Package ‘VineCopula’

October 3, 2020

Type Package
Title Statistical Inference of Vine Copulas
Version 2.4.0
Description Provides tools for the statistical analysis of vine copula models. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
Depends R (>= 3.1.0)
Imports graphics, grDevices, stats, utils, MASS, mvtnorm, methods, ADGofTest, lattice, parallel
Suggests CDVine, TSP, shiny, testthat, numDeriv, kdecopula (>= 0.8.0), network
License GPL (>= 2)
LazyLoad yes
BugReports https://github.com/tnagler/VineCopula/issues
URL https://github.com/tnagler/VineCopula
RoxygenNote 7.1.1
Encoding UTF-8
NeedsCompilation yes
Author Thomas Nagler [aut, cre], Ulf Schepsmeier [aut], Jakob Stoeber [aut], Eike Christian Brechmann [aut], Benedikt Graeler [aut], Tobias Erhardt [aut], Carlos Almeida [ctb], Aleksey Min [ctb, ths], Claudia Czado [ctb, ths], Mathias Hofmann [ctb], Matthias Killiches [ctb],
R topics documented:

<table>
<thead>
<tr>
<th>R Package/Symbol</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VineCopula-package</td>
<td>3</td>
</tr>
<tr>
<td>as.copuladata</td>
<td>5</td>
</tr>
<tr>
<td>BetaMatrix</td>
<td>6</td>
</tr>
<tr>
<td>BiCop</td>
<td>7</td>
</tr>
<tr>
<td>BiCopCDF</td>
<td>9</td>
</tr>
<tr>
<td>BiCopCheck</td>
<td>12</td>
</tr>
<tr>
<td>BiCopChiPlot</td>
<td>13</td>
</tr>
<tr>
<td>BiCopCompare</td>
<td>15</td>
</tr>
<tr>
<td>BiCopCondSim</td>
<td>17</td>
</tr>
<tr>
<td>BiCopDeriv</td>
<td>20</td>
</tr>
<tr>
<td>BiCopDeriv2</td>
<td>22</td>
</tr>
<tr>
<td>BiCopEst</td>
<td>25</td>
</tr>
<tr>
<td>BiCopEstList</td>
<td>28</td>
</tr>
<tr>
<td>BiCopGofTest</td>
<td>31</td>
</tr>
<tr>
<td>BiCopHfunc</td>
<td>34</td>
</tr>
<tr>
<td>BiCopHfuncDeriv</td>
<td>37</td>
</tr>
<tr>
<td>BiCopHfuncDeriv2</td>
<td>39</td>
</tr>
<tr>
<td>BiCopHinv</td>
<td>41</td>
</tr>
<tr>
<td>BiCopIndTest</td>
<td>44</td>
</tr>
<tr>
<td>BiCopKDE</td>
<td>45</td>
</tr>
<tr>
<td>BiCopKPlot</td>
<td>47</td>
</tr>
<tr>
<td>BiCopLambda</td>
<td>48</td>
</tr>
<tr>
<td>BiCopMetaContour</td>
<td>51</td>
</tr>
<tr>
<td>BiCopName</td>
<td>54</td>
</tr>
<tr>
<td>BiCopPar2Beta</td>
<td>56</td>
</tr>
<tr>
<td>BiCopPar2TailDep</td>
<td>59</td>
</tr>
<tr>
<td>BiCopPar2Tau</td>
<td>62</td>
</tr>
<tr>
<td>BiCopPDF</td>
<td>65</td>
</tr>
<tr>
<td>BiCopSelect</td>
<td>67</td>
</tr>
<tr>
<td>BiCopSim</td>
<td>71</td>
</tr>
<tr>
<td>BiCopTau2Par</td>
<td>73</td>
</tr>
<tr>
<td>BiCopVuongClarke</td>
<td>75</td>
</tr>
<tr>
<td>C2RVine</td>
<td>78</td>
</tr>
<tr>
<td>contour.RVineMatrix</td>
<td>80</td>
</tr>
<tr>
<td>D2RVine</td>
<td>82</td>
</tr>
<tr>
<td>daxreturns</td>
<td>84</td>
</tr>
<tr>
<td>pairs.copuladata</td>
<td>85</td>
</tr>
<tr>
<td>plot.BiCop</td>
<td>87</td>
</tr>
<tr>
<td>pobs</td>
<td>88</td>
</tr>
</tbody>
</table>
VineCopula-package

RVineAIC .. 90
RVineClarkeTest .. 92
RVineCopSelect ... 94
RVineCor2pcor .. 97
RVineGofTest ... 98
RVineGrad .. 103
RVineHessian .. 105
RVineLogLik ... 108
RVineMatrix .. 110
RVineMatrixCheck 114
RVineMatrixNormalize 115
RVineMatrixSample 116
RVineMLE .. 117
RVinePar2Beta ... 120
RVinePar2Tau ... 122
RVinePDF .. 123
RVinePIT .. 125
RVineSeqEst ... 127
RVineSim .. 129
RVineStdError .. 131
RVineStructureSelect 133
RVineTreePlot ... 137
RVineVuongTest ... 138
TauMatrix .. 139
VC2copula-deprecated 140

Index 143

VineCopula-package Statistical Inference of Vine Copulas

Description

Provides tools for the statistical analysis of vine copula models. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.

Details

Vine copulas are a flexible class of dependence models consisting of bivariate building blocks (see e.g., Aas et al., 2009). This package is primarily made for the statistical analysis of vine copula models. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.

The DESCRIPTION file:

Package: VineCopula
Type: Package
Remark

The package VineCopula is a continuation of the package CDVine by U. Schepsmeier and E. C. Brechmann (see Brechmann and Schepsmeier (2013)). It includes all functions implemented in CDVine for the bivariate case (BiCop-functions).

References

as.copuladata

Copula Data Objects

Description

The function as.copuladata coerces an object (data.frame, matrix, list) to a copuladata object.

Usage

as.copuladata(data)

Arguments

- **data**

 Either a data.frame, a matrix or a list containing copula data (i.e. data with uniform margins on [0, 1]). The list elements have to be vectors of identical length.

Author(s)

Tobias Erhardt
BetaMatrix

Matrix of Empirical Blomqvist’s Beta Values

Description

This function computes the empirical Blomqvist’s beta.

Usage

BetaMatrix(data)

Arguments

data An N x d data matrix.

Value

Matrix of the empirical Blomqvist’s betas.

Author(s)

Ulf Schepsmeier

References

BiCop

See Also

TauMatrix(), BiCopPar2Beta(), RVinePar2Beta()

Examples

data(daxreturns)
data <- as.matrix(daxreturns)

compute the empirical Blomqvist's betas
BetaMatrix(data)

Constructing BiCop-objects

Description

This function creates an object of class BiCop and checks for family/parameter consistency.

Usage

BiCop(family, par, par2 = 0, tau = NULL, check.pars = TRUE)

Arguments

family An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton’’
14 = rotated Gumbel copula (180 degrees; survival Gumbel’’)
16 = rotated Joe copula (180 degrees; survival Joe’’)
17 = rotated BB1 copula (180 degrees; survival BB1’’)
18 = rotated BB6 copula (180 degrees; survival BB6’’)
19 = rotated BB7 copula (180 degrees; survival BB7’’)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
’24’ = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par Copula parameter.
par2 Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default is par2 = 0). par2 should be an positive integer for the Students’s t copula family = 2.
tau numeric; value of Kendall’s tau; has to lie in the interval (-1, 1). Can only be used with one-parameter families and the t copula. If tau is provided, par will be ignored.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value
An object of class BiCop(). It is a list containing information about the bivariate copula. Its components are:

family, par, par2 copula family number and parameter(s),
npars number of parameters,
familyname name of the copula family,
tau Kendall’s tau,
beta Blomqvist’s beta,
taildep lower and upper tail dependence coefficients,
call the call that created the object.

Objects of this class are also returned by the BiCopEst() and BiCopSelect() functions. In this case, further information about the fit is added.
Note

For a comprehensive summary of the model, use summary(object); to see all its contents, use str(object).

Author(s)

Thomas Nagler

See Also

BiCopPDF(), BiCopHfunc(), BiCopSim(), BiCopEst(), BiCopSelect(), plot.BiCop(), contour.BiCop()

Examples

create BiCop object for bivariate t-copula
obj <- BiCop(family = 2, par = 0.4, par2 = 6)
obj

see the object's content or a summary
str(obj)
summary(obj)

a selection of functions that can be used with BiCop objects
simdata <- BiCopSim(300, obj) # simulate data
BiCopPDF(0.5, 0.5, obj) # evaluate density in (0.5,0.5)
plot(obj) # surface plot of copula density
contour(obj) # contour plot with standard normal margins
print(obj) # brief overview of BiCop object
summary(obj) # comprehensive overview of BiCop object

BiCopCDF

Distribution Function of a Bivariate Copula

Description

This function evaluates the cumulative distribution function (CDF) of a given parametric bivariate copula.

Usage

BiCopCDF(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
Arguments

u1, u2 numeric vectors of equal length with values in [0, 1].

family integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton”)
14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; survival Joe”)
17 = rotated BB1 copula (180 degrees; survival BB1”)
18 = rotated BB6 copula (180 degrees; survival BB6”)
19 = rotated BB7 copula (180 degrees; survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)

par numeric; single number or vector of size length(u1); copula parameter.

par2 numeric; single number or vector of size length(u1); second parameter for
bivariate copulas with two parameters (BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: \(\text{par2} = 0 \)).

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a \texttt{BiCop()} object \texttt{obj}, the alternative version

\[
\text{BiCopCDF}(u_1, u_2, \texttt{obj})
\]

can be used.

Value

A numeric vector of the bivariate copula distribution function

- of the copula family
- with parameter(s) \(\text{par}, \text{par2} \)
- evaluated at \(u_1 \) and \(u_2 \).

Note

The calculation of the cumulative distribution function (CDF) of the Student’s t copula (family = 2) is only approximate. For numerical reasons, the degree of freedom parameter (\(\text{par2} \)) is rounded to an integer before calculation of the CDF.

Author(s)

Eike Brechmann

See Also

\texttt{BiCopPDF()}, \texttt{BiCopHfunc()}, \texttt{BiCopSim()}, \texttt{BiCop()}

Examples

\[
\begin{align*}
\text{## simulate from a bivariate Clayton copula} \\
\text{set.seed(123)} \\
\text{cop} & \leftarrow \text{BiCop(family = 3, par = 3.4)} \\
\text{simdata} & \leftarrow \text{BiCopSim(300, cop)} \\
\text{## evaluate the distribution function of the bivariate Clayton copula} \\
\text{u1} & \leftarrow \text{simdata[,1]} \\
\text{u2} & \leftarrow \text{simdata[,2]} \\
\text{BiCopCDF(u1, u2, cop)} \\
\text{## select a bivariate copula for the simulated data}
\end{align*}
\]
BiCopCheck <- BiCopSelect(u1, u2)
summary(cop)
and evaluate its CDF
BiCopCDF(u1, u2, cop)

BiCopCheck

Check for family/parameter consistency in bivariate copula models

Description

The function checks if a certain combination of copula family and parameters can be used within other functions of this package.

Usage

BiCopCheck(family, par, par2 = 0, ...)

Arguments

family: An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; survival Joe")
17 = rotated BB1 copula (180 degrees; survival BB1")
18 = rotated BB6 copula (180 degrees; survival BB6")
19 = rotated BB7 copula (180 degrees; survival BB7")
20 = rotated BB8 copula (180 degrees; survival BB8")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)

\begin{verbatim}
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)
\end{verbatim}

\textbf{par} \hspace{1cm} Copula parameter.

\textbf{par2} \hspace{1cm} Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default is \texttt{par2 = 0}).

\textbf{...} \hspace{1cm} used internally.

\textbf{Value}

A logical indicating whether the family can be used with the parameter specification.

\textbf{Author(s)}

Thomas Nagler

\textbf{Examples}

\begin{verbatim}
check parameter of Clayton copula
BiCopCheck(3, 1) # works

Not run: BiCopCheck(3, -1) # does not work (only positive parameter is allowed)
\end{verbatim}

\textbf{Description}

This function creates a chi-plot of given bivariate copula data.

\textbf{Usage}

\texttt{BiCopChiPlot(u1, u2, PLOT = TRUE, mode = "NULL", ...)}
Arguments

- **u1, u2**: Data vectors of equal length with values in \([0, 1]\).
- **PLOT**: Logical; whether the results are plotted. If **PLOT** = FALSE, the values lambda, chi and control.bounds are returned (see below; default: **PLOT** = TRUE).
- **mode**: Character; whether a general, lower or upper chi-plot is calculated. Possible values are mode = "NULL", "upper" and "lower".
 - "NULL" = general chi-plot (default)
 - "upper" = upper chi-plot
 - "lower" = lower chi-plot
- **...**: Additional plot arguments.

Details

For observations \(u_{i,j}, i = 1, \ldots, N, j = 1, 2\), the chi-plot is based on the following two quantities:
- The chi-statistics
 \[
 \chi_i = \frac{\hat{F}_{1,2}(u_{i,1}, u_{i,2}) - \hat{F}_1(u_{i,1})\hat{F}_2(u_{i,2})}{\sqrt{\hat{F}_1(u_{i,1})(1 - \hat{F}_1(u_{i,1}))\hat{F}_2(u_{i,2})(1 - \hat{F}_2(u_{i,2}))}},
 \]
- The lambda-statistics
 \[
 \lambda_i = 4\text{sgn}\left(\hat{F}_1(u_{i,1}), \hat{F}_2(u_{i,2})\right) \cdot \max\left(\hat{F}_1(u_{i,1})^2, \hat{F}_2(u_{i,2})^2\right),
 \]

where \(\hat{F}_1, \hat{F}_2\) and \(\hat{F}_{1,2}\) are the empirical distribution functions of the uniform random variables \(U_1\) and \(U_2\) and of \((U_1, U_2)\), respectively. Further, \(\hat{F}_1 = \hat{F}_1 - 0.5\) and \(\hat{F}_2 = \hat{F}_2 - 0.5\).

These quantities only depend on the ranks of the data and are scaled to the interval \([0, 1]\). \(\lambda_i\) measures a distance of a data point \((u_{i,1}, u_{i,2})\) to the center of the bivariate data set, while \(\chi_i\) corresponds to a correlation coefficient between dichotomized values of \(U_1\) and \(U_2\). Under independence it holds that \(\chi_i \sim \mathcal{N}(0, \frac{1}{N})\) and \(\lambda_i \sim \mathcal{U}[-1, 1]\) asymptotically, i.e., values of \(\chi_i\) close to zero indicate independence—corresponding to \(F_{1,2} = F_1 F_2\).

When plotting these quantities, the pairs of \((\lambda_i, \chi_i)\) will tend to be located above zero for positively dependent margins and vice versa for negatively dependent margins. Control bounds around zero indicate whether there is significant dependence present.

If mode = "lower" or "upper", the above quantities are calculated only for those \(u_{i,1}\)’s and \(u_{i,2}\)’s which are smaller/larger than the respective means of \(u_{1,1}\) and \(u_{1,2}\).

Value

- **lambda**: Lambda-statistics (x-axis).
- **chi**: Chi-statistics (y-axis).
- **control.bounds**: A 2-dimensional vector of bounds \((-1.54/\sqrt{n}, -1.54/\sqrt{n}), (-1.54/\sqrt{n}, -1.54/\sqrt{n})\), where \(n\) is the length of \(u\) and where the chosen values correspond to an approximate significance level of 10%.

Author(s)

Natalia Belgorodski, Ulf Schepsmeier
References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopMetaContour(), BiCopKPlot(), BiCopLambda()

Examples

chi-plots for bivariate Gaussian copula data

simulate copula data
fam <- 1
tau <- 0.5
par <- BiCopTau2Par(fam, tau)
cop <- BiCop(fam, par)
set.seed(123)
dat <- BiCopSim(500, cop)

create chi-plots
op <- par(mfrow = c(1, 3))
BiCopChiPlot(dat[,1], dat[,2], xlim = c(-1,1), ylim = c(-1,1),
 main="General chi-plot")
BiCopChiPlot(dat[,1], dat[,2], mode = "lower", xlim = c(-1,1),
 ylim = c(-1,1), main = "Lower chi-plot")
BiCopChiPlot(dat[,1], dat[,2], mode = "upper", xlim = c(-1,1),
 ylim = c(-1,1), main = "Upper chi-plot")
par(op)

BiCopCompare

Shiny app for bivariate copula selection

Description

The function starts a shiny app which visualizes copula data and allows to compare it with overlays of density contours or simulated data from different copula families with fitted parameters. Several specifications for the margins are available.

Usage

BiCopCompare(u1, u2, familyset = NA, rotations = TRUE)
Arguments

\textbf{u1, u2} \hspace{1cm} Data vectors of equal length with values in \([0, 1]\).

\textbf{familyset} \hspace{1cm} Vector of bivariate copula families to select from. The vector has to include at least one bivariate copula family that allows for positive and one that allows for negative dependence. If \texttt{familyset = NA} (default), selection among all possible families is performed. If a vector of negative numbers is provided, selection among all but \(|\text{abs(familyset)}|\) families is performed. Coding of bivariate copula families:

- \(0\) = independence copula
- \(1\) = Gaussian copula
- \(2\) = Student t copula (t-copula)
- \(3\) = Clayton copula
- \(4\) = Gumbel copula
- \(5\) = Frank copula
- \(6\) = Joe copula
- \(7\) = BB1 copula
- \(8\) = BB6 copula
- \(9\) = BB7 copula
- \(10\) = BB8 copula
- \(13\) = rotated Clayton copula (180 degrees; survival Clayton")
- \(14\) = rotated Gumbel copula (180 degrees; survival Gumbel")
- \(16\) = rotated Joe copula (180 degrees; survival Joe")
- \(17\) = rotated BB1 copula (180 degrees; survival BB1")
- \(18\) = rotated BB6 copula (180 degrees; survival BB6")
- \(19\) = rotated BB7 copula (180 degrees; survival BB7")
- \(20\) = rotated BB8 copula (180 degrees; "survival BB8")
- \(23\) = rotated Clayton copula (90 degrees)
- \('24'\) = rotated Gumbel copula (90 degrees)
- \('26'\) = rotated Joe copula (90 degrees)
- \('27'\) = rotated BB1 copula (90 degrees)
- \('28'\) = rotated BB6 copula (90 degrees)
- \('29'\) = rotated BB7 copula (90 degrees)
- \('30'\) = rotated BB8 copula (90 degrees)
- \('33'\) = rotated Clayton copula (270 degrees)
- \('34'\) = rotated Gumbel copula (270 degrees)
- \('36'\) = rotated Joe copula (270 degrees)
- \('37'\) = rotated BB1 copula (270 degrees)
- \('38'\) = rotated BB6 copula (270 degrees)
- \('39'\) = rotated BB7 copula (270 degrees)
- \('40'\) = rotated BB8 copula (270 degrees)
- \('104'\) = Tawn type 1 copula
- \('114'\) = rotated Tawn type 1 copula (180 degrees)
- \('124'\) = rotated Tawn type 1 copula (90 degrees)
- \('134'\) = rotated Tawn type 1 copula (270 degrees)
- \('204'\) = Tawn type 2 copula
- \('214'\) = rotated Tawn type 2 copula (180 degrees)
- \('224'\) = rotated Tawn type 2 copula (90 degrees)
- \('234'\) = rotated Tawn type 2 copula (270 degrees)
rotations If TRUE, all rotations of the families in familyset are included (or subtracted).

