant digits will be kept
direct.area If this is equal to true, then the vector passed into area.vector will be directly assigned to the areas of the corresponding regions. Only use this if you know which positions in the vector correspond to which regions in the diagram
area.vector An argument to be used when direct.area is true. These are the areas of the corresponding regions in the Venn Diagram
hyper.test If there are only two categories in the venn diagram and total.population is not NULL, then perform the hypergeometric test and add it to the sub title.
total.population An argument to be used when hyper.test is true. This is the total population size
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
... A series of graphical parameters tweaking the plot. See below for details

Details

<table>
<thead>
<tr>
<th>Argument</th>
<th>Venn Sizes</th>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lwd</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the width of each circle’s circumference</td>
</tr>
<tr>
<td>lty</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the dash pattern of each circle’s circumference</td>
</tr>
<tr>
<td>col</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the colour of each circle’s circumference</td>
</tr>
<tr>
<td>fill</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the colour of each circle’s area</td>
</tr>
<tr>
<td>alpha</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the alpha transparency of each circle’s area</td>
</tr>
<tr>
<td>label.col</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the colour for each area label (length = 1/3/7/15 based on set-number)</td>
</tr>
<tr>
<td>cex</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the size for each area label (length = 1/3/7/15 based on set-number)</td>
</tr>
<tr>
<td>fontface</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the fontface for each area label (length = 1/3/7/15 based on set-number)</td>
</tr>
<tr>
<td>fontfamily</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the fontfamily for each area label (length = 1/3/7/15 based on set-number)</td>
</tr>
<tr>
<td>cat.pos</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the position (in degrees) of each category name along the circle, with 0 at 12 o’clock</td>
</tr>
<tr>
<td>cat.dist</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the distance (in npc units) of each category name from the edge of the circle (can be negative)</td>
</tr>
<tr>
<td>cat.cex</td>
<td>1,2,3,4,5</td>
<td>numeric</td>
<td>Vector giving the size for each category name</td>
</tr>
<tr>
<td>cat.col</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the colour for each category name</td>
</tr>
<tr>
<td>cat.fontface</td>
<td>1,2,3,4,5</td>
<td>character</td>
<td>Vector giving the fontface for each category name</td>
</tr>
</tbody>
</table>
cat.fontfamily 1,2,3,4,5 character Vector giving the fontfamily for each category name

cat.just 1,2,3,4,5 numeric List (length = 1/2/3/4 based on set number) of Vectors of length 2 indicating horizontal and vertical justification for each category name

cat.default.pos 1,2,3 character One of c(‘outer’, ‘text’) to specify the default location of category names (cat.pos and cat.dist are handled differently)

cat.prompts 2 numeric Boolean indicating whether to display help text on category name positioning or not

margin 1,2,3,4,5 numeric Number giving the amount of whitespace around the diagram in grid units

rotation.degree 1,2,3,4,5 numeric Number of degrees to rotate the entire diagram

rotation.centre 1,2,3,4,5 numeric Vector of length 2 indicating (x,y) of the rotation centre

class 3 numeric Number giving the clockwise rotation of a three-set Venn diagram (1, 2, or 3)

reverse 3 logical Reflect the three-set Venn diagram along its central vertical axis of symmetry. Use in combination with rotation to generate all possible set orders

euler.d 2, 3 logical Enable Euler diagrams for two-set and three-set Venn diagrams (Venn Diagrams with moveable circles)

scaled 2, 3 logical Enable scaling for two-set and certain three-set Euler diagrams. (euler.d must be true to enable this)

sep.dist 2, 3 numeric Controls the separation between distinct circles in certain two-set or three-set Euler diagrams.

offset 2, 3 numeric Number between 0 and 1 giving the amount to offset the smaller circle by in the inclusion type of two-set Euler diagram and certain similar three-set Euler diagrams.

inverted 2 logical Flip the two-set Venn diagram along its vertical axis (distinguished from reverse)

ext.text 2 logical Allow external text labels when areas are small

ext.percent 2 numeric A vector (length 3) indicating the proportion that a partial area has to be smaller than to trigger external text placement. The elements allow for individual control of the areas in the order of the first area, second area and intersection area.

ext.pos 2 numeric A vector (length 1 or 2) giving the positions (in degrees) of the external area labels along the circles, with 0 (default) at 12 o’clock

ext.line.lwd 2 numeric Width of line connecting to ext.text

ext.line.lty 2 numeric The dash pattern of the lines connecting the external area labels to their anchor points.

ext.dist 2 numeric Vector of length 1 or 2 indicating length of external line (use negative values to shorten the line)

ext.length 2 numeric Vector of length 1 or 2 indicating the proportion of the external line that is drawn from the anchor to the text
Value
Plots a figure to the file given by the `filename` argument.