Value

A BiCop() object containing the model selected by the user.

Author(s)

Matthias Killiches, Thomas Nagler

Examples

load data
data(daxreturns)

find a suitable copula family for the first two stocks
Not run: fit <- BiCopCompare(daxreturns[, 1], daxreturns[, 2])

BiCopCondSim Conditional simulation from a Bivariate Copula

Description

This function simulates from a parametric bivariate copula, where one of the variables is fixed. I.e., we simulate either from $C_{2|1}(u_2|u_1; \theta)$ or $C_{1|2}(u_1|u_2; \theta)$, which are both conditional distribution functions of one variable given another.

Usage

BiCopCondSim(
 N,
 cond.val,
 cond.var,
 family,
 par,
 par2 = 0,
 obj = NULL,
 check.pars = TRUE
)

Arguments

N Number of observations simulated.
cond.val numeric vector of length N containing the values to condition on.
cond.var either 1 or 2; the variable to condition on.
family integer; single number or vector of size N; defines the bivariate copula family:

0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton”)
14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; survival Joe”)
17 = rotated BB1 copula (180 degrees; survival BB1”)
18 = rotated BB6 copula (180 degrees; survival BB6”)
19 = rotated BB7 copula (180 degrees; survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)

par numeric; single number or vector of size N; copula parameter.

par2 numeric; single number or vector of size N; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be a positive integer for the Student’s t copula family = 2.

obj BiCop object containing the family and parameter specification.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details
If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopCondSim(N, cond.val, cond.var, obj)

can be used.

Value
A length N vector of simulated from conditional distributions related to bivariate copula with family and parameter(s) par, par2.

Author(s)
Thomas Nagler

See Also
BiCopCDF(), BiCopPDF(), RVineSim()

Examples

create bivariate t-copula
obj <- BiCop(family = 2, par = -0.7, par2 = 4)

simulate 500 observations of (U1, U2)
sim <- BiCopSim(500, obj)
hist(sim[, 1]) # data have uniform distribution
hist(sim[, 2]) # data have uniform distribution

simulate 500 observations of (U2 | U1 = 0.7)
sim1 <- BiCopCondSim(500, cond.val = 0.7, cond.var = 1, obj)
hist(sim1) # not uniform!

simulate 500 observations of (U1 | U2 = 0.1)
sim2 <- BiCopCondSim(500, cond.val = 0.1, cond.var = 2, obj)
hist(sim2) # not uniform!
BiCopDeriv

Derivatives of a Bivariate Copula Density

Description

This function evaluates the derivative of a given parametric bivariate copula density with respect to its parameter(s) or one of its arguments.

Usage

BiCopDeriv(
 u1, u2,
 family,
 par,
 par2 = 0,
 deriv = "par",
 log = FALSE,
 obj = NULL,
 check.pars = TRUE
)

Arguments

u1, u2 numeric vectors of equal length with values in [0, 1].

family integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; survival Clayton”)
14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

par numeric; single number or vector of size length(u1); copula parameter.
par2

integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students's t copula family = 2.

deriv

Derivative argument
"par" = derivative with respect to the first parameter (default)
"par2" = derivative with respect to the second parameter (only available for the t-copula)
"u1" = derivative with respect to the first argument u1
"u2" = derivative with respect to the second argument u2

log

Logical; if TRUE than the derivative of the log-likelihood is returned (default: log = FALSE); only available for the derivatives with respect to the parameter(s) (deriv = "par" or deriv = "par2").

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopDeriv(u1, u2, obj, deriv = "par", log = FALSE)

can be used.

Value

A numeric vector of the bivariate copula derivative

• of the copula family
• with parameter(s) par, par2
• with respect to deriv,
• evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier

References

See Also

RVineGrad(), RVineHessian(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()
Examples

```r
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## derivative of the bivariate t-copula with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its derivative w.r.t. the second argument u2
BiCopDeriv(u1, u2, cop, deriv = "u2")
```

BiCopDeriv2

Second Derivatives of a Bivariate Copula Density

Description

This function evaluates the second derivative of a given parametric bivariate copula density with respect to its parameter(s) and/or its arguments.

Usage

```r
BiCopDeriv2(
  u1, u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  obj = NULL,
  check.pars = TRUE
)
```

Arguments

- `u1, u2` numeric vectors of equal length with values in \([0, 1]\).
- `family` integer; single number or vector of size `length(u1)`; defines the bivariate copula family:
 - 0 = independence copula
 - 1 = Gaussian copula
 - 2 = Student t copula (t-copula)
 - 3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; survival Clayton’’)
14 = rotated Gumbel copula (180 degrees; survival Gumbel’’)
16 = rotated Joe copula (180 degrees; “survival Joe”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

par | Copula parameter.
par2 | integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be an positive integer for the Students’s t copula family = 2.
deriv | Derivative argument
"par" = second derivative with respect to the first parameter (default)
"par2" = second derivative with respect to the second parameter (only available for the t-copula)
"u1" = second derivative with respect to the first argument u1
"u2" = second derivative with respect to the second argument u2
"par1par2" = second derivative with respect to the first and second parameter (only available for the t-copula)
"par1u1" = second derivative with respect to the first parameter and the first argument
"par2u1" = second derivative with respect to the second parameter and the first argument (only available for the t-copula)
"par1u2" = second derivative with respect to the first parameter and the second argument
"par2u2" = second derivative with respect to the second parameter and the second argument (only available for the t-copula)

obj | BiCop object containing the family and parameter specification.
check.pars | logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopDeriv2(u1, u2, obj, deriv = "par")

can be used.
Value

A numeric vector of the second-order bivariate copula derivative

- of the copula family
- with parameter(s) par, par2
- with respect to deriv
- evaluated at u1 and u2.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References

See Also

RVineGrad(), RVineHessian(), BiCopDeriv(), BiCopHfuncDeriv(), BiCop()

Examples

```r
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## second derivative of the Student-t copula w.r.t. the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv2(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its second derivative w.r.t. the second argument u2
BiCopDeriv2(u1, u2, cop, deriv = "u2")
```
Description

This function estimates the parameter(s) of a bivariate copula using either inversion of empirical Kendall’s tau (for one parameter copula families only) or maximum likelihood estimation for implemented copula families.

Usage

```r
BiCopEst(
  u1, u2,
  family,
  method = "mle",
  se = FALSE,
  max.df = 30,
  max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)),
  weights = NA
)
```

Arguments

- `u1, u2` Data vectors of equal length with values in \([0, 1]\).
- `family` An integer defining the bivariate copula family:
 - 0 = independence copula
 - 1 = Gaussian copula
 - 2 = Student t copula (t-copula)
 - 3 = Clayton copula
 - 4 = Gumbel copula
 - 5 = Frank copula
 - 6 = Joe copula
 - 7 = BB1 copula
 - 8 = BB6 copula
 - 9 = BB7 copula
 - 10 = BB8 copula
 - 13 = rotated Clayton copula (180 degrees; survival Clayton”)
 - "14" = rotated Gumbel copula (180 degrees; survival Gumbel”)
 - 16 = rotated Joe copula (180 degrees; survival Joe”)
 - "17" = rotated BB1 copula (180 degrees; survival BB1”)
 - 18 = rotated BB6 copula (180 degrees; survival BB6”)
 - "19" = rotated BB7 copula (180 degrees; survival BB7”)
 - 20 = rotated BB8 copula (180 degrees; “survival BB8”)
 - 23 = rotated Clayton copula (90 degrees)
 - "24" = rotated Gumbel copula (90 degrees)
 - "26" = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

Method

method indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall’s tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34 or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10).

se

Logical; whether standard error(s) of parameter estimates is/are estimated (default: se = FALSE).

max.df

Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30).

max.BB

List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas (default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

weights

Numerical; weights for each observation (optional).

Details

If method = "itau", the function computes the empirical Kendall’s tau of the given copula data and exploits the one-to-one relationship of copula parameter and Kendall’s tau which is available for many one parameter bivariate copula families (see BiCopPar2Tau() and BiCopTau2Par()). The inversion of Kendall’s tau is however not available for all bivariate copula families (see above). If a two parameter copula family is chosen and method = "itau", a warning message is returned and the MLE is calculated.

For method = "mle" copula parameters are estimated by maximum likelihood using starting values obtained by method = "itau". If no starting values are available by inversion of Kendall’s tau, starting values have to be provided given expert knowledge and the boundaries max.df and max.BB respectively. Note: The MLE is performed via numerical maximization using the L_BFGS-B method.
For the Gaussian, the t- and the one-parametric Archimedean copulas we can use the gradients, but for the BB copulas we have to use finite differences for the L_BFGS-B method.

A warning message is returned if the estimate of the degrees of freedom parameter of the t-copula is larger than max. df. For high degrees of freedom the t-copula is almost indistinguishable from the Gaussian and it is advised to use the Gaussian copula in this case. As a rule of thumb max. df = 30 typically is a good choice. Moreover, standard errors of the degrees of freedom parameter estimate cannot be estimated in this case.

Value
An object of class BiCop(), augmented with the following entries:
- se, se2: standard errors for the parameter estimates (if se = TRUE),
- nobs: number of observations,
- logLik: log likelihood
- AIC: Aikake's Information Criterion,
- BIC: Bayesian's Information Criterion,
- emptau: empirical value of Kendall's tau,
- p.value.indeptest: p-value of the independence test.

Note
For a comprehensive summary of the fitted model, use summary(object); to see all its contents, use str(object).

Author(s)
Ulf Schepsmeier, Eike Brechmann, Jakob Stoeber, Carlos Almeida

References

See Also
BiCop(), BiCopPar2Tau(), BiCopTau2Par(), RVineSeqEst(), BiCopSelect(),

Examples

```r
## Example 1: bivariate Gaussian copula
dat <- BiCopSim(500, 1, 0.7)
u1 <- dat[, 1]
v1 <- dat[, 2]

# estimate parameters of Gaussian copula by inversion of Kendall's tau
est1.tau <- BiCopEst(u1, v1, family = 1, method = "itau")
est1.tau # short overview
```
summary(est1.tau) # comprehensive overview
str(est1.tau) # see all contents of the object

check if parameter actually coincides with inversion of Kendall's tau
tau1 <- cor(u1, v1, method = "kendall")
all.equal(BiCopTau2Par(1, tau1), est1.tau$par)

maximum likelihood estimate for comparison
est1.mle <- BiCopEst(u1, v1, family = 1, method = "mle")
summary(est1.mle)

Example 2: bivariate Clayton and survival Gumbel copulas
simulate from a Clayton copula
dat <- BiCopSim(500, 3, 2.5)
u2 <- dat[, 1]
v2 <- dat[, 2]

empirical Kendall's tau
tau2 <- cor(u2, v2, method = "kendall")

inversion of empirical Kendall's tau for the Clayton copula
BiCopTau2Par(3, tau2)
BiCopEst(u2, v2, family = 3, method = "itau")

inversion of empirical Kendall's tau for the survival Gumbel copula
BiCopTau2Par(14, tau2)
BiCopEst(u2, v2, family = 14, method = "itau")

maximum likelihood estimates for comparison
BiCopEst(u2, v2, family = 3, method = "mle")
BiCopEst(u2, v2, family = 14, method = "mle")

BiCopEstList

List of Maximum Likelihood Estimates for Several Bivariate Copula Families

Description

This function allows to compare bivariate copula models across a number of families w.r.t. the fit statistics log-likelihood, AIC, and BIC. For each family, the parameters are estimated by maximum likelihood.

Usage

BiCopEstList(u1, u2, familyset = NA, weights = NA, rotations = TRUE, ...)

BiCopEstList

Arguments

u1, u2 Data vectors of equal length with values in \([0, 1] \).

familyset Vector of bivariate copula families to select from. The vector has to include at least one bivariate copula family that allows for positive and one that allows for negative dependence. If `familyset = NA` (default), selection among all possible families is performed. Coding of bivariate copula families:

0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton”)
14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; survival Joe”)
17 = rotated BB1 copula (180 degrees; survival BB1”)
18 = rotated BB6 copula (180 degrees; survival BB6”)
19 = rotated BB7 copula (180 degrees; survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)
weights Numerical; weights for each observation (optional).
rotations If TRUE, all rotations of the families in familyset are included.
... further arguments passed to BiCopEst().

Details
First all available copulas are fitted using maximum likelihood estimation. Then the criteria are computed for all available copula families (e.g., if u1 and u2 are negatively dependent, Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 and their survival copulas are not considered) and the family with the minimum value is chosen. For observations \(u_{i,j} \), \(i = 1, ..., N \), \(j = 1, 2 \), the AIC of a bivariate copula family \(c \) with parameter(s) \(\theta \) is defined as

\[
AIC := -2 \sum_{i=1}^{N} \ln[c(u_{i,1}, u_{i,2} | \theta)] + 2k,
\]

where \(k = 1 \) for one parameter copulas and \(k = 2 \) for the two parameter t-, BB1, BB6, BB7 and BB8 copulas. Similarly, the BIC is given by

\[
BIC := -2 \sum_{i=1}^{N} \ln[c(u_{i,1}, u_{i,2} | \theta)] + \ln(N)k.
\]

Evidently, if the BIC is chosen, the penalty for two parameter families is stronger than when using the AIC.

Value
A list containing
models a list of BiCop() objects corresponding to the ‘familyset” (only families corresponding to the sign of the empirical Kendall’s tau are used),
summary a data frame containing the log-likelihoods, AICs, and BICs of all the fitted models.

Author(s)
Thomas Nagler

References

See Also
BiCop(), BiCopEst()
Examples

```r
## compare models
data(daxreturns)
comp <- BiCopEstList(daxreturns[, 1], daxreturns[, 4])
```

Description

This function performs a goodness-of-fit test for bivariate copulas, either based on White’s information matrix equality (White, 1982) as introduced by Huang and Prokhorov (2011) or based on Kendall’s process (Wang and Wells, 2000; Genest et al., 2006). It computes the test statistics and p-values.

Usage

```r
BiCopGofTest(
  u1,
  u2,
  family,
  par = 0,
  par2 = 0,
  method = "white",
  max.df = 30,
  B = 100,
  obj = NULL
)
```

Arguments

- **u1, u2**: Numeric vectors of equal length with values in \([0, 1]\).
- **family**: An integer defining the bivariate copula family:
 - \(0\) = independence copula
 - \(1\) = Gaussian copula
 - \(2\) = Student t copula (t-copula) (only for `method = "white"`; see details)
 - \(3\) = Clayton copula
 - \(4\) = Gumbel copula
 - \(5\) = Frank copula
 - \(6\) = Joe copula
 - \(7\) = BB1 copula (only for `method = "kendall"`)
 - \(8\) = BB6 copula (only for `method = "kendall"`)
 - \(9\) = BB7 copula (only for `method = "kendall"`)
 - \(10\) = BB8 copula (only for `method = "kendall"`)
 - \(13\) = rotated Clayton copula (180 degrees; survival Clayton’’)
 - \(14\) = rotated Gumbel copula (180 degrees; survival Gumbel’’)
```
16 = rotated Joe copula (180 degrees; survival Joe"")
18 = rotated BB6 copula (180 degrees; survival BB6""); only for `method = "kendall"")
20 = rotated BB8 copula (180 degrees; "survival BB8"; only for `method = "kendall"")
'23' = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees; only for `method = "kendall"")
'28' = rotated BB6 copula (90 degrees; only for `method = "kendall"")
'29' = rotated BB7 copula (90 degrees; only for `method = "kendall"")
'30' = rotated BB8 copula (90 degrees; only for `method = "kendall"")
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees; only for `method = "kendall"")
'38' = rotated BB6 copula (270 degrees; only for `method = "kendall"")
'39' = rotated BB7 copula (270 degrees; only for `method = "kendall"")
'40' = rotated BB8 copula (270 degrees; only for `method = "kendall"")

par Copula parameter (optional).
par2 Second parameter for bivariate t-copula (optional); default: par2 = 0.
method A string indicating the goodness-of-fit method:
"white" = goodness-of-fit test based on White’s information matrix equality (default)
"kendall" = goodness-of-fit test based on Kendall’s process
max.df Numeric; upper bound for the estimation of the degrees of freedom parameter of
the t-copula (default: max.df = 30).
B Integer; number of bootstrap samples (default: B = 100). For B = 0 only the test
statistics are returned.
WARNING: If B is chosen too large, computations will take very long.
obj BiCop object containing the family and parameter specification.

Details

method = "white":
This goodness-of-fit test uses the information matrix equality of White (1982) and was investigated
by Huang and Prokhorov (2011). The main contribution is that under correct model specification
the Fisher Information can be equivalently calculated as minus the expected Hessian matrix or as
the expected outer product of the score function. The null hypothesis is
\[ H_0 : \mathbf{H}(\theta) + \mathbf{C}(\theta) = 0 \]
against the alternative
\[ H_0 : \mathbf{H}(\theta) + \mathbf{C}(\theta) \neq 0, \]
where \( \mathbf{H}(\theta) \) is the expected Hessian matrix and \( \mathbf{C}(\theta) \) is the expected outer product of the score
function. For the calculation of the test statistic we use the consistent maximum likelihood estimator \( \hat{\theta} \) and the sample counter parts of \( \mathbf{H}(\theta) \) and \( \mathbf{C}(\theta) \). The correction of the covariance-matrix
in the test statistic for the uncertainty in the margins is skipped. The implemented tests assumes
that there is no uncertainty in the margins. The correction can be found in Huang and Prokhorov
(2011). It involves two-dimensional integrals.
WARNING: For the t-copula the test may be unstable. The results for the t-copula therefore have
to be treated carefully.

method = "kendall":
This copula goodness-of-fit test is based on Kendall’s process as proposed by Wang and Wells
(2000). For computation of p-values, the parametric bootstrap described by Genest et al. (2006) is
used. For rotated copulas the input arguments are transformed and the goodness-of-fit procedure
for the corresponding non-rotated copula is used.

Value
For method = "white":

  p.value       Asymptotic p-value.
  statistic     The observed test statistic.

For method = "kendall"

  p.value.CvM   Bootstrapped p-value of the goodness-of-fit test using the Cramer-von Mises
                statistic (if \( B > 0 \)).
  p.value.KS    Bootstrapped p-value of the goodness-of-fit test using the Kolmogorov-Smirnov
                statistic (if \( B > 0 \)).
  statistic.CvM The observed Cramer-von Mises test statistic.
  statistic.KS  The observed Kolmogorov-Smirnov test statistic.

Author(s)
Ulf Schepsmeier, Wanling Huang, Jiying Luo, Eike Brechmann

References
(7), 751-771.
Based on the Probability Integral Transformation. Scandinavian Journal of Statistics, 33(2), 337-
https://mediatum.ub.tum.de/?id=1079291.

See Also
BiCopDeriv2(), BiCopDeriv(), BiCopIndTest(), BiCopVuongClarke()
Examples

```r
simulate from a bivariate Clayton copula
simdata <- BiCopSim(100, 3, 2)
u1 <- simdata[,1]
u2 <- simdata[,2]

perform White's goodness-of-fit test for the true copula
BiCopGofTest(u1, u2, family = 3)

perform White's goodness-of-fit test for the Frank copula
BiCopGofTest(u1, u2, family = 5)

perform Kendall's goodness-of-fit test for the true copula
BiCopGofTest(u1, u2, family = 3, method = "kendall", B=50)

perform Kendall's goodness-of-fit test for the Frank copula
BiCopGofTest(u1, u2, family = 5, method = "kendall", B=50)
```

---

**BiCopHfunc**

*Conditional Distribution Function of a Bivariate Copula*

**Description**

Evaluate the conditional distribution function (h-function) of a given parametric bivariate copula.

**Usage**

```r
BiCopHfunc(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
BiCopHfunc1(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
BiCopHfunc2(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
```

**Arguments**

- **u1, u2**
  - numeric vectors of equal length with values in $[0,1]$.
- **family**
  - integer; single number or vector of size length(u1); defines the bivariate copula family:
    - 0 = independence copula
    - 1 = Gaussian copula
    - 2 = Student t copula (t-copula)
    - 3 = Clayton copula
    - 4 = Gumbel copula
    - 5 = Frank copula
    - 6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; survival Joe")
17 = rotated BB1 copula (180 degrees; survival BB1")
18 = rotated BB6 copula (180 degrees; survival BB6")
19 = rotated BB7 copula (180 degrees; survival BB7")
20 = rotated BB8 copula (180 degrees; "survival BB8")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)

**Details**

The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,

\[
h_1(u_2|u_1; \theta) := P(U_2 \leq u_2|U_1 = u_1) = \frac{\partial C(u_1, u_2; \theta)}{\partial u_2},
\]
\[ h_2(u_1 | u_2; \theta) := P(U_1 \leq u_1 | U_2 = u_2) = \frac{\partial C(u_1, u_2; \theta)}{\partial u_2}, \]

where \((U_1, U_2) \sim C\), and \(C\) is a bivariate copula distribution function with parameter(s) \(\theta\). For more details see Aas et al. (2009).

If the family and parameter specification is stored in a BiCop() object `obj`, the alternative versions

\begin{align*}
\text{BiCopHfunc}(u_1, u_2, \text{obj}) \\
\text{BiCopHfunc1}(u_1, u_2, \text{obj}) \\
\text{BiCopHfunc2}(u_1, u_2, \text{obj})
\end{align*}

can be used.

**Value**

BiCopHfunc returns a list with

- `hfunc1` Numeric vector of the conditional distribution function (h-function) of the copula family with parameter(s) \(\text{par}, \text{par2}\) evaluated at \(u_2\) given \(u_1\), i.e., \(h_1(u_2 | u_1; \theta)\).
- `hfunc2` Numeric vector of the conditional distribution function (h-function) of the copula family with parameter(s) \(\text{par}, \text{par2}\) evaluated at \(u_1\) given \(u_2\), i.e., \(h_2(u_1 | u_2; \theta)\).

BiCopHfunc1 is a faster version that only calculates `hfunc1`; BiCopHfunc2 only calculates `hfunc2`.

**Author(s)**

Ulf Schepsmeier

**References**


**See Also**

BiCopHinv(), BiCopPDF(), BiCopCDF(), RVineLogLik(), RVineSeqEst(), BiCop()

**Examples**

```r
data(daxreturns)

h-functions of the Gaussian copula
cop <- BiCop(family = 1, par = 0.5)
h <- BiCopHfunc(daxreturns[, 2], daxreturns[, 1], cop)

or using the fast versions
h1 <- BiCopHfunc1(daxreturns[, 2], daxreturns[, 1], cop)
h2 <- BiCopHfunc2(daxreturns[, 2], daxreturns[, 1], cop)
all.equal(h$hfunc1, h1)
all.equal(h$hfunc2, h2)
```
BiCopHfuncDeriv

Derivatives of the h-Function of a Bivariate Copula

Description

This function evaluates the derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) or one of its arguments.

Usage

BiCopHfuncDeriv(
  u1,
  u2,
  family,
  par,
  par2 = 0,
  deriv = "par",
  obj = NULL,
  check.pars = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u1, u2</td>
<td>numeric vectors of equal length with values in [0, 1].</td>
</tr>
</tbody>
</table>
| family   | integer; single number or vector of size length(u1); defines the bivariate copula family: \ 
|          | 0 = independence copula |
|          | 1 = Gaussian copula |
|          | 2 = Student t copula (t-copula) |
|          | 3 = Clayton copula |
|          | 4 = Gumbel copula |
|          | 5 = Frank copula |
|          | 6 = Joe copula |
|          | 13 = rotated Clayton copula (180 degrees; survival Clayton") |
|          | 14 = rotated Gumbel copula (180 degrees; survival Gumbel") |
|          | 16 = rotated Joe copula (180 degrees; "survival Joe") |
|          | 23 = rotated Clayton copula (90 degrees) |
|          | '24' = rotated Gumbel copula (90 degrees) |
|          | '26' = rotated Joe copula (90 degrees) |
|          | '33' = rotated Clayton copula (270 degrees) |
|          | '34' = rotated Gumbel copula (270 degrees) |
|          | '36' = rotated Joe copula (270 degrees) |
| par      | numeric; single number or vector of size length(u1); copula parameter. |
| par2     | integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be a positive integer for the Student's t copula family = 2. |
deriv  Derivative argument
"par" = derivative with respect to the first parameter (default)
"par2" = derivative with respect to the second parameter (only available for the
  t-copula)
"u2" = derivative with respect to the second argument u2

obj      BiCop object containing the family and parameter specification.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are
         omitted (should only be used with care).

Details
If the family and parameter specification is stored in a `BiCop()` object obj, the alternative version

\[ \text{BiCopHfuncDeriv}(u1, u2, \text{obj}, \text{deriv} = \text{"par"}) \]

can be used.

Value
A numeric vector of the conditional bivariate copula derivative
- of the copula family,
- with parameter(s) par, par2,
- with respect to deriv,
- evaluated at \( u1 \) and \( u2 \).

Author(s)
Ulf Schepsmeier

References
Statistical Papers, 55 (2), 525-542.

See Also
RVineGrad(), RVineHessian(), BiCopDeriv2(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()

Examples
```r
simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
```
BiCopHfuncDeriv2

Second Derivatives of the h-Function of a Bivari ate Copula

Description

This function evaluates the second derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) and/or its arguments.

Usage

BiCopHfuncDeriv2(  u1,  u2,  family,  par,  par2 = 0,  deriv = "par",  obj = NULL,  check.pars = TRUE )

Arguments

u1, u2 numeric vectors of equal length with values in [0, 1].
family integer; single number or vector of size length(u1); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; "survival Joe")
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)

par numeric; single number or vector of size length(u1); copula parameter.
par2 integer; single number or vector of size length(u1); second parameter for the t-Copula; default is par2 = 0, should be a positive integer for the Student's t copula family = 2.
deriv Derivative argument
"par" = second derivative with respect to the first parameter (default)
"par2" = second derivative with respect to the second parameter (only available for the t-copula)
"u2" = second derivative with respect to the second argument u2
"par1par2" = second derivative with respect to the first and second parameter (only available for the t-copula)
"par1u2" = second derivative with respect to the first parameter and the second argument
"par2u2" = second derivative with respect to the second parameter and the second argument (only available for the t-copula)

obj BiCop object containing the family and parameter specification.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details
If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopHfuncDeriv2(u1, u2, obj, deriv = "par")

can be used.

Value
A numeric vector of the second-order conditional bivariate copula derivative
• of the copula family
• with parameter(s) par, par2
• with respect to deriv
• evaluated at u1 and u2.
Author(s)
Ulf Schepsmeier, Jakob Stoeber

References

See Also
RVineGrad(), RVineHessian(), BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCop()

Examples

## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

## second derivative of the conditional bivariate t-copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv2(u1, u2, cop, deriv = "par")

## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv2(u1, u2, cop, deriv = "u2")

---

**BiCopHinv**

**Inverse Conditional Distribution Function of a Bivariate Copula**

Description
Evaluate the inverse conditional distribution function (inverse h-function) of a given parametric bivariate copula.

Usage

BiCopHinv(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

BiCopHinv1(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

BiCopHinv2(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
Arguments

- **u1, u2**
  numeric vectors of equal length with values in [0, 1].

- **family**
  integer; single number or vector of size `length(u1)`; defines the bivariate copula family:
  - 0 = independence copula
  - 1 = Gaussian copula
  - 2 = Student t copula (t-copula)
  - 3 = Clayton copula
  - 4 = Gumbel copula
  - 5 = Frank copula
  - 6 = Joe copula
  - 7 = BB1 copula
  - 8 = BB6 copula
  - 9 = BB7 copula
  - 10 = BB8 copula
  - 13 = rotated Clayton copula (180 degrees; survival Clayton")
  - 14 = rotated Gumbel copula (180 degrees; survival Gumbel")
  - 16 = rotated Joe copula (180 degrees; survival Joe")
  - 17 = rotated BB1 copula (180 degrees; survival BB1")
  - 18 = rotated BB6 copula (180 degrees; survival BB6")
  - 19 = rotated BB7 copula (180 degrees; survival BB7")
  - 20 = rotated BB8 copula (180 degrees; "survival BB8")
  - 23 = rotated Clayton copula (90 degrees)
  - 24 = rotated Gumbel copula (90 degrees)
  - 26 = rotated Joe copula (90 degrees)
  - 27 = rotated BB1 copula (90 degrees)
  - 28 = rotated BB6 copula (90 degrees)
  - 29 = rotated BB7 copula (90 degrees)
  - 30 = rotated BB8 copula (90 degrees)
  - 33 = rotated Clayton copula (270 degrees)
  - 34 = rotated Gumbel copula (270 degrees)
  - 36 = rotated Joe copula (270 degrees)
  - 37 = rotated BB1 copula (270 degrees)
  - 38 = rotated BB6 copula (270 degrees)
  - 39 = rotated BB7 copula (270 degrees)
  - 40 = rotated BB8 copula (270 degrees)
  - 104 = Tawn type 1 copula
  - 114 = rotated Tawn type 1 copula (180 degrees)
  - 124 = rotated Tawn type 1 copula (90 degrees)
  - 134 = rotated Tawn type 1 copula (270 degrees)
  - 204 = Tawn type 2 copula
  - 214 = rotated Tawn type 2 copula (180 degrees)
  - 224 = rotated Tawn type 2 copula (90 degrees)
  - 234 = rotated Tawn type 2 copula (270 degrees)

- **par**
  numeric; single number or vector of size `length(u1)`; copula parameter.

- **par2**
  numeric; single number or vector of size `length(u1)`; second parameter for
bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: \( \text{par2} = 0 \)). \( \text{par2} \) should be an positive integer for the Students’ t copula family = 2.

**obj** BiCop object containing the family and parameter specification.

**check.pars** logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

**Details**

The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,

\[
h_1(u_2|u_1; \theta) := P(U_2 \leq u_2 | U_1 = u_1) = \frac{\partial C(u_1,u_2;\theta)}{\partial u_1},
\]

\[
h_2(u_1|u_2; \theta) := P(U_1 \leq u_1 | U_2 = u_2) = \frac{\partial C(u_1,u_2;\theta)}{\partial u_2},
\]

where \((U_1, U_2) \sim C\), and \(C\) is a bivariate copula distribution function with parameter(s) \(\theta\). For more details see Aas et al. (2009).

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

\[
\text{BiCopHinv}(u1, u2, obj),
\]

\[
\text{BiCopHinv1}(u1, u2, obj),
\]

\[
\text{BiCopHinv2}(u1, u2, obj)
\]

can be used.

**Value**

BiCopHinv returns a list with

- **hinv1** Numeric vector of the inverse conditional distribution function (inverse h-function) of the copula family with parameter(s) \(\text{par} \), \(\text{par2}\) evaluated at \(u_2\) given \(u_1\), i.e., \(h_1^{-1}(u_2|u_1; \theta)\).

- **hinv2** Numeric vector of the inverse conditional distribution function (inverse h-function) of the copula family with parameter(s) \(\text{par} \), \(\text{par2}\) evaluated at \(u_1\) given \(u_2\), i.e., \(h_2^{-1}(u_1|u_2; \theta)\).

BiCopHinv1 is a faster version that only calculates hinv1; BiCopHinv2 only calculates hinv2.

**Author(s)**

Ulf Schepsmeier, Thomas Nagler

**References**

BiCopIndTest

Independence Test for Bivariate Copula Data

Description

This function returns the p-value of a bivariate asymptotic independence test based on Kendall’s \( \tau \).

Usage

\texttt{BiCopIndTest(u1, u2)}

Arguments

\texttt{u1, u2} \hspace{1cm} \text{Data vectors of equal length with values in \([0, 1]\).}

Details

The test exploits the asymptotic normality of the test statistic

\[
\text{statistic} := T = \sqrt{\frac{9N(N-1)}{2(2N+5)}} \times |\hat{\tau}|,
\]

where \( N \) is the number of observations (length of \( u1 \)) and \( \hat{\tau} \) the empirical Kendall’s tau of the data vectors \( u1 \) and \( u2 \). The p-value of the null hypothesis of bivariate independence hence is asymptotically

\[
p\text{-value} = 2 \times (1 - \Phi(T)),
\]

where \( \Phi \) is the standard normal distribution function.
Value

<table>
<thead>
<tr>
<th>statistic</th>
<th>Test statistic of the independence test.</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.value</td>
<td>P-value of the independence test.</td>
</tr>
</tbody>
</table>

Author(s)

Jeffrey Dissmann

References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopGofTest(), BiCopPar2Tau(), BiCopTau2Par(), BiCopSelect(), RVineCopSelect(), RVineStructureSelect()

Examples

```r
Example 1: Gaussian copula with large dependence parameter
cop <- BiCop(1, 0.7)
dat <- BiCopSim(500, cop)

perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])

Example 2: Gaussian copula with small dependence parameter
cop <- BiCop(1, 0.01)
dat <- BiCopSim(500, cop)

perform the asymptotic independence test
BiCopIndTest(dat[, 1], dat[, 2])
```

Description

A kernel density estimate of the copula density is visualized. The function provides the same options as plot.BiCop(). Further arguments can be passed to kdecopula::kdecop() to modify the estimate. The kdecopula::kdecopula-package() must be installed to use this function.

Usage

BiCopKDE(u1, u2, type = "contour", margins, size, kde.pars = list(), ...)
Arguments

- **u1, u2**: numeric vectors of equal length with values in \([0, 1]\).
- **type**: plot type; either "contour" or "surface" (partial matching is activated) for a contour or perspective/surface plot respectively.
- **margins**: only relevant for types "contour" and "surface"; options are: "unif" for the original copula density, "norm" for the transformed density with standard normal margins, "exp" with standard exponential margins, and "flexp" with flipped exponential margins. Default is "norm" for type = "contour", and "unif" for type = "surface". "norm" for the transformed density with standard normal margins (partial matching is activated). Default is "norm" for type = "contour", and "unif" for type = "surface".
- **size**: integer; the plot is based on values on a size x size grid; default is 100 for type = "contour", and 25 for type = "surface".
- **kde.pars**: list of arguments passed to `kdecopula::kdecop()`.
- **...**: optional arguments passed to `contour()` or `wireframe()`.

Details

For further details on estimation see `kdecopula::kdecop()`.

Author(s)

Thomas Nagler

Examples

```r
simulate data from Joe copula
cop <- BiCop(3, tau = 0.3)
u <- BiCopSim(1000, cop)
contour(cop) # true contours

kernel contours with standard normal margins
BiCopKDE(u[, 1], u[, 2])
BiCopKDE(u[, 1], u[, 2], kde.pars = list(mult = 0.5)) # undersmooth
BiCopKDE(u[, 1], u[, 2], kde.pars = list(mult = 2)) # oversmooth

kernel density with uniform margins
BiCopKDE(u[, 1], u[, 2], type = "surface", zlim = c(0, 4))
plot(cop, zlim = c(0, 4)) # true density

kernel contours are also used in pairs.copuladata
data(daxreturns)
data <- as.copuladata(daxreturns)
pairs(data[c(4, 5, 14, 15)])
```
Description

This function creates a Kendall’s plot (K-plot) of given bivariate copula data.

Usage

BiCopKPlot(u1, u2, PLOT = TRUE, ...)

Arguments

u1, u2          Data vectors of equal length with values in \([0, 1]\).
PLOT           Logical; whether the results are plotted. If PLOT = FALSE, the values \(W\) in and \(H\) i . sort are returned (see below; default: PLOT = TRUE).
...            Additional plot arguments.

Details

For observations \(u_{i,j}, i = 1, \ldots, N, j = 1, 2\), the K-plot considers two quantities: First, the ordered values of the empirical bivariate distribution function \(H_i := \hat{F}_{U_1 U_2}(u_{i,1}, u_{i,2})\) and, second, \(W_{i:N}\), which are the expected values of the order statistics from a random sample of size \(N\) of the random variable \(W = C(U_1, U_2)\) under the null hypothesis of independence between \(U_1\) and \(U_2\). \(W_{i:N}\) can be calculated as follows

\[
W_{i:n} = N \binom{N-1}{i-1} \int_0^1 \omega k_0(\omega) \left(K_0(\omega)\right)^{i-1} (1 - K_0(\omega))^{N-i} d\omega,
\]

where

\[
K_0(\omega) = \omega - \omega \log(\omega),
\]

and \(k_0(\cdot)\) is the corresponding density.

K-plots can be seen as the bivariate copula equivalent to QQ-plots. If the points of a K-plot lie approximately on the diagonal \(y = x\), then \(U_1\) and \(U_2\) are approximately independent. Any deviation from the diagonal line points towards dependence. In case of positive dependence, the points of the K-plot should be located above the diagonal line, and vice versa for negative dependence. The larger the deviation from the diagonal, the stronger is the degree of dependency. There is a perfect positive dependence if points \((W_{i:N}, H_i)\) lie on the curve \(K_0(\omega)\) located above the main diagonal. If points \((W_{i:N}, H_i)\) however lie on the x-axis, this indicates a perfect negative dependence between \(U_1\) and \(U_2\).

Value

\(W\) in          W-statistics (x-axis).
\(H\) i . sort    H-statistics (y-axis).
BiCopLambda

Author(s)

Natalia Belgorodski, Ulf Schepsmeier

References

Genest, C. and A. C. Favre (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4), 347-368.

See Also

BiCopMetaContour(), BiCopChiPlot(), BiCopLambda(), BiCopGofTest()

Examples