Author(s)
Hanbo Chen

See Also
- `draw.single.venn`
- `draw.pairwise.venn`
- `draw.triple.venn`
- `draw.quad.venn`
- `draw.quintuple.venn`

Examples

```r
# Note: most examples are listed as dontrun to meet CRAN requirements,
# but all should work as-is!

# compact and minimal notation
## Not run:
venn.plot <- venn.diagram(
  list(A = 1:150, B = 121:170),
  filename = tempfile(
    pattern = 'Venn_2set_simple',
    fileext = '.tiff'
  )
);
venn.plot <- venn.diagram(
  list(A = 1:150, B = 121:170, C = 101:200),
  filename = tempfile(
    pattern = 'Venn_3set_simple',
    fileext = '.tiff'
  )
);
## End(Not run)

# a more elaborate two-set Venn diagram with title and subtitle
venn.plot <- venn.diagram(
  x = list(
    "A" = 1:100,
    "B" = 96:140
  ),
  filename = tempfile(
    pattern = 'Venn_2set_complex',
    fileext = '.tiff'
  ),
  scaled = TRUE,
  ext.text = TRUE,
  ext.line.lwd = 2,
  ext.dist = -0.15,
  ext.length = 0.9,
  ext.pos = -4,
  inverted = TRUE,
)
```r
cex = 2.5,
cat.cex = 2.5,
rotation.degree = 45,
main = "Complex Venn Diagram",
sub = "Featuring: rotation and external lines",
main.cex = 2,
sub.cex = 1
);

Not run:
sample three-set Euler diagram
venn.plot <- venn.diagram(
x = list("Num A" = paste("Num", 1:100),
 "Num B" = c(paste("Num", 61:70), paste("Num", 71:100)),
 "Num C" = c(paste("Num", 41:60), paste("Num", 61:70))),
euler.d = TRUE,
filename = tempfile(
 pattern = 'Euler_3set_simple',
 fileext = '.tiff')
),
cat.pos = c(-20, 0, 20),
cat.dist = c(0.05, 0.05, 0.02),
cex = 2.5,
cat.cex = 2.5,
reverse = TRUE
);

sample three-set Euler diagram
venn.plot <- venn.diagram(
x = list(A = c(1:10),
 B = c(11:90),
 C = c(81:90)
),
euler.d = TRUE,
filename = tempfile(
 pattern = 'Euler_3set_scaled',
 fileext = '.tiff')
),
cex = 2.5,
cat.cex = 2.5,
cat.pos = 0
);

End(Not run)

sample four-set Venn Diagram
A <- sample(1:1000, 400, replace = FALSE);
B <- sample(1:1000, 600, replace = FALSE);
C <- sample(1:1000, 350, replace = FALSE);
D <- sample(1:1000, 550, replace = FALSE);
E <- sample(1:1000, 375, replace = FALSE);
```

venn.plot <- venn.diagram(
  x = list(
    A = A,
    D = D,
    B = B,
    C = C
  ),
  filename = tempfile(
    pattern = 'Venn_4set_pretty',
    fileext = '.tiff'
  ),
  col = "transparent",
  fill = c("cornflowerblue", "green", "yellow", "darkorchid1"),
  alpha = 0.50,
  label.col = c("orange", "white", "darkorchid4", "white",
                "white", "white", "white", "white", "darkblue", "white",
                "white", "white", "white", "darkgreen", "white"),
  cex = 1.5,
  fontfamily = "serif",
  fontface = "bold",
  cat.col = c("darkblue", "darkgreen", "orange", "darkorchid4"),
  cat.cex = 1.5,
  cat.pos = 0,
  cat.dist = 0.07,
  cat.fontfamily = "serif",
  rotation.degree = 270,
  margin = 0.2
); # sample five-set Venn Diagram

venn.plot <- venn.diagram(
  x = list(
    A = A,
    B = B,
    C = C,
    D = D,
    E = E
  ),
  filename = tempfile(
    pattern = 'Venn_5set_pretty',
    fileext = '.tiff'
  ),
  col = "black",
  fill = c("dodgerblue", "goldenrod1", "darkorange1", "seagreen3", "orchid3"),
  alpha = 0.50,
  cex = c(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,
         0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8,
         1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55, 1, 0.55,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),
  cat.col = c("dodgerblue", "goldenrod1", "darkorange1", "seagreen3", "orchid3"),
  cat.cex = 1.5,
  cat.fontface = "bold",
  margin = 0.25
);
# Complex three-way Venn with labels & sub-/super-scripts
venn.plot <- venn.diagram(
  x = list(
    I = c(1:60, 61:105, 106:140, 141:160, 166:175, 176:180, 181:205, 206:220),
  ),
  category.names = c(
    expression(bold("A[1: subscript]")),
    expression(bold("A[2: going up]")),
    expression(paste(bold("X[i <= r^2]"), bold("Y[r^2]")))
  ),
  filename = tempfile(
    pattern = "Fig3-1_triple_labels_sub_and_superscripts",
    fileext = "tiff"
  ),
  output = TRUE,
  height = 3000,
  width = 3000,
  resolution = 300,
  compression = "lzw",
  units = "px",
  lwd = 6,
  lty = "blank",
  fill = c("yellow", "purple", "green"),
  cex = 3.5,
  fontface = "bold",
  fontfamily = "sans",
  cat.cex = 3,
  cat.fontface = "bold",
  cat.default.pos = "outer",
  cat.pos = c(-27, 27, 135),
  cat.dist = c(0.055, 0.055, 0.085),
  cat.fontfamily = "sans",
  rotation = 1
);

# Complex 3-way Venn using expressions
venn.plot <- venn.diagram(
  x = list(
    "Num A" = paste("Num", 1:100),
    "Num B" = c(paste("Num", 61:70), paste("Num", 71:100)),
    "Num C" = c(paste("Num", 41:60), paste("Num", 61:70)))
  ),
  category.names = c(
    expression(bold("A[1]")),
    expression(bold("A[2]")),
    expression(bold("A[3]"))
  ),
  euler.d = TRUE,
```r
cat.plot = c(-20, 0, 20),
cat.dist = c(0.05, 0.05, 0.02),
cex = 2.5,
cat.cex = 2.5,
reverse = TRUE
);

Not run:
Example to print to screen
venn.plot <- venn.diagram(
 x = list(
 sample1 = c(1:40),
 sample2 = c(30:60)
),
 filename = NULL,
 disable.logging = TRUE
);

Currently working on adding this functionality directly into venn.diagram
venn.plot <- venn.diagram(
 x = list(
 A = 1:10,
 B = 6:25
),
 filename = NULL,
 disable.logging = TRUE
);

ejpeg(tempfile(pattern = 'venn_jpeg', fileext = '.jpg'));
grid.draw(venn.plot);
dev.off();

End(Not run)

dontrun-starts-here
NB: All figures from the paper can be run, but are turned off from
automatic execution to reduce burden on CRAN computing resources.

```

```
Figure 1B
venn.plot <- venn.diagram(
 x = list(
 X = 1:150,
 Y = 121:180
),
 filename = tempfile(
 pattern = '1B-double_Venn',
 fileext = '.tiff'
),
 lwd = 4,
 fill = c("cornflowerblue", "darkorchid1"),
 alpha = 0.75,
 label.col = "white",
 cex = 4,
 fontfamily = "serif",
 fontface = "bold",
 cat.col = c("cornflowerblue", "darkorchid1"),
 cat.cex = 3,
 cat.fontfamily = "serif",
 cat.fontface = "bold",
 cat.dist = c(0.03, 0.03),
 cat.pos = c(-20, 14)
);

Figure 1C
venn.plot <- venn.diagram(
 x = list(
 R = c(1:70, 71:110, 111:120, 121:140),
 B = c(141:200, 71:110, 111:120, 201:230),
 G = c(231:280, 111:120, 121:140, 201:230)
),
 filename = tempfile(
 pattern = '1C-triple_Venn',
 fileext = '.tiff'
),
 col = "transparent",
 fill = c("red", "blue", "green"),
 alpha = 0.5,
 label.col = c("darkred", "white", "darkblue", "white", "white", "white", "darkgreen"),
 cex = 2.5,
 fontfamily = "serif",
)
fontface = "bold",
cat.default.pos = "text",
cat.col = c("darkred", "darkblue", "darkgreen"),
cat.cex = 2.5,
cat.fontfamily = "serif",
cat.dist = c(0.06, 0.06, 0.03),
cat.pos = 0
);

Figure 1D
venn.plot <- venn.diagram(
x = list(
 I = c(1:60, 61:105, 106:140, 141:160, 166:175, 176:180, 181:205,
 206:220),
 IV = c(531:605, 476:530, 336:375, 376:405, 181:205, 206:220, 166:175,
 176:180),
 376:405),
 III = c(406:475, 286:335, 106:140, 141:160, 166:175, 181:205, 336:375,
 476:530),
),
filename = tempfile(
 pattern = '1D-quadruple_Venn',
 fileext = '.tiff'
),
col = "black",
lty = "dotted",
lwd = 4,
fill = c("cornflowerblue", "green", "yellow", "darkorchid1"),
alpha = 0.50,
label.col = c("orange", "white", "darkorchid4", "white", "white", "white",
"white", "white", "darkblue", "white",
"white", "white", "white", "darkgreen", "white"),
cex = 2.5,
fontfamily = "serif",
fontface = "bold",
cat.col = c("darkblue", "darkgreen", "orange", "darkorchid4"),
cat.cex = 2.5,
cat.fontfamily = "serif"
);