```r
Gaussian and Clayton copulas
n <- 500
tau <- 0.5

simulate from Gaussian copula
fam <- 1
par <- BiCopTau2Par(fam, tau)
cop1 <- BiCop(fam, par)
set.seed(123)
dat1 <- BiCopSim(n, cop1)

simulate from Clayton copula
fam <- 3
par <- BiCopTau2Par(fam, tau)
cop2 <- BiCop(fam, par)
set.seed(123)
dat2 <- BiCopSim(n, cop2)

create K-plots
op <- par(mfrow = c(1, 2))
BiCopKPlot(dat1[,1], dat1[,2], main = "Gaussian copula")
BiCopKPlot(dat2[,1], dat2[,2], main = "Clayton copula")
par(op)
```

BiCopLambda

**Lambda-Function (Plot) for Bivariate Copula Data**

Description

This function plots/returns the lambda-function of given bivariate copula data.
BiCopLambda

Usage

BiCopLambda(
  u1 = NULL,
  u2 = NULL,
  family = "emp",
  par = 0,
  par2 = 0,
  PLOT = TRUE,
  obj = NULL,
  ...
)

Arguments

u1, u2  Data vectors of equal length with values in [0, 1] (default: u1 and u2 = NULL).
family  An integer defining the bivariate copula family or indicating the empirical lambda-function:
  "emp" = empirical lambda-function (default)
  1 = Gaussian copula; the theoretical lambda-function is simulated (no closed formula available)
  2 = Student-t copula; the theoretical lambda-function is simulated (no closed formula available)
  3 = Clayton copula
  4 = Gumbel copula
  5 = Frank copula
  6 = Joe copula
  7 = BB1 copula
  8 = BB6 copula
  9 = BB7 copula
  10 = BB8 copula
par  Copula parameter; if the empirical lambda-function is chosen, par = NULL or 0 (default).
par2  Second copula parameter for t-, BB1, BB6, BB7 and BB8 copulas (default: par2 = 0).
PLOT  Logical; whether the results are plotted. If PLOT = FALSE, the values empLambda and/or theoLambda are returned (see below; default: PLOT = TRUE).
obj  BiCop object containing the family and parameter specification.
...  Additional plot arguments.

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative versions

BiCopLambda(obj, PLOT = TRUE, ...)

and
BiCopLambda(u1, u2, obj, PLOT = TRUE, ...)

can be used.

Value

empLambda If the empirical lambda-function is chosen and PLOT = FALSE, a vector of the empirical lambda's is returned.

theoLambda If the theoretical lambda-function is chosen and PLOT = FALSE, a vector of the theoretical lambda's is returned.

Note

The $\lambda$-function is characteristic for each bivariate copula family and defined by Kendall’s distribution function $K$:

$$\lambda(v, \theta) := v - K(v, \theta)$$

with

$$K(v, \theta) := P(C_\theta(U_1, U_2) \leq v), \ v \in [0, 1].$$

For Archimedean copulas one has the following closed form expression in terms of the generator function $\varphi$ of the copula $C_\theta$:

$$\lambda(v, \theta) = \frac{\varphi(v)}{\varphi'(v)},$$

where $\varphi'$ is the derivative of $\varphi$. For more details see Genest and Rivest (1993) or Schepsmeier (2010).

For the bivariate Gaussian and Student-t copula no closed form expression for the theoretical $\lambda$-function exists. Therefore it is simulated based on samples of size 1000. For all other implemented copula families there are closed form expressions available.

The plot of the theoretical $\lambda$-function also shows the limits of the $\lambda$-function corresponding to Kendall’s tau $= 0$ and Kendall’s tau $= 1$ ($\lambda = 0$).

For rotated bivariate copulas one has to transform the input arguments $u1$ and/or $u2$. In particular, for copulas rotated by 90 degrees $u1$ has to be set to $1-u1$, for 270 degrees $u2$ to $1-u2$ and for survival copulas $u1$ and $u2$ to $1-u1$ and $1-u2$, respectively. Then $\lambda$-functions for the corresponding non-rotated copula families can be considered.

Author(s)

Ulf Schepsmeier

References


BiCopMetaContour

See Also

BiCopMetaContour(), BiCopKPlot(), BiCopChiPlot(), BiCop()

Examples

# simulate from Clayton copula
cop <- BiCop(3, tau = 0.5)
dat <- BiCopSim(1000, cop)

# create lambda-function plots
op <- par(mfrow = c(1, 3))
BiCopLambda(dat[, 1], dat[, 2]) # empirical lambda-function
BiCopLambda(cop) # theoretical lambda-function
BiCopLambda(dat[, 1], dat[, 2], cop) # both
par(op)

BiCopMetaContour

Contour Plot of Bivariate Meta Distribution

Description

Note: This function is deprecated and only available for backwards compatibility. See contour.BiCop() for contour plots of parametric copulas, and BiCopKDE() for kernel estimates.

Usage

BiCopMetaContour(
  u1 = NULL,
  u2 = NULL,
  bw = 1,
  size = 100,
  levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
  family = "emp",
  par = 0,
  par2 = 0,
  PLOT = TRUE,
  margins = "norm",
  margins.par = 0,
  xlim = NA,
  obj = NULL,
  ...
)
Arguments

**u1, u2**
Data vectors of equal length with values in \([0, 1]\) (default: \(u1\) and \(u2 = \text{NULL}\)).

**bw**
Bandwidth (smoothing factor; default: \(bw = 1\)).

**size**
Number of grid points; default: \(size = 100\).

**levels**
Vector of contour levels. For Gaussian, Student-t or exponential margins the default value (\(levels = c(0.01, 0.05, 0.1, 0.15, 0.2)\)) typically is a good choice. For uniform margins we recommend
\[levels = c(0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5)\]
and for Gamma margins
\[levels = c(0.005, 0.01, 0.03, 0.05, 0.07, 0.09)\].

**family**
An integer defining the bivariate copula family or indicating an empirical contour plot:

- "emp" = empirical contour plot (default; margins can be specified by margins)
- \(0\) = independence copula
- \(1\) = Gaussian copula
- \(2\) = Student t copula (t-copula)
- \(3\) = Clayton copula
- \(4\) = Gumbel copula
- \(5\) = Frank copula
- \(6\) = Joe copula
- \(7\) = BB1 copula
- \(8\) = BB6 copula
- \(9\) = BB7 copula
- \(10\) = BB8 copula
- \(13\) = rotated Clayton copula (180 degrees; "survival Clayton")
- \(14\) = rotated Gumbel copula (180 degrees; "survival Gumbel")
- \(16\) = rotated Joe copula (180 degrees; "survival Joe")
- \(17\) = rotated BB1 copula (180 degrees; "survival BB1")
- \(18\) = rotated BB6 copula (180 degrees; "survival BB6")
- \(19\) = rotated BB7 copula (180 degrees; "survival BB7")
- \(20\) = rotated BB8 copula (180 degrees; "survival BB8")
- \(23\) = rotated Clayton copula (90 degrees)
- \(24\) = rotated Gumbel copula (90 degrees)
- \(26\) = rotated Joe copula (90 degrees)
- \(27\) = rotated BB1 copula (90 degrees)
- \(28\) = rotated BB6 copula (90 degrees)
- \(29\) = rotated BB7 copula (90 degrees)
- \(30\) = rotated BB8 copula (90 degrees)
- \(33\) = rotated Clayton copula (270 degrees)
- \(34\) = rotated Gumbel copula (270 degrees)
- \(36\) = rotated Joe copula (270 degrees)
- \(37\) = rotated BB1 copula (270 degrees)
- \(38\) = rotated BB6 copula (270 degrees)
- \(39\) = rotated BB7 copula (270 degrees)
- \(40\) = rotated BB8 copula (270 degrees)
- \(104\) = Tawn type 1 copula
- \(114\) = rotated Tawn type 1 copula (180 degrees)
`'124'` = rotated Tawn type 1 copula (90 degrees)
`'134'` = rotated Tawn type 1 copula (270 degrees)
`'204'` = Tawn type 2 copula
`'214'` = rotated Tawn type 2 copula (180 degrees)
`'224'` = rotated Tawn type 2 copula (90 degrees)
`'234'` = rotated Tawn type 2 copula (270 degrees)

`par` Copula parameter; if empirical contour plot, `par = NULL` or `0` (default).

`par2` Second copula parameter for t-, BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas (default: `par2 = 0`).

`PLOT` Logical; whether the results are plotted. If `PLOT = FALSE`, the values `x`, `y` and `z` are returned (see below; default: `PLOT = TRUE`).

`margins` Character; margins for the bivariate copula contour plot. Possible margins are:
- "norm" = standard normal margins (default)
- "t" = Student t margins with degrees of freedom as specified by `margins.par`
- "gamma" = Gamma margins with shape and scale as specified by `margins.par`
- "exp" = Exponential margins with rate as specified by `margins.par`
- "unif" = uniform margins

`margins.par` Parameter(s) of the distribution of the margins if necessary (default: `margins.par = 0`), i.e.,
- a positive real number for the degrees of freedom of Student t margins (see `dt()`),
- a 2-dimensional vector of positive real numbers for the shape and scale parameters of Gamma margins (see `dgamma()`),
- a positive real number for the rate parameter of exponential margins (see `dexp()`).

`xylim` A 2-dimensional vector of the x- and y-limits. By default (`xylim = NA`) standard limits for the selected margins are used.

`obj` BiCop object containing the family and parameter specification.

... Additional plot arguments.

**Value**

- `x` A vector of length `size` with the x-values of the kernel density estimator with Gaussian kernel if the empirical contour plot is chosen and a sequence of values in `xylim` if the theoretical contour plot is chosen.

- `y` A vector of length `size` with the y-values of the kernel density estimator with Gaussian kernel if the empirical contour plot is chosen and a sequence of values in `xylim` if the theoretical contour plot is chosen.

- `z` A matrix of dimension `size` with the values of the density of the meta distribution with chosen margins (see `margins` and `margins.par`) evaluated at the grid points given by `x` and `y`.

**Note**
The combination `family = 0` (independence copula) and `margins = "unif"` (uniform margins) is not possible because all z-values are equal.
Author(s)
Ulf Schepsmeier, Alexander Bauer

See Also
BiCopChiPlot(), BiCopKPlot(), BiCopLambda()

Examples

## meta Clayton distribution with Gaussian margins
cop <- BiCop(family = 1, tau = 0.5)
BiCopMetaContour(obj = cop, main = "Clayton - normal margins")
# better:
contour(cop, main = "Clayton - normal margins")

## empirical contour plot with standard normal margins
dat <- BiCopSim(1000, cop)
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, family = "emp",
    main = "empirical - normal margins")
# better:
BiCopKDE(dat[, 1], dat[, 2],
    main = "empirical - normal margins")

## empirical contour plot with exponential margins
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2,
    main = "empirical - exponential margins",
    margins = "exp", margins.par = 1)
# better:
BiCopKDE(dat[, 1], dat[, 2],
    main = "empirical - exponential margins",
    margins = "exp")

---

BiCopName

### Bivariate Copula Family Names

**Description**

This function transforms the bivariate copula family number into its character expression and vice versa.

**Usage**

BiCopName(family, short = TRUE)

**Arguments**

- **family**
  
  Bivariate copula family, either its number or its character expression (see table below).
<table>
<thead>
<tr>
<th>No.</th>
<th>Short name</th>
<th>Long name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>&quot;I&quot;</td>
<td>&quot;Independence&quot;</td>
</tr>
<tr>
<td>1</td>
<td>&quot;N&quot;</td>
<td>&quot;Gaussian&quot;</td>
</tr>
<tr>
<td>2</td>
<td>&quot;t&quot;</td>
<td>&quot;t&quot;</td>
</tr>
<tr>
<td>3</td>
<td>&quot;C&quot;</td>
<td>&quot;Clayton&quot;</td>
</tr>
<tr>
<td>4</td>
<td>&quot;G&quot;</td>
<td>&quot;Gumbel&quot;</td>
</tr>
<tr>
<td>5</td>
<td>&quot;F&quot;</td>
<td>&quot;Frank&quot;</td>
</tr>
<tr>
<td>6</td>
<td>&quot;J&quot;</td>
<td>&quot;Joe&quot;</td>
</tr>
<tr>
<td>7</td>
<td>&quot;BB1&quot;</td>
<td>&quot;BB1&quot;</td>
</tr>
<tr>
<td>8</td>
<td>&quot;BB6&quot;</td>
<td>&quot;BB6&quot;</td>
</tr>
<tr>
<td>9</td>
<td>&quot;BB7&quot;</td>
<td>&quot;BB7&quot;</td>
</tr>
<tr>
<td>10</td>
<td>&quot;BB8&quot;</td>
<td>&quot;Frank-Joe&quot;</td>
</tr>
<tr>
<td>13</td>
<td>&quot;SC&quot;</td>
<td>&quot;Survival Clayton&quot;</td>
</tr>
<tr>
<td>14</td>
<td>&quot;SG&quot;</td>
<td>&quot;Survival Gumbel&quot;</td>
</tr>
<tr>
<td>16</td>
<td>&quot;SJ&quot;</td>
<td>&quot;Survival Joe&quot;</td>
</tr>
<tr>
<td>17</td>
<td>&quot;SBB1&quot;</td>
<td>&quot;Survival BB1&quot;</td>
</tr>
<tr>
<td>18</td>
<td>&quot;SBB6&quot;</td>
<td>&quot;Survival BB6&quot;</td>
</tr>
<tr>
<td>19</td>
<td>&quot;SBB7&quot;</td>
<td>&quot;Survival BB7&quot;</td>
</tr>
<tr>
<td>20</td>
<td>&quot;SBB8&quot;</td>
<td>&quot;Survival BB8&quot;</td>
</tr>
<tr>
<td>23</td>
<td>&quot;C90&quot;</td>
<td>&quot;Rotated Clayton 90 degrees&quot;</td>
</tr>
<tr>
<td>24</td>
<td>&quot;G90&quot;</td>
<td>&quot;Rotated Gumbel 90 degrees&quot;</td>
</tr>
<tr>
<td>26</td>
<td>&quot;J90&quot;</td>
<td>&quot;Rotated Joe 90 degrees&quot;</td>
</tr>
<tr>
<td>27</td>
<td>&quot;BB1_90&quot;</td>
<td>&quot;Rotated BB1 90 degrees&quot;</td>
</tr>
<tr>
<td>28</td>
<td>&quot;BB6_90&quot;</td>
<td>&quot;Rotated BB6 90 degrees&quot;</td>
</tr>
<tr>
<td>29</td>
<td>&quot;BB7_90&quot;</td>
<td>&quot;Rotated BB7 90 degrees&quot;</td>
</tr>
<tr>
<td>30</td>
<td>&quot;BB8_90&quot;</td>
<td>&quot;Rotated Frank-Joe 90 degrees&quot;</td>
</tr>
<tr>
<td>33</td>
<td>&quot;C270&quot;</td>
<td>&quot;Rotated Clayton 270 degrees&quot;</td>
</tr>
<tr>
<td>34</td>
<td>&quot;G270&quot;</td>
<td>&quot;Rotated Gumbel 270 degrees&quot;</td>
</tr>
<tr>
<td>36</td>
<td>&quot;J270&quot;</td>
<td>&quot;Rotated Joe 270 degrees&quot;</td>
</tr>
<tr>
<td>37</td>
<td>&quot;BB1_270&quot;</td>
<td>&quot;Rotated BB1 270 degrees&quot;</td>
</tr>
<tr>
<td>38</td>
<td>&quot;BB6_270&quot;</td>
<td>&quot;Rotated BB6 270 degrees&quot;</td>
</tr>
<tr>
<td>39</td>
<td>&quot;BB7_270&quot;</td>
<td>&quot;Rotated BB7 270 degrees&quot;</td>
</tr>
<tr>
<td>40</td>
<td>&quot;BB8_270&quot;</td>
<td>&quot;Rotated Frank-Joe 270 degrees&quot;</td>
</tr>
<tr>
<td>104</td>
<td>&quot;Tawn&quot;</td>
<td>&quot;Tawn type 1&quot;</td>
</tr>
<tr>
<td>114</td>
<td>&quot;Tawn180&quot;</td>
<td>&quot;Rotated Tawn type 1 180 degrees&quot;</td>
</tr>
<tr>
<td>124</td>
<td>&quot;Tawn90&quot;</td>
<td>&quot;Rotated Tawn type 1 90 degrees&quot;</td>
</tr>
<tr>
<td>134</td>
<td>&quot;Tawn270&quot;</td>
<td>&quot;Rotated Tawn type 1 270 degrees&quot;</td>
</tr>
<tr>
<td>204</td>
<td>&quot;Tawn2&quot;</td>
<td>&quot;Tawn type 2&quot;</td>
</tr>
<tr>
<td>214</td>
<td>&quot;Tawn2_180&quot;</td>
<td>&quot;Rotated Tawn type 2 180 degrees&quot;</td>
</tr>
<tr>
<td>224</td>
<td>&quot;Tawn2_90&quot;</td>
<td>&quot;Rotated Tawn type 2 90 degrees&quot;</td>
</tr>
<tr>
<td>234</td>
<td>&quot;Tawn2_270&quot;</td>
<td>&quot;Rotated Tawn type 2 270 degrees&quot;</td>
</tr>
</tbody>
</table>

**short** Logical; if the number of a bivariate copula family is used and `short = TRUE` (default), a short version of the corresponding character expression is returned, otherwise the long version.
**Value**

The transformed bivariate copula family (see table above).

**Author(s)**

Ulf Schepsmeier

**See Also**

`RVineTreePlot()`

**Examples**

```r
family number to character expression
family <- 1
BiCopName(family, short = TRUE) # short version
BiCopName(family, short = FALSE) # long version

family character expression (short version) to number
family <- "C"
BiCopName(family) # as number

family character expression (long version) to number
family <- "Clayton"
BiCopName(family) # as number

vectors of families
BiCopName(1:10) # as character expression
BiCopName(c("Clayton","t","J")) # as number
```

---

**BiCopPar2Beta**

*Blomqvist’s Beta Value of a Bivariate Copula*

**Description**

This function computes the theoretical Blomqvist’s beta value of a bivariate copula for given parameter values.

**Usage**

```r
BiCopPar2Beta(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
```
Arguments

family  integer; single number or vector of size \( n \); defines the bivariate copula family:
0 = independence copula
2 = Student t copula (t-copula)
1 = Gaussian copula
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
16 = rotated Joe copula (180 degrees; survival Joe")
18 = rotated BB6 copula (180 degrees; survival BB6")
20 = rotated BB8 copula (180 degrees; "survival BB8")
23 = rotated Clayton copula (90 degrees)
26 = rotated Gumbel copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
36 = rotated Gumbel copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)

Note that the Student’s t-copula is not allowed since the CDF of the t-copula is not implemented (see BiCopCDF()).

par  numeric; single number or vector of size \( n \); copula parameter.

par2  numeric; single number or vector of size \( n \); second parameter for the two parameter BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas (default: par2 =
obj BiCop object containing the family and parameter specification.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details
If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopPar2Beta(obj)

can be used.

Value
Theoretical value of Blomqvist’s beta corresponding to the bivariate copula family and parameter(s) par, par2.

Note
The number n can be chosen arbitrarily, but must agree across arguments.

Author(s)
Ulf Schepsmeier

References

Examples
```r
Example 1: Gaussian copula
BiCopPar2Beta(family = 1, par = 0.7)
BiCop(1, 0.7)$beta # alternative

Example 2: Clayton copula
BiCopPar2Beta(family = 3, par = 2)

Example 3: different copula families
BiCopPar2Beta(family = c(3,4,6), par = 2:4)
```
BiCopPar2TailDep

Tail Dependence Coefficients of a Bivariate Copula

Description

This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.

Usage

BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

family
  integer; single number or vector of size n; defines the bivariate copula family:
  0 = independence copula
  1 = Gaussian copula
  2 = Student t copula (t-copula)
  3 = Clayton copula
  4 = Gumbel copula
  5 = Frank copula
  6 = Joe copula
  7 = BB1 copula
  8 = BB6 copula
  9 = BB7 copula
  10 = BB8 copula
  13 = rotated Clayton copula (180 degrees; survival Clayton”)
  14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
  16 = rotated Joe copula (180 degrees; survival Joe”)
  17 = rotated BB1 copula (180 degrees; survival BB1”)
  18 = rotated BB6 copula (180 degrees; survival BB6”) 19 = rotated BB7 copula (180 degrees; survival BB7”)
  20 = rotated BB8 copula (180 degrees; “survival BB8”)
  23 = rotated Clayton copula (90 degrees)
  24 = rotated Gumbel copula (90 degrees)
  26 = rotated Joe copula (90 degrees)
  27 = rotated BB1 copula (90 degrees)
  28 = rotated BB6 copula (90 degrees)
  29 = rotated BB7 copula (90 degrees)
  30 = rotated BB8 copula (90 degrees)
  33 = rotated Clayton copula (270 degrees)
  34 = rotated Gumbel copula (270 degrees)
  36 = rotated Joe copula (270 degrees)
  37 = rotated BB1 copula (270 degrees)
  38 = rotated BB6 copula (270 degrees)
  39 = rotated BB7 copula (270 degrees)
  40 = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

`par` numeric; single number or vector of size \( n \); copula parameter.

`par2` numeric; single number or vector of size \( n \); second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: `par2 = 0`). `par2` should be an positive integer for the Student's t copula family = 2.

`obj` `BiCop` object containing the family and parameter specification.

`check.pars` logical; default is `TRUE`; if `FALSE`, checks for family/parameter-consistency are omitted (should only be used with care).

**Details**

If the family and parameter specification is stored in a `BiCop` object `obj`, the alternative version

\[
\text{BiCopPar2TailDep}(obj)
\]

can be used.

**Value**

- **lower** Lower tail dependence coefficient for the given bivariate copula family and parameter(s) `par, par2`:
  \[
  \lambda_L = \lim_{u \downarrow 0} \frac{C(u, u)}{u}
  \]

- **upper** Upper tail dependence coefficient for the given bivariate copula family and parameter(s) `par, par2`:
  \[
  \lambda_U = \lim_{u \uparrow 1} \frac{1 - 2u + C(u, u)}{1 - u}
  \]

Lower and upper tail dependence coefficients for bivariate copula families and parameters (\( \theta \) for one parameter families and the first parameter of the t-copula with \( \nu \) degrees of freedom, \( \theta \) and \( \delta \) for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.

<table>
<thead>
<tr>
<th>No.</th>
<th>Lower tail dependence</th>
<th>Upper tail dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>( 2t_{\nu+1} \left( -\sqrt{\nu + 1} \sqrt{\frac{1-\theta}{1+\theta}} \right) )</td>
<td>( 2t_{\nu+1} \left( -\sqrt{\nu + 1} \sqrt{\frac{1-\theta}{1+\theta}} \right) )</td>
</tr>
<tr>
<td>3</td>
<td>( 2^{-1/\theta} )</td>
<td>-</td>
</tr>
</tbody>
</table>
### BiCopPar2TailDep

<table>
<thead>
<tr>
<th>n</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$2 - 2^{1/\theta}$</td>
</tr>
<tr>
<td>5</td>
<td>$2 - 2^{1/\theta}$</td>
</tr>
<tr>
<td>6</td>
<td>$2 - 2^{1/(\theta \delta)}$</td>
</tr>
<tr>
<td>7</td>
<td>$2 - 2^{1/(\theta \delta)}$</td>
</tr>
<tr>
<td>8</td>
<td>$2 - 2^{1/(\theta \delta)}$</td>
</tr>
<tr>
<td>9</td>
<td>$2 - 1/\delta$</td>
</tr>
<tr>
<td>10</td>
<td>$2 - 2^{1/\theta}$ if $\delta = 1$ otherwise $0$</td>
</tr>
<tr>
<td>13</td>
<td>$2^{1/\theta}$</td>
</tr>
<tr>
<td>14</td>
<td>$2 - 2^{1/\theta}$</td>
</tr>
<tr>
<td>16</td>
<td>$2 - 2^{1/\theta}$</td>
</tr>
<tr>
<td>17</td>
<td>$2 - 2^{1/\delta}$</td>
</tr>
<tr>
<td>18</td>
<td>$2 - 2^{1/(\theta \delta)}$</td>
</tr>
<tr>
<td>19</td>
<td>$2 - 2^{1/\theta}$</td>
</tr>
<tr>
<td>20</td>
<td>$2 - 2^{1/\theta}$ if $\delta = 1$ otherwise $0$</td>
</tr>
<tr>
<td>23, 33</td>
<td>-</td>
</tr>
<tr>
<td>24, 34</td>
<td>-</td>
</tr>
<tr>
<td>26, 36</td>
<td>-</td>
</tr>
<tr>
<td>27, 37</td>
<td>-</td>
</tr>
<tr>
<td>28, 38</td>
<td>-</td>
</tr>
<tr>
<td>29, 39</td>
<td>-</td>
</tr>
<tr>
<td>30, 40</td>
<td>-</td>
</tr>
<tr>
<td>104, 204</td>
<td>$\delta + 1 - (\delta^{\theta} + 1)^{1/\theta}$</td>
</tr>
<tr>
<td>114, 214</td>
<td>$1 + \delta - (\delta^{\theta} + 1)^{1/\theta}$</td>
</tr>
<tr>
<td>124, 224</td>
<td>-</td>
</tr>
<tr>
<td>134, 234</td>
<td>-</td>
</tr>
</tbody>
</table>

**Note**

The number $n$ can be chosen arbitrarily, but must agree across arguments.

**Author(s)**

Eike Brechmann

**References**


**See Also**

`BiCopPar2TailDep()`

**Examples**

```r
Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep # alternative
```
### Example 2: Student-t copula

\[ \text{BiCopPar2TailDep}(2, c(0.6, 0.7, 0.8), 4) \]

### Example 3: different copula families

\[ \text{BiCopPar2TailDep}(c(3, 4, 6), 2) \]

---

#### BiCopPar2Tau

**Kendall’s Tau Value of a Bivariate Copula**

**Description**

This function computes the theoretical Kendall’s tau value of a bivariate copula for given parameter values.

**Usage**

\[ \text{BiCopPar2Tau}(\text{family}, \text{par}, \text{par2 = 0}, \text{obj = NULL}, \text{check.pars = TRUE}) \]

**Arguments**

- **family**: integer; single number or vector of size \( m \); defines the bivariate copula family:
  - 0 = independence copula
  - 1 = Gaussian copula
  - 2 = Student t copula (t-copula)
  - 3 = Clayton copula
  - 4 = Gumbel copula
  - 5 = Frank copula
  - 6 = Joe copula
  - 7 = BB1 copula
  - 8 = BB6 copula
  - 9 = BB7 copula
  - 10 = BB8 copula
  - 13 = rotated Clayton copula (180 degrees; survival Clayton’’)
  - 14 = rotated Gumbel copula (180 degrees; survival Gumbel’’)
  - 16 = rotated Joe copula (180 degrees; survival Joe’’)
  - 17 = rotated BB1 copula (180 degrees; survival BB1’’)
  - 18 = rotated BB6 copula (180 degrees; survival BB6’’)
  - 19 = rotated BB7 copula (180 degrees; survival BB7’’)
  - 20 = rotated BB8 copula (180 degrees; “survival BB8”)
  - 23 = rotated Clayton copula (90 degrees)
  - 24 = rotated Gumbel copula (90 degrees)
  - 26 = rotated Joe copula (90 degrees)
  - 27 = rotated BB1 copula (90 degrees)
  - 28 = rotated BB6 copula (90 degrees)
  - 29 = rotated BB7 copula (90 degrees)
  - 30 = rotated BB8 copula (90 degrees)
  - 33 = rotated Clayton copula (270 degrees)
‘34’ = rotated Gumbel copula (270 degrees)
‘36’ = rotated Joe copula (270 degrees)
‘37’ = rotated BB1 copula (270 degrees)
‘38’ = rotated BB6 copula (270 degrees)
‘39’ = rotated BB7 copula (270 degrees)
‘40’ = rotated BB8 copula (270 degrees)
‘104’ = Tawn type 1 copula
‘114’ = rotated Tawn type 1 copula (180 degrees)
‘124’ = rotated Tawn type 1 copula (90 degrees)
‘134’ = rotated Tawn type 1 copula (270 degrees)
‘204’ = Tawn type 2 copula
‘214’ = rotated Tawn type 2 copula (180 degrees)
‘224’ = rotated Tawn type 2 copula (90 degrees)
‘234’ = rotated Tawn type 2 copula (270 degrees)

par numeric; single number or vector of size n; copula parameter.

par2 numeric; single number or vector of size n; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). Note that the degrees of freedom parameter of the t-copula does not need to be set, because the theoretical Kendall’s tau value of the t-copula is independent of this choice.

obj BiCop object containing the family and parameter specification.

check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopPar2Tau(obj)

can be used.

Value

Theoretical value of Kendall’s tau (vector) corresponding to the bivariate copula family and parameter vector \((\theta, \delta) = (\text{par}, \text{par2})\).

<table>
<thead>
<tr>
<th>No. (family)</th>
<th>Kendall’s tau (tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>(\frac{2}{\pi} \arcsin(\theta))</td>
</tr>
<tr>
<td>3, 13</td>
<td>(\frac{1}{\xi \pi})</td>
</tr>
<tr>
<td>4, 14</td>
<td>(1 - \frac{1}{\delta} + 4 \frac{D_1(\theta)}{\theta})</td>
</tr>
<tr>
<td>5</td>
<td>(1 - \frac{1}{\delta} + 4 \int_0^\theta \frac{x}{\exp(x) - 1} dx) (Debye function)</td>
</tr>
<tr>
<td>6, 16</td>
<td>(1 + \frac{4}{\pi^2} \int_0^1 x \log(x)(1 - x)^{2(1 - \theta)/\theta} dx)</td>
</tr>
<tr>
<td>7, 17</td>
<td>(1 - \frac{1}{\theta \pi (\theta + 2)})</td>
</tr>
</tbody>
</table>
8, 18 & \quad 1 + 4 \int_0^1 \log(-(1-t)^\theta + 1)(1-t-(1-t)^{-\theta} + (1-t)^{-\delta})/(\delta\theta)dt \\ 9, 19 & \quad 1 + 4 \int_0^1 ((1-(1-t)^{\theta-\delta})/(\theta\delta(1-t)^{-\theta} - 1)) \\ 10, 20 & \quad 1 + 4 \int_0^1 \log(((1-t)^\theta - 1)/((1-\delta)^\theta - 1)) \\ 23, 33 & \quad \frac{2}{\theta^\theta} \\ 24, 34 & \quad -1 - \frac{1}{\theta} \\ 26, 36 & \quad -1 - \frac{3}{2} \int_0^1 x \log(x)(1-x)^{2(1+\theta)/\theta}dx \\ 27, 37 & \quad -1 - \frac{3}{2(2-\theta)} \\ 28, 38 & \quad -1 - 4 \int_0^1 \log((-1-t)^{-\theta} + 1)(1-t-(1-t)^{\theta})/(\delta\theta)dt \\ 29, 39 & \quad -1 - 4 \int_0^1 ((1-(1-t)^{\theta-\delta})/(\theta\delta(1-t)^{-\theta} - 1)) \\ 30, 40 & \quad -1 - 4 \int_0^1 \log(((1+t\delta)^{-\theta} - 1)/((1+\delta)^{-\theta} - 1)) \\ 104,114 & \quad \int_0^1 \frac{t(1-\delta)A''(t)}{A(t)} dt \\ 204,214 & \quad \int_0^1 \frac{t(1-\delta)A''(t)}{A(t)} dt \\ 124,134 & \quad - \int_0^1 \frac{t(1-\delta)A'(t)}{A(t)} dt \\ 224,234 & \quad - \int_0^1 \frac{t(1-\delta)A'(t)}{A(t)} dt \\

Note

The number \( n \) can be chosen arbitrarily, but must agree across arguments.

Author(s)

Ulf Schepsmeier, Tobias Erhardt

References


See Also

BiCopTau2Par(), BiCop()

Examples

## Example 1: Gaussian copula

tau0 <- 0.5

ho <- BiCopTau2Par(family = 1, tau = tau0)

# transform back
tau <- BiCopPar2Tau(family = 1, par = rho)
tau - 2/pi*asin(rho)

## Example 2:
vpar <- seq(from = 1.1, to = 10, length.out = 100)
tauC <- BiCopPar2Tau(family = 3, par = vpar)
tauG <- BiCopPar2Tau(family = 4, par = vpar)
tauJ <- BiCopPar2Tau(family = 5, par = vpar)
tauF <- BiCopPar2Tau(family = 6, par = vpar)
plot(tauC ~ vpar, type = "l", ylim = c(0,1))
lines(tauG ~ vpar, col = 2)
lines(tauF ~ vpar, col = 3)
lines(tauJ ~ vpar, col = 4)

## Example 3: different copula families
theta <- BiCopTau2Par(family = c(3,4,6), tau = c(0.4, 0.5, 0.6))
BiCopPar2Tau(family = c(3,4,6), par = theta)

---

**BiCopPDF**  

*Density of a Bivariate Copula*

**Description**

This function evaluates the probability density function (PDF) of a given parametric bivariate copula.

**Usage**

BiCopPDF(u1, u2, family, par, par2 = 0, obj = NULL, check.pars = TRUE)

**Arguments**

- *u1, u2* numeric vectors of equal length with values in \([0,1]\).
- *family* integer; single number or vector of size length(u1); defines the bivariate copula family:
  - 0 = independence copula
  - 1 = Gaussian copula
  - 2 = Student t copula (t-copula)
  - 3 = Clayton copula
  - 4 = Gumbel copula
  - 5 = Frank copula
  - 6 = Joe copula
  - 7 = BB1 copula
  - 8 = BB6 copula
  - 9 = BB7 copula
  - 10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
16 = rotated Joe copula (180 degrees; survival Joe")
18 = rotated BB6 copula (180 degrees; survival BB6")
20 = rotated BB8 copula (180 degrees; "survival BB8")
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par numeric; single number or vector of size length(u1); copula parameter.
par2 numeric; single number or vector of size length(u1); second parameter for
bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type
1 and type 2; default: par2 = 0). par2 should be an positive integer for the
Students's t copula family = 2.
obj BiCop object containing the family and parameter specification.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are
omitted (should only be used with care).

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopPDF(u1, u2, obj)

can be used.
Value

A numeric vector of the bivariate copula density

- of the copula family
- with parameter(s) \( \text{par}, \text{par2} \)
- evaluated at \( u1 \) and \( u2 \).

Author(s)

Eike Brechmann

See Also

BiCopCDF(), BiCopHfunc(), BiCopSim(), BiCop()

Examples

```r
simulate from a bivariate Student-t copula
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)

evaluate the density of the bivariate t-copula
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopPDF(u1, u2, cop)