Figure 2-1
venn.plot <- venn.diagram(
x = list(
 A = 1:105,
 B = 101:115)
),
filename = tempfile(
 pattern = '2-1_special_case_ext-text',
 fileext = '.tiff'
),
cex = 2.5,
cat.cex = 2.5,
cat.pos = c(-20, 20),
ext.line.lty = "dotted",
ext.line.lwd = 2,
ext.pos = 12,
ext.dist = -0.12,
ext.length = 0.85
);

Figure 2-2
venn.plot <- venn.diagram(
x = list(
 A = 1:100,
 B = 1:10
),
filename = tempfile(
 pattern = '2-2_special_case_pairwise-inclusion',
 fileext = '.tiff'
),
cex = 2.5,
cat.cex = 2.5,
cat.pos = 0
);

Figure 2-3
venn.plot <- venn.diagram(
x = list(
 A = 1:150,
 B = 151:250
),
filename = tempfile(
 pattern = '2-3_special_case_pairwise-exclusion',
 fileext = '.tiff'
),
cex = 2.5,
cat.cex = 2.5,
cat.pos = c(0, 0),
cat.dist = 0.05
);

Figure 2-4
venn.plot <- venn.diagram(
x = list(
 A = c(1:50, 101:140, 141:160, 161:170),
 B = c(171:230, 101:140, 161:170, 291:320),
 C = c(141:160, 161:170, 291:320)
),
filename = tempfile(
 pattern = '2-4_triple_special_case-001',
 fileext = '.tiff'
),
cex = 2.5,
cat.cex = 2.5,
cat.dist = c(0.05, 0.05, -0.1)
Figure 2-5
venn.plot <- venn.diagram(
 x = list(
 A = c(1:100),
 B = c(61:70, 71:100),
 C = c(41:60, 61:70)
),
 filename = tempfile(
 pattern = '2-5_triple_special_case-012AA',
 fileext = '.tiff'
),
 cex = 2.5,
 cat.cex = 2.5,
 cat.pos = c(-25, 0, 30),
 cat.dist = c(0.05, 0.05, 0.02)
);

Figure 2-6
venn.plot <- venn.diagram(
 x = list(
 A = c(1:90),
 B = c(1:25),
 C = c(1:5)
),
 filename = tempfile(
 pattern = '2-6_triple_special_case-022AAO',
 fileext = '.tiff'
),
 cex = 2.5,
 cat.cex = 2.5,
 cat.pos = 0,
 cat.dist = c(0.03, 0.03, 0.01)
);

Figure 2-7
venn.plot <- venn.diagram(
 x = list(
 A = c(1:20),
 B = c(21:80),
 C = c(81:210)
),
 filename = tempfile(
 pattern = '2-7_triple_special_case-100',
 fileext = '.tiff'
),
 cex = 2.5,
 cat.cex = 2.5,
 cat.dist = 0.05
);

Figure 2-8
venn.plot <- venn.diagram(
 x = list(
 A = c(1:80),
 B = c(41:150),
 C = c(71:100)
),
 filename = tempfile(
 pattern = '2-8_triple_special_case-011A',
 fileext = '.tiff'
),
 cex = 2.5,
 cat.cex = 2.5,
 cat.dist = c(0.07, 0.07, 0.02),
 cat.pos = c(-20, 20, 20)
);

Figure 2-9
venn.plot <- venn.diagram(
 x = list(
 A = c(1:10),
 B = c(11:90),
 C = c(81:90)
),
 filename = tempfile(
 pattern = '2-9_triple_special_case-121A0',
 fileext = '.tiff'
),
 cex = 2.5,
 cat.cex = 2.5,
 cat.pos = 0,
 cat.dist = c(0.04, 0.04, 0.02),
 reverse = TRUE
);

#dontrun-ends-here

End(Not run)
Index

* hplot
 calculate.overlap, 2
 draw.pairwise.venn, 3
 draw.quad.venn, 7
 draw.quintuple.venn, 10
 draw.single.venn, 13
 draw.triple.venn, 16
 venn.diagram, 21
* package
 VennDiagram-package, 2

calculate.overlap, 2

draw.pairwise.venn, 3, 25
 draw.quad.venn, 7, 25
 draw.quintuple.venn, 10, 25
 draw.single.venn, 13, 25
 draw.triple.venn, 16, 25

expand.grid, 21

get.venn.partitions, 19

make.truth.table, 20, 21

venn.diagram, 20, 21
 VennDiagram (VennDiagram-package), 2
 VennDiagram-package, 2