select a bivariate copula for the simulated data
fit <- BiCopSelect(u1, u2)
summary(fit)
and evaluate its PDF
round(BiCopPDF(u1, u2, fit), 3)
```

Description

This function selects an appropriate bivariate copula family for given bivariate copula data using one of a range of methods. The corresponding parameter estimates are obtained by maximum likelihood estimation.
BiCopSelect

Usage

BiCopSelect(
  u1,
  u2,
  familyset = NA,
  selectioncrit = "AIC",
  indeptest = FALSE,
  level = 0.05,
  weights = NA,
  rotations = TRUE,
  se = FALSE,
  presel = TRUE,
  method = "mle"
)

Arguments

u1, u2 Data vectors of equal length with values in [0, 1].

familyset Vector of bivariate copula families to select from. The vector has to include at least one bivariate copula family that allows for positive and one that allows for negative dependence. If familyset = NA (default), selection among all possible families is performed. If a vector of negative numbers is provided, selection among all but abs(familyset) families is performed. Coding of bivariate copula families:

0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; survival Joe")
17 = rotated BB1 copula (180 degrees; survival BB1")
18 = rotated BB6 copula (180 degrees; survival BB6")
19 = rotated BB7 copula (180 degrees; survival BB7")
20 = rotated BB8 copula (180 degrees; "survival BB8")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

selectioncrit Character indicating the criterion for bivariate copula selection. Possible choices: selectioncrit = "AIC" (default), "BIC", or "logLik".

indeptest Logical; whether a hypothesis test for the independence of \(u_1\) and \(u_2\) is performed before bivariate copula selection (default: indeptest = FALSE; see BiCopIndTest()). The independence copula is chosen if the null hypothesis of independence cannot be rejected.

level Numeric; significance level of the independence test (default: level = 0.05).

weights Numerical; weights for each observation (optional).

rotations If TRUE, all rotations of the families in familyset are included (or subtracted).

se Logical; whether standard error(s) of parameter estimates is/are estimated (default: se = FALSE).

presel Logical; whether to exclude families before fitting based on symmetry properties of the data. Makes the selection about 30% faster (on average), but may yield slightly worse results in few special cases.

method indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34 or 36). For the t-copula, \(\tau_2\) is found by a crude profile likelihood optimization over the interval (2, 10).

Details

Copulas can be selected according to the Akaike and Bayesian Information Criteria (AIC and BIC, respectively). First all available copulas are fitted using maximum likelihood estimation. Then the criteria are computed for all available copula families (e.g., if \(u_1\) and \(u_2\) are negatively dependent, Clayton, Gumbel, Joe, BB1, BB6, BB7 and BB8 and their survival copulas are not considered) and the family with the minimum value is chosen. For observations \(u_{i,j}, i = 1, ..., N, j = 1, 2, \) the
AIC of a bivariate copula family $c$ with parameter(s) $\theta$ is defined as

$$AIC := -2 \sum_{i=1}^{N} \ln[c(u_{i,1}, u_{i,2} | \theta)] + 2k,$$

where $k = 1$ for one parameter copulas and $k = 2$ for the two parameter t-, BB1, BB6, BB7 and BB8 copulas. Similarly, the BIC is given by

$$BIC := -2 \sum_{i=1}^{N} \ln[c(u_{i,1}, u_{i,2} | \theta)] + \ln(N)k.$$

Evidently, if the BIC is chosen, the penalty for two parameter families is stronger than when using the AIC.

Additionally a test for independence can be performed beforehand.

**Value**

An object of class `BiCop()`, augmented with the following entries:

- `se`, `se2` standard errors for the parameter estimates (if `se = TRUE`),
- `nobs` number of observations,
- `logLik` log likelihood
- `AIC` Aikaike’s Information Criterion,
- `BIC` Bayesian’s Information Criterion,
- `emptau` empirical value of Kendall’s tau,
- `p.value.indep.test` p-value of the independence test.

**Note**

For a comprehensive summary of the fitted model, use `summary(object)`; to see all its contents, use `str(object)`.

The parameters of the Student t and BB copulas are restricted (see defaults in `BiCopEst()` to avoid being too close to their limiting cases.

**Author(s)**

Eike Brechmann, Jeffrey Dissmann, Thomas Nagler

**References**


[https://mediatum.ub.tum.de/?id=1079285](https://mediatum.ub.tum.de/?id=1079285).
BiCopSim

Simulation from a Bivariate Copula

Description

This function simulates from a given parametric bivariate copula.

Usage

BiCopSim(N, family, par, par2 = 0, obj = NULL, check.pars = TRUE)
Arguments

- **N**
  Number of bivariate observations simulated.

- **family**
  integer; single number or vector of size N; defines the bivariate copula family:
  0 = independence copula
  1 = Gaussian copula
  2 = Student t copula (t-copula)
  3 = Clayton copula
  4 = Gumbel copula
  5 = Frank copula
  6 = Joe copula
  7 = BB1 copula
  8 = BB6 copula
  9 = BB7 copula
  10 = BB8 copula
  11 = rotated Clayton copula (180 degrees; survival Clayton")
  12 = rotated Gumbel copula (180 degrees; survival Gumbel")
  13 = rotated Joe copula (180 degrees; survival Joe")
  14 = rotated BB1 copula (180 degrees; survival BB1")
  15 = rotated BB6 copula (180 degrees; survival BB6")
  16 = rotated BB7 copula (180 degrees; survival BB7")
  17 = rotated BB8 copula (180 degrees; survival BB8")
  18 = rotated BB1 copula (90 degrees)
  19 = rotated BB6 copula (90 degrees)
  20 = rotated BB7 copula (90 degrees)
  21 = rotated BB8 copula (90 degrees)
  22 = rotated Clayton copula (270 degrees)
  23 = rotated Gumbel copula (270 degrees)
  24 = rotated Joe copula (270 degrees)
  25 = rotated BB1 copula (270 degrees)
  26 = rotated BB6 copula (270 degrees)
  27 = rotated BB7 copula (270 degrees)
  28 = rotated BB8 copula (270 degrees)
  29 = Tawn type 1 copula
  30 = rotated Tawn type 1 copula (180 degrees)
  31 = rotated Tawn type 1 copula (90 degrees)
  32 = rotated Tawn type 1 copula (270 degrees)
  33 = Tawn type 2 copula
  34 = rotated Tawn type 2 copula (180 degrees)
  35 = rotated Tawn type 2 copula (90 degrees)
  36 = rotated Tawn type 2 copula (270 degrees)

- **par**
  numeric; single number or vector of size N; copula parameter.

- **par2**
  numeric; single number or vector of size N; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2;
BiCopTau2Par

Parameter of a Bivariate Copula for a given Kendall's Tau Value

This function computes the parameter of a (one parameter) bivariate copula for a given value of Kendall's tau.

Usage

BiCopTau2Par(family, tau, check.taus = TRUE)

Details

If the family and parameter specification is stored in a BiCop() object obj, the alternative version

BiCopSim(N, obj)

can be used.
Arguments

family integer; single number or vector of size \( n \); defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (Here only the first parameter can be computed)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; survival Clayton‘)
14 = rotated Gumbel copula (180 degrees; survival Gumbel“)
16 = rotated Joe copula (180 degrees; “survival Joe“)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
Note that (with exception of the t-copula) two parameter bivariate copula families cannot be used.

tau numeric; single number or vector of size \( n \); Kendall’s tau value (vector with elements in \([-1,1]\)).

check.taus logical; default is TRUE; if FALSE, checks for family/tau-consistency are omitted (should only be used with care).

Value

Parameter (vector) corresponding to the bivariate copula family and the value(s) of Kendall’s tau (\( \tau \)).

<table>
<thead>
<tr>
<th>No. (family)</th>
<th>Parameter (par)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>( \sin(\tau \frac{\pi}{2}) )</td>
<td>( \tau )</td>
</tr>
<tr>
<td>3, 13</td>
<td>( 2 \frac{\tau}{1 - \tau} )</td>
<td>( \tau )</td>
</tr>
<tr>
<td>4, 14</td>
<td>( \frac{1}{1 - \tau} )</td>
<td>no closed form expression (numerical inversion)</td>
</tr>
<tr>
<td>5</td>
<td>no closed form expression (numerical inversion)</td>
<td></td>
</tr>
<tr>
<td>6, 16</td>
<td>no closed form expression (numerical inversion)</td>
<td></td>
</tr>
<tr>
<td>23, 33</td>
<td>( 2 \frac{\tau}{1 + \tau} )</td>
<td>( \tau )</td>
</tr>
<tr>
<td>24, 34</td>
<td>( - \frac{\tau}{1 + \tau} )</td>
<td>( \tau )</td>
</tr>
<tr>
<td>26, 36</td>
<td>no closed form expression (numerical inversion)</td>
<td></td>
</tr>
</tbody>
</table>

Note

The number \( n \) can be chosen arbitrarily, but must agree across arguments.

Author(s)

Jakob Stoeber, Eike Brechmann, Tobias Erhardt
References


See Also

BiCopPar2Tau()

Examples

## Example 1: Gaussian copula
tau0 <- 0.5
rho <- BiCopTau2Par(family = 1, tau = tau0)
BiCop(1, tau = tau0)$par  # alternative

## Example 2:
vtau <- seq(from = 0.1, to = 0.8, length.out = 100)
thetaC <- BiCopTau2Par(family = 3, tau = vtau)
thetaG <- BiCopTau2Par(family = 4, tau = vtau)
thetaF <- BiCopTau2Par(family = 5, tau = vtau)
thetaJ <- BiCopTau2Par(family = 6, tau = vtau)
plot(thetaC ~ vtau, type = "l", ylim = range(thetaF))
lines(thetaG ~ vtau, col = 2)
lines(thetaF ~ vtau, col = 3)
lines(thetaJ ~ vtau, col = 4)

## Example 3: different copula families
theta <- BiCopTau2Par(family = c(3,4,6), tau = c(0.4, 0.5, 0.6))
BiCopPar2Tau(family = c(3,4,6), par = theta)

BiCopVuongClarke

Scoring Goodness-of-Fit Test based on Vuong And Clarke Tests for Bivariate Copula Data

Description

Based on the Vuong and Clarke tests this function computes a goodness-of-fit score for each bivariate copula family under consideration. For each possible pair of copula families the Vuong and the Clarke tests decides which of the two families fits the given data best and assigns a score—pro or contra a copula family—according to this decision.
BiCopVuongClarke

Usage

```r
BiCopVuongClarke(
 u1,
 u2,
 familyset = NA,
 correction = FALSE,
 level = 0.05,
 rotations = TRUE
)
```

Arguments

- **u1, u2**
  Data vectors of equal length with values in $[0, 1]$.

- **familyset**
  An integer vector of bivariate copula families under consideration, i.e., which are compared in the goodness-of-fit test. If `familyset = NA` (default), all possible families are compared. Possible families are:
  - 0 = independence copula
  - 1 = Gaussian copula
  - 2 = Student t copula (t-copula)
  - 3 = Clayton copula
  - 4 = Gumbel copula
  - 5 = Frank copula
  - 6 = Joe copula
  - 7 = BB1 copula
  - 8 = BB6 copula
  - 9 = BB7 copula
  - 10 = BB8 copula
  - 13 = rotated Clayton copula (180 degrees; survival Clayton")
  - 14 = rotated Gumbel copula (180 degrees; survival Gumbel")
  - 16 = rotated Joe copula (180 degrees; survival Joe")
  - 17 = rotated BB1 copula (180 degrees; survival BB1")
  - 18 = rotated BB6 copula (180 degrees; survival BB6")
  - 19 = rotated BB7 copula (180 degrees; survival BB7")
  - 20 = rotated BB8 copula (180 degrees; "survival BB8")
  - 23 = rotated Clayton copula (90 degrees)
  - '24' = rotated Gumbel copula (90 degrees)
  - '26' = rotated Joe copula (90 degrees)
  - '27' = rotated BB1 copula (90 degrees)
  - '28' = rotated BB6 copula (90 degrees)
  - '29' = rotated BB7 copula (90 degrees)
  - '30' = rotated BB8 copula (90 degrees)
  - '33' = rotated Clayton copula (270 degrees)
  - '34' = rotated Gumbel copula (270 degrees)
  - '36' = rotated Joe copula (270 degrees)
  - '37' = rotated BB1 copula (270 degrees)
  - '38' = rotated BB6 copula (270 degrees)
  - '39' = rotated BB7 copula (270 degrees)
  - '40' = rotated BB8 copula (270 degrees)
‘104’ = Tawn type 1 copula
‘114’ = rotated Tawn type 1 copula (180 degrees)
‘124’ = rotated Tawn type 1 copula (90 degrees)
‘134’ = rotated Tawn type 1 copula (270 degrees)
‘204’ = Tawn type 2 copula
‘214’ = rotated Tawn type 2 copula (180 degrees)
‘224’ = rotated Tawn type 2 copula (90 degrees)
‘234’ = rotated Tawn type 2 copula (270 degrees)

correction	Correction for the number of parameters. Possible choices: correction = FALSE (no correction; default), "Akaike" and "Schwarz".
level	Numerical; significance level of the tests (default: level = 0.05).
rotations	If TRUE, all rotations of the families in familyset are included (or subtracted).

Details

The Vuong as well as the Clarke test compare two models against each other and based on their null hypothesis, allow for a statistically significant decision among the two models (see the documents of RVineVuongTest() and RVineClarkeTest() for descriptions of the two tests). In the goodness-of-fit test proposed by Belgorodski (2010) this is used for bivariate copula selection. It compares a model 0 to all other possible models under consideration. If model 0 is favored over another model, a score of "+1" is assigned and similarly a score of "-1" if the other model is determined to be superior. No score is assigned, if the respective test cannot discriminate between two models. Both tests can be corrected for the numbers of parameters used in the copulas. Either no correction (correction = FALSE), the Akaike correction (correction = "Akaike") or the parsimonious Schwarz correction (correction = "Schwarz") can be used.

The models compared here are bivariate parametric copulas and we would like to determine which family fits the data better than the other families. E.g., if we would like to test the hypothesis that the bivariate Gaussian copula fits the data best, then we compare the Gaussian copula against all other copulas under consideration. In doing so, we investigate the null hypothesis "The Gaussian copula fits the data better than all other copulas under consideration", which corresponds to $k - 1$ times the hypothesis "The Gaussian copula $C_j$ fits the data better than copula $C_i$" for all $i = 1, ..., k, i \neq j$, where $k$ is the number of bivariate copula families under consideration (length of familyset). This procedure is done not only for one family but for all families under consideration, i.e., two scores, one based on the Vuong and one based on the Clarke test, are returned for each bivariate copula family. If used as a goodness-of-fit procedure, the family with the highest score should be selected.

For more and detailed information about the goodness-of-fit test see Belgorodski (2010).

Value

A matrix with Vuong test scores in the first and Clarke test scores in the second row. Column names correspond to bivariate copula families (see above).

Author(s)

Ulf Schepsmeier, Eike Brechmann, Natalia Belgorodski
References

Belgorodski, N. (2010) Selecting pair-copula families for regular vines with application to the
multivariate analysis of European stock market indices Diploma thesis, Technische Universitaet

Analysis, 15, 347-363.

(2), 307-333.

See Also

BiCopGofTest(), RVineVuongTest(), RVineClarkeTest(), BiCopSelect()

Examples

# simulate from a t-copula
dat <- BiCopSim(500, 2, 0.7, 5)

# apply the test for families 1-6
BiCopVuongClarke(dat[,1], dat[,2], familyset = 1:6)

C2RVine

Transform C-Vine to R-Vine Structure

Description

This function transforms a C-vine structure from the package CDVine to the corresponding R-vine
structure.

Usage

C2RVine(order, family, par, par2 = rep(0, length(family)))

Arguments

order A d-dimensional vector specifying the order of the root nodes in the C-vine.
family A d*(d-1)/2 vector of pair-copula families with values
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; survival Joe")
17 = rotated BB1 copula (180 degrees; survival BB1")
18 = rotated BB6 copula (180 degrees; survival BB6")
19 = rotated BB7 copula (180 degrees; survival BB7")
20 = rotated BB8 copula (180 degrees; "survival BB8")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)

par A d*(d-1)/2 vector of pair-copula parameters.

par2 A d*(d-1)/2 vector of second pair-copula parameters (optional; default: par2 = rep(0, length(family)), necessary for the t-, BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas.

Value

An RVineMatrix() object.

Author(s)

Ulf Schepsmeier, Eike Brechmann
See Also

RVineMatrix(), D2RVine()

Examples

# set up C-vine copula model with mixed pair-copulas
d <- 4
dd <- d*(d-1)/2
order <- 1:d
family <- c(1, 2, 3, 4, 7, 3)
par <- c(0.5, 0.4, 2, 1.5, 1.2, 1.5)
par2 <- c(0, 5, 0, 0, 2, 0)

# transform to R-vine matrix notation
RVM <- C2RVine(order, family, par, par2)

# load package CDVine for comparison
library(CDVine)

# simulate a sample of size 500 from a 4-dimensional D-vine
type <- 1  # C-vine
simdata <- CDVineSim(500, family, par, par2, type)

# determine log-likelihood
out <- CDVineLogLik(simdata, family, par, par2, type)
out$loglik

# check that log-likelihood stays the same
out2 <- RVineLogLik(simdata, RVM)
out2$loglik

contour.RVineMatrix  Plotting RVineMatrix objects.

Description

There are two plotting generics for RVineMatrix objects. plot.RVineMatrix plots one or all trees of a given R-vine copula model. Edges can be labeled with information about the corresponding pair-copula. contour.RVineMatrix produces a matrix of contour plots (using plot.BiCop()).

Usage

## S3 method for class 'RVineMatrix'
contour(x, tree = "ALL", xlim = NULL, cex.nums = 1, data = NULL, ...)

## S3 method for class 'RVineMatrix'
plot(
  x,
tree = "ALL",
type = 0,
edge.labels = NULL,
legend.pos = "bottomleft",
interactive = FALSE,
...)

Arguments

x RVineMatrix object.
tree "ALL" or integer vector; specifies which trees are plotted.
xylim numeric vector of length 2; sets xlim and ylim for the contours
cex.nums numeric; expansion factor for font of the numbers.
data a data matrix for creating kernel density contours of each pair.
... Arguments passed to network::plot.network() or plot.BiCop() respectively.
type integer; specifies how to make use of variable names:
  0 = variable names are ignored,
  1 = variable names are used to annotate vertices,
  2 = uses numbers in plot and adds a legend for variable names.
edge.labels character; either a vector of edge labels or one of the following:
  "family" = pair-copula family abbreviation (see BiCopName()),
  "par" = pair-copula parameters,
  "tau" = pair-copula Kendall's tau (by conversion of parameters)
  "family-par" = pair-copula family and parameters
  "family-tau" = pair-copula family and Kendall's tau.
legend.pos the x argument for graphics::legend().
interactive logical; if TRUE, the user is asked to adjust the positioning of vertices with his mouse.

Details

If you want the contour boxes to be perfect squares, the plot height should be 1.25/length(tree)*(d - min(tree)) times the plot width.

Author(s)

Thomas Nagler, Nicole Barthel

See Also

RVineMatrix(), network::plot.network(), plot.BiCop(), BiCopName(), graphics::legend()
Examples

```r
build vine model
strucmat <- matrix(c(3, 1, 2, 0, 2, 1, 0, 0, 1), 3, 3)
fammat <- matrix(c(0, 1, 6, 0, 0, 3, 0, 0, 0), 3, 3)
parmat <- matrix(c(0, 0.3, 3, 0, 0, 1, 0, 0, 0), 3, 3)
par2mat <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0), 3, 3)
RVM <- RVineMatrix(strucmat, fammat, parmat, par2mat)

plot trees
Not run: plot(RVM)

show contour plots
contour(RVM)
```

---

D2RVine

**Transform D-Vine to R-Vine Structure**

### Description

This function transforms a D-vine structure from the package CDVine to the corresponding R-vine structure.

### Usage

```r
D2RVine(order, family, par, par2 = rep(0, length(family)))
```

### Arguments

- `order`: A d-dimensional vector specifying the order of the nodes in the D-vine.
- `family`: A d*(d-1)/2 vector of pair-copula families with values
  - 0 = independence copula
  - 1 = Gaussian copula
  - 2 = Student t copula (t-copula)
  - 3 = Clayton copula
  - 4 = Gumbel copula
  - 5 = Frank copula
  - 6 = Joe copula
  - 7 = BB1 copula
  - 8 = BB6 copula
  - 9 = BB7 copula
  - 10 = BB8 copula
  - 13 = rotated Clayton copula (180 degrees; survival Clayton’’)
  - 14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
  - 16 = rotated Joe copula (180 degrees; survival Joe”)
  - 17 = rotated BB1 copula (180 degrees; survival BB1)”
18 = rotated BB6 copula (180 degrees; survival BB6"")
19 = rotated BB7 copula (180 degrees; survival BB7")
20 = rotated BB8 copula (180 degrees; "survival BB8")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
114 = rotated Tawn type 1 copula (180 degrees)
124 = rotated Tawn type 1 copula (90 degrees)
134 = rotated Tawn type 1 copula (270 degrees)
204 = Tawn type 2 copula
214 = rotated Tawn type 2 copula (180 degrees)
224 = rotated Tawn type 2 copula (90 degrees)
234 = rotated Tawn type 2 copula (270 degrees)

par
A d*(d-1)/2 vector of pair-copula parameters.
par2
A d*(d-1)/2 vector of second pair-copula parameters (optional; default: par2 = rep(0, length(family)), necessary for the t-, BB1, BB6, BB7, BB8, Tawn type 1 and type 2 copulas.

Value
An RVineMatrix() object.

Author(s)
Ulf Schepsmeier

See Also
RVineMatrix(), C2RVine()

Examples
# set up D-vine copula model with mixed pair-copulas
d <- 4
dd <- d*(d-1)/2
order <- 1:d
daxreturns <- as.data.frame(read.table("daxreturns.csv"))
family <- c(1, 2, 3, 4, 7, 3)
par <- c(0.5, 0.4, 2, 1.5, 1.2, 1.5)
par2 <- c(0, 5, 0, 0, 2, 0)

# transform to R-vine matrix notation
RVM <- D2RVine(order, family, par, par2)

# load package CDVine for comparison
library(CDVine)

# simulate a sample of size 500 from a 4-dimensional D-vine
# type <- 2  # D-vine
simdata <- CDVineSim(500, family, par, par2, type)

# determine log-likelihood
out <- CDVineLogLik(simdata, family, par, par2, type)
out$loglik

# check that log-likelihood stays the same
out2 <- RVineLogLik(simdata, RVM)
out2$loglik

---

**daxreturns**  *Major German Stocks*

**Description**

This data set contains transformed standardized residuals of daily log returns of 15 major German stocks represented in the index DAX observed from January 2005 to August 2009. Each time series is filtered using a GARCH(1,1) model with Student t innovations.

**Format**

A data frame with 1158 observations on 15 variables. Column names correspond to ticker symbols of the stocks.

**Source**

Yahoo! Finance

**See Also**

RVineStructureSelect()
Examples

```r
load the data set
data(daxreturns)

compute the empirical Kendall's tau matrix
TauMatrix(daxreturns)
```

Description

This function provides pair plots for copula data. Using default setting it plots bivariate contour plots on the lower panel, scatter plots and correlations on the upper panel and histograms on the diagonal panel.

Usage

```r
S3 method for class 'copuladata'
pairs(
x, labels = names(x), ...
lower.panel = lp.copuladata,
upper.panel = up.copuladata,
diag.panel = dp.copuladata,
label.pos = 0.85,
cex.labels = 1,
gap = 0,
method = "kendall",
ccols = terrain.colors(11),
margins = "norm"
)
```

Arguments

- `x` copuladata object.
- `labels` variable names/labels.
- `...` other graphical parameters (see `graphics::par()`) or options passed to `BiCopKDE()`.
- `lower.panel` panel function to be used on the lower diagonal panels (if not supplied, a default function is used)
- `upper.panel` panel function to be used on the upper diagonal panels (if not supplied, a default function is used)
- **diag.panel**: panel function to be used on the diagonal panels (if not supplied, a default function is used).
- **label.pos**: y position of labels in the diagonal panel; default: label.pos = 0.85.
- **cex.labels**: magnification to be used for the labels of the diagonal panel; default: cex.labels = 1.
- **gap**: distance between subplots, in margin lines; default: gap = 0.
- **method**: a character string indicating which correlation coefficients are computed. One of "pearson", "kendall" (default), or "spearman".
- **ccols**: color to be used for the contour plots; default: ccols = terrain.colors(30).
- **margins**: character; margins for the contour plots. Options are: "unif" for the original copula density, "norm" for the transformed density with standard normal margins, "exp" with standard exponential margins, and "flexp" with flipped exponential margins.

---

**Note**

If the default panel functions are used

- `col` changes only the color of the points in the scatter plot (`upper.panel`)
- `cex` changes only the magnification of the points in the scatter plot (`upper.panel`)

**Author(s)**

Tobias Erhardt

**See Also**

`graphics::pairs()`, `as.copuladata()`, `BiCopKDE()`

**Examples**

```r
data(daxreturns)
data <- as.copuladata(daxreturns)
set <- c(4,5,14,15)

pairs plot with default settings
pairs(data[set])

pairs plot with custom settings
nlevels <- 20
pairs(data[set], cex = 2, pch = 1, col = "black",
 diag.panel = NULL, label.pos = 0.5,
 cex.labels = 2.5, gap = 1,
 method = "pearson", ccols = heat.colors(nlevels),
 margins = "flexp")
```
pairs plot with own panel functions
up <- function(x, y) {
  # upper panel: empirical contour plot
  op <- par(usr = c(-3, 3, -3, 3), new = TRUE)
  BiCopKDE(x, y,
           levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
           margins = "exp",
           axes = FALSE)
  on.exit(par(op))
}

lp <- function(x, y) {
  # lower panel: scatter plot (copula data) and correlation
  op <- par(usr = c(0, 1, 0, 1), new = TRUE)
  points(x, y, pch = 1, col = "black")
  r <- cor(x, y, method = "spearman") # Spearman's rho
  txt <- format(x = r, digits = 3, nsmall = 3)[1]
  text(x = 0.5, y = 0.5, labels = txt, cex = 1 + abs(r) * 2, col = "blue")
  on.exit(par(op))
}

dp <- function(x) {
  # diagonal panel: histograms (copula data)
  op <- par(usr = c(0, 1, 0, 1.5), new = TRUE)
  hist(x, freq = FALSE, add = TRUE, col = "brown", border = "black", main = ")
  abline(h = 1, col = "black", lty = 2)
  on.exit(par(op))
}

nlevels <- 20
pairs(data[sel],
      lower.panel = lp, upper.panel = up, diag.panel = dp, gap = 0.5)

Description

There are several options for plotting BiCop objects. The density of a bivariate copula density can be visualized as surface/perspective or contour plot. Optionally, the density can be coupled with standard normal margins (default for contour plots). Furthermore, a lambda-plot is available (cf., `BiCopLambda()`).

Usage

```r
S3 method for class 'BiCop'
plot(x, type = "surface", margins, size, ...)
```
## S3 method for class 'BiCop'
contour(x, margins = "norm", size = 100L, ...)

### Arguments

- **x**: BiCop object.
- **type**: plot type; either "surface", "contour", or "lambda" (partial matching is activated); the latter is only implemented for a few families (c.f., `BiCopLambda()`).
- **margins**: only relevant for types "contour" and "surface"; options are: "unif" for the original copula density, "norm" for the transformed density with standard normal margins, "exp" with standard exponential margins, and "flexp" with flipped exponential margins. Default is "norm" for type = "contour", and "unif" for type = "surface".
- **size**: integer; only relevant for types "contour" and "surface"; the plot is based on values on a size x size grid; default is 100 for type = "contour", and 25 for type = "surface".
- **...**: optional arguments passed to `contour()` or `wireframe()`.

### Author(s)

Thomas Nagler

### See Also

`BiCop()`, `contour()`, `wireframe()`

### Examples

```r
construct BiCop object for a Tawn copula
obj <- BiCop(family = 104, par = 2.5, par2 = 0.4)

plots
plot(obj) # surface plot of copula density
contour(obj) # contour plot with standard normal margins
contour(obj, margins = "unif") # contour plot of copula density
```

---

## pobs

### Pseudo-Observations

**Description**

Compute the pseudo-observations for the given data matrix.
pobs

Usage

pobs(
  x,
  na.last = "keep",
  ties.method = eval(formals(rank)$ties.method),
  lower.tail = TRUE
)

Arguments

  x  n × d-matrix of random variates to be converted to pseudo-observations.
  na.last, ties.method  are passed to rank(); see there.
  lower.tail  logical() which, if FALSE, returns the pseudo-observations when applying the empirical marginal survival functions.

Details

Given n realizations \( x_i = (x_{i1}, \ldots, x_{id})^T, i \in \{1, \ldots, n\} \) of a random vector \( X \), the pseudo-observations are defined via \( u_{ij} = r_{ij}/(n + 1) \) for \( i \in \{1, \ldots, n\} \) and \( j \in \{1, \ldots, d\} \), where \( r_{ij} \) denotes the rank of \( x_{ij} \) among all \( x_{kj}, k \in \{1, \ldots, n\} \). The pseudo-observations can thus also be computed by component-wise applying the empirical distribution functions to the data and scaling the result by \( n/(n + 1) \). This asymptotically negligible scaling factor is used to force the variates to fall inside the open unit hypercube, for example, to avoid problems with density evaluation at the boundaries. Note that pobs(lower.tail=FALSE) simply returns 1-pobs().

Value

matrix of the same dimensions as \( x \) containing the pseudo-observations.

Note

This function is borrowed from the copula() package.

Author(s)

Marius Hofert

Examples

## Simple definition of the function:
pobs

## simulate data from a multivariate normal distribution
library(mvtnorm)
set.seed(123)
Sigma <- matrix(c(2, -0.2, 0.3, -0.2, 0.3, 0.5), 3, 3)
mu <- c(-3, 2, 1)
dat <- rmvnorm(500, sigma = Sigma)
RVineAIC

*AIC and BIC of an R-Vine Copula Model*

**Description**

These functions calculate the Akaike and Bayesian Information criteria of a d-dimensional R-vine copula model for a given copula data set.

**Usage**

```r
RVineAIC(data, RVM, par = RVM$par, par2 = RVM$par2)
RVineBIC(data, RVM, par = RVM$par, par2 = RVM$par2)
```

**Arguments**

- `data` An N x d data matrix (with uniform margins).
- `RVM` An `RVineMatrix()` object including the structure and the pair-copula families and parameters.
- `par` A d x d matrix with the pair-copula parameters (optional; default: `par = RVM$par`).
- `par2` A d x d matrix with the second parameters of pair-copula families with two parameters (optional; default: `par2 = RVM$par2`).

**Details**

If \( k \) denotes the number of parameters of an R-vine copula model with log-likelihood \( l_{RVine} \) and parameter set \( \theta \), then the Akaike Information Criterion (AIC) by Akaike (1973) is defined as

\[
AIC := -2l_{RVine}(\theta | u) + 2k,
\]

for observations \( u = (u'_1, ..., u'_N)' \).

Similarly, the Bayesian Information Criterion (BIC) by Schwarz (1978) is given by

\[
BIC := -2l_{RVine}(\theta | u) + \log(N)k.
\]

**Value**

- `AIC, BIC` The computed AIC or BIC value, respectively.
- `pair.AIC, pair.BIC` A d x d matrix of individual contributions to the AIC or BIC value for each pair-copula, respectively. Note: `AIC = sum(pair.AIC)` and similarly `BIC = sum(pair.BIC)`. 

Author(s)
Eike Brechmann

References


See Also
RVineLogLik(), RVineVuongTest(), RVineClarkeTest()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
0, 2, 3, 4, 1,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 3,
0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
0, 1.1, 1.6, 0.9,
0, 0, 1.9, 0.5,
0, 0, 0, 4.8,
0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family, par = par, par2 = par2,
names=c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300,RVM)
# compute AIC and BIC
RVineAIC(simdata, RVM)
RVineBIC(simdata, RVM)

## RVineClarkeTest

**Clarke Test Comparing Two R-Vine Copula Models**

**Description**

This function performs a Clarke test between two d-dimensional R-vine copula models as specified by their `RVineMatrix()` objects.

**Usage**

```r
RVineClarkeTest(data, RVM1, RVM2)
```

**Arguments**

- **data**: An N x d data matrix (with uniform margins).
- **RVM1, RVM2**: `RVineMatrix()` objects of models 1 and 2.

**Details**

The test proposed by Clarke (2007) allows to compare non-nested models. For this let $c_1$ and $c_2$ be two competing vine copulas in terms of their densities and with estimated parameter sets $\hat{\theta}_1$ and $\hat{\theta}_2$.

The null hypothesis of statistical indistinguishability of the two models is

$$H_0 : P(m_i > 0) = 0.5 \ \forall i = 1,...,N,$$

where $m_i := \log \left[ \frac{c_1(u_i|\hat{\theta}_1)}{c_2(u_i|\hat{\theta}_2)} \right]$ for observations $u_i, i = 1,...,N$.

Since under statistical equivalence of the two models the log likelihood ratios of the single observations are uniformly distributed around zero and in expectation 50% of the log likelihood ratios greater than zero, the test statistic

$$\text{statistic} := B = \sum_{i=1}^{N} 1_{(0,\infty)}(m_i),$$

where $1$ is the indicator function, is distributed Binomial with parameters $N$ and $p = 0.5$, and critical values can easily be obtained. Model 1 is interpreted as statistically equivalent to model 2 if $B$ is not significantly different from the expected value $Np = \frac{N}{2}$.

Like AIC and BIC, the Clarke test statistic may be corrected for the number of parameters used in the models. There are two possible corrections; the Akaike and the Schwarz corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.
RVineClarkeTest

Value

\texttt{statistic, statistic.Akaike, statistic.Schwarz}

Test statistics without correction, with Akaike correction and with Schwarz correction.

\texttt{p.value, p.value.Akaike, p.value.Schwarz}

P-values of tests without correction, with Akaike correction and with Schwarz correction.

Author(s)

Jeffrey Dissmann, Eike Brechmann

References


See Also

\texttt{RVineVuongTest()}, \texttt{RVineAIC()}, \texttt{RVineBIC()}

Examples

\begin{verbatim}
# vine structure selection time-consuming (~ 20 sec)

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6))
RVM$Matrix
RVM$par
RVM$par2

# select the C-vine structure, families and parameters
CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine")
CVM$Matrix
CVM$par
CVM$par2

# compare the two models based on the data
clarke <- RVineClarkeTest(daxreturns[,1:5], RVM, CVM)
clarke$statistic
clarke$statistic.Schwarz
clarke$p.value
clarke$p.value.Schwarz
\end{verbatim}
RVineCopSelect

Sequential Pair-Copula Selection and Estimation for R-Vine Copula Models

Description

This function fits a R-vine copula model to a $d$-dimensional copula data set. Pair-copula families are selected using \texttt{BiCopSelect()} and estimated sequentially.

Usage

\begin{verbatim}
RVineCopSelect(
  data,
  familyset = NA,
  Matrix,
  selectioncrit = "AIC",
  indeptest = FALSE,
  level = 0.05,
  trunclevel = NA,
  weights = NA,
  rotations = TRUE,
  se = FALSE,
  presel = TRUE,
  method = "mle",
  cores = 1
)
\end{verbatim}

Arguments

data N x d data matrix (with uniform margins).

familyset integer vector of pair-copula families to select from. The vector has to include at least one pair-copula family that allows for positive and one that allows for negative dependence. Not listed copula families might be included to better handle limit cases. If \texttt{familyset = NA} (default), selection among all possible families is performed. If a vector of negative numbers is provided, selection among all but abs(familyset) is performed. Coding of pair copula families is the same as in \texttt{BiCop()}.

Matrix lower or upper triangular d x d matrix that defines the R-vine tree structure.

selectioncrit Character indicating the criterion for pair-copula selection. Possible choices: selectioncrit = "AIC" (default), "BIC", or "logLik" (see \texttt{BiCopSelect()}).

indeptest Logical; whether a hypothesis test for the independence of $u_1$ and $u_2$ is performed before bivariate copula selection (default: \texttt{indeptest = FALSE}; see \texttt{BiCopIndTest()}). The independence copula is chosen for a (conditional) pair if the null hypothesis of independence cannot be rejected.

level numeric; significance level of the independence test (default: $\texttt{level} = 0.05$).
trunclevel integer; level of truncation.
weights Numerical; weights for each observation (optional).
rotations logical; if TRUE, all rotations of the families in familyset are included.
se Logical; whether standard errors are estimated (default: se = FALSE).
presel Logical; whether to exclude families before fitting based on symmetry properties of the data. Makes the selection about 30\% (on average), but may yield slightly worse results in few special cases.
method indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall’s tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34 or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10).
cores integer; if cores > 1, estimation will be parallelized within each tree (using \texttt{foreach::foreach()}). Note that parallelization causes substantial overhead and may be slower than single-threaded computation when dimension, sample size, or family set are small or method = “itau”.

Details
R-vine copula models with unknown structure can be specified using \texttt{RVineStructureSelect()}. 

Value
An \texttt{RVineMatrix()} object with the selected families (RVM\$family) as well as sequentially estimated parameters stored in RVM\$par and RVM\$par2. The object is augmented by the following information about the fit:

se, se2 standard errors for the parameter estimates (if se = TRUE; note that these are only approximate since they do not account for the sequential nature of the estimation,
nobs number of observations,
logLik, pair.logLik log likelihood (overall and pairwise)
AIC, pair.AIC Aikaike’s Information Criterion (overall and pairwise),
BIC, pair.BIC Bayesian’s Information Criterion (overall and pairwise),
emptau matrix of empirical values of Kendall’s tau,
p.value.indeptest matrix of p-values of the independence test.

Note
For a comprehensive summary of the vine copula model, use summary(object); to see all its contents, use \texttt{str(object)}. 
Author(s)

Eike Brechmann, Thomas Nagler

References


See Also

RVineMatrix(), BiCop(), BiCopSelect(), plot.RVineMatrix(), contour.RVineMatrix(), foreach::foreach()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
           0, 2, 3, 4, 1,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
        0, 1.1, 1.6, 0.9,
        0, 0, 1.9, 0.5,
        0, 0, 0, 4.8,
        0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)
## define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                    par = par, par2 = par2,
                    names = c("V1", "V2", "V3", "V4", "V5"))

## simulate a sample of size 500 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(500, RVM)
## determine the pair-copula families and parameters
RVM1 <- RVineCopSelect(simdata, familyset = c(1, 3, 4, 5, 6), Matrix)

## see the object's content or a summary
str(RVM1)
summary(RVM1)

## inspect the fitted model using plots
## Not run: plot(RVM1)  # tree structure
countour(RVM1)  # contour plots of all pair-copulas

---

### RVineCor2pcor

#### (Partial) Correlations for R-Vine Copula Models

**Description**

Correlations to partial correlations and vice versa for R-vines with independence, Gaussian and t-copulas.

**Usage**

RVineCor2pcor(RVM, corMat)
RVinePcor2cor(RVM)

**Arguments**

- **RVM**
  - RVineMatrix() defining only the R-vine structure for Cor2pcor and providing as well the partial correlations for Pcor2cor.
- **corMat**
  - correlation matrix

**Value**

- **RVM**
  - RVineMatrix with transformed partial correlations (for Cor2pcor)
- **cor**
  - correlation matrix (for Pcor2cor)

**Note**

The behavior of RVinePcor2ccor differs from older versions (<= 1.4). The RVM object is now normalized such that the order of the returned correlation matrix conforms with the correlation matrix of the data. If RVM$names are non-default, the initial ordering of the variables cannot be traced back and the matrix has to be interpreted as indicated by the row- and column names.
RVineGofTest

Goodness-of-Fit Tests for R-Vine Copula Models

Examples

```r
create RVineMatrix-object for Gaussian vine
Matrix <- matrix(c(1, 3, 4, 2,
 0, 3, 4, 2,
 0, 0, 4, 2,
 0, 0, 0, 2), 4, 4)
family <- matrix(c(0, 1, 1, 1,
 0, 0, 1, 1,
 0, 0, 0, 1,
 0, 0, 0, 0), 4, 4)
par <- matrix(c(0, 0.2, 0, 0.6,
 0, 0, 0.2, 0.6,
 0, 0, 0, 0.6,
 0, 0, 0, 0), 4, 4)
RVM <- RVineMatrix(Matrix, family, par)

calculate correlation matrix corresponding to the R-Vine model
newcor <- RVinePcor2cor(RVM)

transform back to partial correlations
RVineCor2pcor(RVM, newcor)$par

check if they are equal
all.equal(RVM$par, RVineCor2pcor(RVM, newcor)$par)
```

Description

This function performs a goodness-of-fit test for R-vine copula models. There are 15 different goodness-of-fit tests implemented, described in Schepsmeier (2013).

Usage

```r
RVineGofTest(
 data,
 RVM,
 method = "White",
 statistic = "CvM",
 B = 200,
 alpha = 2
)
```
RVineGoFTest

Arguments

- **data**: An N x d data matrix (with uniform margins).
- **RVM**: `RVineMatrix()` objects of the R-vine model under the null hypothesis. Only the following copula families are allowed in `RVM$family` due to restrictions in `RVineGrad()` and `RVineHessian()`
  - 0 = independence copula
  - 1 = Gaussian copula
  - 2 = Student t copula (t-copula)
  - 3 = Clayton copula
  - 4 = Gumbel copula
  - 5 = Frank copula
  - 6 = Joe copula
  - 13 = rotated Clayton copula (180 degrees; survival Clayton’’)
  - 14 = rotated Gumbel copula (180 degrees; survival Gumbel”)
  - 16 = rotated Joe copula (180 degrees; “survival Joe”)
  - 23 = rotated Clayton copula (90 degrees)
  - ‘24’ = rotated Gumbel copula (90 degrees)
  - ‘26’ = rotated Joe copula (90 degrees)
  - ‘33’ = rotated Clayton copula (270 degrees)
  - ‘34’ = rotated Gumbel copula (270 degrees)
  - ‘36’ = rotated Joe copula (270 degrees)

- **method**: A string indicating the goodness-of-fit method:
  - "White" = goodness-of-fit test based on White’s information matrix equality (default)
  - "IR" = goodness-of-fit test based on the information ratio
  - "Breymann" = goodness-of-fit test based on the probability integral transform (PIT) and the aggregation to univariate data by Breymann et al. (2003).
  - "Berg" = goodness-of-fit test based on the probability integral transform (PIT) and the aggregation to univariate data by Berg and Bakken (2007).
  - "Berg2" = second goodness-of-fit test based on the probability integral transform (PIT) and the aggregation to univariate data by Berg and Bakken (2007).
  - "ECP" = goodness-of-fit test based on the empirical copula process (ECP)
  - "ECP2" = goodness-of-fit test based on the combination of probability integral transform (PIT) and empirical copula process (ECP) (Genest et al. 2009)

- **statistic**: A string indicating the goodness-of-fit test statistic type:
  - "CvM" = Cramer-von Mises test statistic (univariate for "Breymann", "Berg" and "Berg2", multivariate for "ECP" and "ECP2")
  - "KS" = Kolmogorov-Smirnov test statistic (univariate for "Breymann", "Berg" and "Berg2", multivariate for "ECP" and "ECP2")
  - "AD" = Anderson-Darling test statistic (only univariate for "Breymann", "Berg" and "Berg2")

- **B**: an integer for the number of bootstrap steps (default B = 200)
  - For B = 0 the asymptotic p-value is returned if available, otherwise only the test statistic is returned.
  - WARNING: If B is chosen too large, computations will take very long.
alpha an integer of the set 2,4,6,... for the "Berg2" goodness-of-fit test (default alpha = 2)

Details

method = "White":
This goodness-of-fit test uses the information matrix equality of White (1982) and was originally investigated by Huang and Prokhorov (2011) for copulas. Schepsmeier (2012) enhanced their approach to the vine copula case. The main contribution is that under correct model specification the Fisher Information can be equivalently calculated as minus the expected Hessian matrix or as the expected outer product of the score function. The null hypothesis is

\[ H_0 : \mathbf{H}(\theta) + \mathbf{C}(\theta) = 0 \]

against the alternative

\[ H_1 : \mathbf{H}(\theta) + \mathbf{C}(\theta) \neq 0, \]

where \( \mathbf{H}(\theta) \) is the expected Hessian matrix and \( \mathbf{C}(\theta) \) is the expected outer product of the score function. For the calculation of the test statistic we use the consistent maximum likelihood estimator \( \hat{\theta} \) and the sample counterparts of \( \mathbf{H}(\theta) \) and \( \mathbf{C}(\theta) \). The correction of the Covariance-Matrix in the test statistic for the uncertainty in the margins is skipped. The implemented test assumes that there is no uncertainty in the margins. The correction can be found in Huang and Prokhorov (2011) for bivariate copulas and in Schepsmeier (2013) for vine copulas. It involves multi-dimensional integrals.

method = "IR":
As the White test the information matrix ratio test is based on the expected Hessian matrix \( \mathbf{H}(\theta) \) and the expected outer product of the score function \( \mathbf{C}(\theta) \).

\[ H_0 : -\mathbf{H}(\theta)^{-1}\mathbf{C}(\theta) = \mathbf{I}_p \]

against the alternative

\[ H_1 : -\mathbf{H}(\theta)^{-1}\mathbf{C}(\theta) \neq \mathbf{I}_p. \]

The test statistic can then be calculated as

\[ IR_n := tr(\Phi(\theta))/p \]

with \( \Phi(\theta) = -\mathbf{H}(\theta)^{-1}\mathbf{C}(\theta) \), \( p \) is the number of parameters, i.e. the length of \( \theta \), and \( tr(A) \) is the trace of the matrix \( A \). For details see Schepsmeier (2013)

method = "Breymann", method = "Berg" and method = "Berg2":
These tests are based on the multivariate probability integral transform (PIT) applied in \texttt{RVinePIT()}. The multivariate data \( y_i \) returned form the PIT are aggregated to univariate data by different aggregation functions \( \Gamma(\cdot) \) in the sum

\[ s_t = \sum_{i=1}^{d} \Gamma(y_{it}), t = 1, ..., n \]
In Breymann et al. (2003) the weight function is suggested as $\Gamma(\cdot) = \Phi^{-1}(\cdot)^2$, while in Berg and Bakken (2007) the weight function is either $\Gamma(\cdot) = |\cdot - 0.5|$ (method="Berg") or $\Gamma(\cdot) = (\cdot - 0.5)^\alpha, \alpha = 2, 4, 6, \ldots$ (method="Berg2").

Furthermore, the "Berg" and "Berg2" test are based on the order statistics of the PIT returns. See Berg and Bakken (2007) or Schepsmeier (2013) for details.

method = "ECP" and method = "ECP2":
Both tests are test for $H_0 : C \in C_0$ against $H_1 : C \notin C_0$ where $C$ denotes the (vine) copula distribution function and $C_0$ is a class of parametric (vine) copulas with $\Theta \subseteq \mathbb{R}^p$ being the parameter space of dimension $p$. They are based on the empirical copula process (ECP)

$$\hat{C}_n(u) - C_\theta(u),$$

with $u = (u_1, \ldots, u_d) \in [0, 1]^d$ and $\hat{C}_n(u) = \frac{1}{n+1} \sum_{t=1}^n 1_{\{U_t1 \leq u_1, \ldots, U_t_d \leq u_d\}}$. The ECP is utilized in a multivariate Cramer-von Mises (CvM) or multivariate Kolmogorov-Smirnov (KS) based test statistic. An extension of the ECP-test is the combination of the multivariate PIT approach with the ECP. The general idea is that the transformed data of a multivariate PIT should be "close" to the independence copula Genest et al. (2009). Thus a distance of CvM or KS type between them is considered. This approach is called ECP2. Again we refer to Schepsmeier (2013) for details.

Value
For method = "White":

White test statistic
p.value p-value, either asymptotic for $B = 0$ or bootstrapped for $B > 0$

For method = "IR":

IR test statistic (raw version as stated above)
p.value So far no p-value is returned neither a asymptotic nor a bootstrapped one. How to calculated a bootstrapped p-value is explained in Schepsmeier (2013). Be aware, that the test statistics than have to be adjusted with the empirical variance.

For method = "Breymann", method = "Berg" and method = "Berg2":

CvM, KS, AD test statistic according to the choice of statistic
p.value p-value, either asymptotic for $B = 0$ or bootstrapped for $B > 0$. A asymptotic p-value is only available for the Anderson-Darling test statistic if the R-package ADGofTest is loaded.

Furthermore, a asymptotic p-value can be calculated for the Kolmogorov-Smirnov test statistic. For the Cramer-von Mises no asymptotic p-value is available so far.

For method = "ECP" and method = "ECP2":

CvM, KS test statistic according to the choice of statistic
p.value bootstrapped p-value

Warning: The code for all the p-values are not yet approved since some of them are moved from R-code to C-code. If you need p-values the best way is to write your own algorithm as suggested in Schepsmeier (2013) to get bootstrapped p-values.
Author(s)

Ulf Schepsmeier

References


See Also

BiCopGofTest(), RVinePIT()

Examples

## time-consuming example

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6))

# White test with asymptotic p-value
RVineGofTest(daxreturns[,1:5], RVM, B = 0)

# ECP2 test with Cramer-von-Mises test statistic and a bootstrap
# with 200 replications for the calculation of the p-value
RVineGofTest(daxreturns[,1:5], RVM, method = "ECP2",
statistic = "CvM", B = 200)
RVineGrad

Gradient of the Log-Likelihood of an R-Vine Copula Model

Description

This function calculates the gradient of the log-likelihood of a d-dimensional R-vine copula model with respect to the copula parameter and evaluates it on a given copula data set.

Usage

RVineGrad(
  data,
  RVM,
  par = RVM$par,
  par2 = RVM$par2,
  start.V = NA,
  posParams = (RVM$family > 0)
)

Arguments

data An N x d data matrix (with uniform margins).

RVM An RVineMatrix() object including the structure and the pair-copula families and parameters.

Only the following copula families are allowed in RVM$family
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

par A d x d matrix with the pair-copula parameters (optional; default: par = RVM$par).

par2 A d x d matrix with the second parameters of pair-copula families with two parameters (optional; default: par2 = RVM$par2).
start.V Transformations (h-functions and log-likelihoods of each pair-copula) of previous calculations (see output; default: start.V = NA).

posParams A d x d matrix indicating which copula has to be considered in the gradient (default: posParams = (RVM$family > 0)).

Details

The ordering of the gradient is due to the ordering of the R-vine matrix. The gradient starts at the lower right corner of the R-vine matrix and goes column by column to the left and up, i.e. the first entry of the gradient is the last entry of the second last column of the par-matrix followed by the last entry of the third last column and the second last entry of this column. If there is a copula family with two parameters, i.e. the t-copula, the derivative with respect to the second parameter is at the end of the gradient vector in order of their occurrence.

Value

gradient The calculated gradient of the log-likelihood value of the R-vine copula model. (three matrices: direct, indirect and value).

Note

The gradient for R-vine copula models with two parameter Archimedean copulas, i.e. BB1, BB6, BB7, BB8 and their rotated versions can not yet be calculated. The derivatives of these bivariate copulas are more complicated.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References


See Also

BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCopHfuncDeriv2(), RVineMatrix(), RVineMLE(), RVineHessian()
Examples

```r
define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
 0, 2, 3, 4, 1,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 3,
 0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
 0, 0, 1.1, 1.6, 0.9,
 0, 0, 0, 1.9, 0.5,
 0, 0, 0, 0, 4.8,
 0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
 par = par, par2 = par2,
 names = c("V1", "V2", "V3", "V4", "V5"))

simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

compute the gradient of the first row of the data
out2 <- RVineGrad(simdata[1,], RVM)
out2$gradient
```

---

**RVineHessian**

**Hessian Matrix of the Log-Likelihood of an R-Vine Copula Model**

**Description**

This function calculates the Hessian matrix of the log-likelihood of a d-dimensional R-vine copula model with respect to the copula parameter and evaluates it on a given copula data set.
Usage

RVineHessian(data, RVM)

Arguments

data An N x d data matrix (with uniform margins).

RVM An RVineMatrix() object including the structure, the pair-copula families, and the parameters.

Only the following copula families are allowed in RVM$family

0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; "survival Joe")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)

Value

hessian The calculated Hessian matrix of the log-likelihood value of the R-vine copula model.
der The product of the gradient vector with its transposed version.

Note

The Hessian matrix is not available for R-vine copula models with two parameter Archimedean copulas, i.e. BB1, BB6, BB7, BB8 and their rotated versions.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References


See Also

BiCopDeriv(), BiCopDeriv2(), BiCopHfuncDeriv(), BiCopHfuncDeriv2(), RVineMatrix(), RVineMLE(), RVineGrad()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
          0, 2, 3, 4, 1,
          0, 0, 3, 4, 1,
          0, 0, 0, 4, 1,
          0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
        0, 0, 1.1, 1.6, 0.9,
        0, 0, 0, 0, 1.9,
        0, 0, 0, 0, 4.8,
        0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                    par = par, par2 = par2,
                    names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the Hessian matrix of the first row of the data
out2 <- RVineHessian(simdata[1,], RVM)
out2$hessian

---

RVineLogLik

Log-Likelihood of an R-Vine Copula Model

Description

This function calculates the log-likelihood of a d-dimensional R-vine copula model for a given copula data set.

Usage

RVineLogLik(
  data,
  RVM,
  par = RVM$par,
  par2 = RVM$par2,
  separate = FALSE,
  verbose = TRUE,
  check.pars = TRUE,
  calculate.V = TRUE
)

Arguments

data An N x d data matrix (with uniform margins).
RVM An RVineMatrix() object including the structure and the pair-copula families and parameters.
par A d x d matrix with the pair-copula parameters (optional; default: par = RVM$par).
par2 A d x d matrix with the second parameters of pair-copula families with two parameters (optional; default: par2 = RVM$par2).
separate Logical; whether log-likelihoods are returned point wisely (default: separate = FALSE).
verbose In case something goes wrong, additional output will be plotted.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).
calculate.V logical; whether V matrices should be calculated. Default is TRUE, but requires a lot of memory when dimension is large. Use FALSE for a memory efficient version.
Details

For observations \( u = (u'_1, ..., u'_N)' \) the log-likelihood of a \( d \)-dimensional R-vine copula with \( d - 1 \) trees and corresponding edge sets \( E_1, ..., E_{d-1} \) is given by

\[
\loglik := l_{RVine}(\theta | u)
\]

\[
= \sum_{i=1}^{N} \sum_{\ell=1}^{d-1} \sum_{e \in E_\ell} \ln [c_{j(e),k(e)}|D(e)] \times \left[ F(u_{i,j(e)}|u_{i,D(e)}), F(u_{i,k(e)}|u_{i,D(e)})|\theta_{j(e),k(e)}|D(e) \right]
\]

where \( u_i = (u_{i,1}, ..., u_{i,d})' \in [0,1]^d, \ i = 1, ..., N \). Further \( c_{j(e),k(e)}|D(e) \) denotes a bivariate copula density associated to an edge \( e \) and with parameter(s) \( \theta_{j(e),k(e)}|D(e) \). Conditional distribution functions such as \( F(u_{i,j(e)}|u_{i,D(e)}) \) are obtained recursively using the relationship

\[
h(u|v, \theta) := F(u|v) = dC_{uv,jv}(F(u|v_{-j}), F(v_j|v_{-j}))/dF(v_j|v_{-j}),
\]

where \( C_{uv,jv} \) is a bivariate copula distribution function with parameter(s) \( \theta \) and \( v_{-j} \) denotes a vector with the \( j \)-th component \( v_j \) removed. The notation of \( h \)-functions is introduced for convenience. For more details see Dissmann et al. (2013).

Value

\( \loglik \) The calculated log-likelihood value of the R-vine copula model.

\( V \) The stored transformations (h-functions and log-likelihoods of each pair-copula) which may be used for posterior updates (three matrices: direct, indirect and value).

Author(s)

Ulf Schepsmeier, Jeffrey Dissmann, Jakob Stoeber

References


See Also

BiCopHfunc(), RVineMatrix(), RVineMLE(), RVineAIC(), RVineBIC()

Examples

```R
define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
 0, 2, 3, 4, 1,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
```
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 3,
0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
0, 1.1, 1.6, 0.9,
0, 0, 1.9, 0.5,
0, 0, 0, 4.8,
0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
par = par, par2 = par2,
names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the log-likelihood
ll <- RVineLogLik(simdata, RVM, separate = FALSE)
ll$loglik

# compute the pointwise log-likelihoods
ll <- RVineLogLik(simdata, RVM, separate = TRUE)
ll$loglik

---

RVineMatrix  R-Vine Copula Model in Matrix Notation

Description

This function creates an RVineMatrix() object which encodes an R-vine copula model. It contains the matrix identifying the R-vine tree structure, the matrix identifying the copula families utilized and two matrices for corresponding parameter values.

Usage

RVineMatrix(
RVineMatrix

Matrix,
family = array(0, dim = dim(Matrix)),
par = array(NA, dim = dim(Matrix)),
par2 = array(NA, dim = dim(Matrix)),
names = NULL,
check.pars = TRUE
)

Arguments

Matrix  Lower (or upper) triangular d x d matrix that defines the R-vine tree structure.
family  Lower (or upper) triangular d x d matrix with zero diagonal entries that assigns
the pair-copula families to each (conditional) pair defined by Matrix (default:
family = array(0,dim=dim(Matrix))). The bivariate copula families are de-
defined as follows:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton")
14 = rotated Gumbel copula (180 degrees; survival Gumbel")
16 = rotated Joe copula (180 degrees; survival Joe")
17 = rotated BB1 copula (180 degrees; survival BB1")
18 = rotated BB6 copula (180 degrees; survival BB6")
19 = rotated BB7 copula (180 degrees; survival BB7")
20 = rotated BB8 copula (180 degrees; survival BB8")
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)
104 = Tawn type 1 copula
RVineMatrix

'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)

par Lower (or upper) triangular d x d matrix with zero diagonal entries that assigns
the (first) pair-copula parameter to each (conditional) pair defined by Matrix
(default: par = array(NA, dim = dim(Matrix))).

par2 Lower (or upper) triangular d x d matrix with zero diagonal entries that assigns
the second parameter for pair-copula families with two parameters to each (con-
ditional) pair defined by Matrix (default: par2 = array(NA, dim = dim(Matrix))).

names A vector of names for the d variables; default: names = NULL.

cHECK.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are
omitted (should only be used with care).

Value

An object of class RVineMatrix(), i.e., a list with the following components:

Matrix R-vine tree structure matrix.

family pair-copula family matrix with values as above.

par pair-copula parameter matrix.

par2 second pair-copula parameter matrix with parameters necessary for pair-copula
families with two parameters.

names variable names (defaults to V1, V2, ...).

MaxMat, CondDistr additional matrices required internally for evaluating the density etc.,

type the type of the vine copula structure; possible types are:
  • "C-vine": all trees consist of a star,
  • "D-vine": all trees consist of a path,
  • "R-vine": all structures that are neither a C- nor D-vine,

tau Kendall’s tau matrix,

taildep matrices of lower and upper tail dependence coefficients,

beta Blomqvist’s beta matrix.

Objects of this class are also returned by the RVineSeqEst(), RVineCopSelect(), and RVineStructureSelect() functions. In this case, further information about the fit is added.
Note

For a comprehensive summary of the vine copula model, use summary(object); to see all its contents, use str(object).

The RVineMatrix() function automatically checks if the given matrix is a valid R-vine matrix (see RVineMatrixCheck()).

Although the function allows upper triangular matrices as its input, it will always store them as lower triangular matrices.

Author(s)

Jeffrey Dissmann, Thomas Nagler

References


See Also

RVineMatrixCheck(), RVineSeqEst(), RVineCopSelect(), RVineStructureSelect(), RVineSim(), C2RVine(), D2RVine()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
          0, 2, 3, 4, 1,
          0, 0, 3, 4, 1,
          0, 0, 0, 4, 1,
          0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
       0, 0, 1.1, 1.6, 0.9,
       0, 0, 0, 1.9, 0.5,
       0, 0, 0, 0, 4.8,
       0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

## define RVineMatrix object
RVineMatrixCheck

RVineMatrixCheck(M)

Arguments

M A \(d \times d\) vine matrix.

Value
code 1 for OK;
-4 matrix is neither lower nor upper triangular;
-3 diagonal can not be put in order \(d:1\);
-2 for not permutation of \(j:d\) in column \(d-j\);
-1 if cannot find proper binary array from array in natural order.

Note

The matrix M do not have to be given in natural order or the diagonal in order \(d:1\). The test checks if it can be done in order to be a valid R-vine matrix.

If a function in this package needs the natural order the RVineMatrix object is automatically "normalized".

The function RVineMatrix() automatically checks if the given R-vine matrix is valid.

Author(s)

Harry Joe
RVineMatrixNormalize

Normalization of R-Vine Matrix

Description

An RVineMatrix() is permuted to achieve a natural ordering (i.e. diag(RVM$Matrix) == d:1)

Usage

RVineMatrixNormalize(RVM)

References


See Also

RVineMatrix()

Examples

A1 <- matrix(c(6, 0, 0, 0, 0, 0,
  5, 5, 0, 0, 0, 0,
  3, 4, 4, 0, 0, 0,
  4, 3, 3, 0, 0, 0,
  1, 1, 2, 2, 2, 0,
  2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b1 <- RVineMatrixCheck(A1)
print(b1)
# improper vine matrix, code=-1
A2 <- matrix(c(6, 0, 0, 0, 0, 0,
  5, 5, 0, 0, 0, 0,
  4, 4, 4, 0, 0, 0,
  1, 3, 3, 3, 0, 0,
  3, 1, 2, 2, 2, 0,
  2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b2 <- RVineMatrixCheck(A2)
print(b2)
# improper vine matrix, code=-2
A3 <- matrix(c(6, 0, 0, 0, 0, 0,
  3, 5, 0, 0, 0, 0,
  3, 4, 4, 0, 0, 0,
  4, 3, 3, 3, 0, 0,
  1, 1, 2, 2, 2, 0,
  2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b3 <- RVineMatrixCheck(A3)
print(b3)
Arguments

RVM  \texttt{RVineMatrix()} defining the R-vine structure

Value

RVM  An \texttt{RVineMatrix()} in natural ordering with entries in \texttt{RVM$names} keeping track of the reordering.

Examples

```r
Matrix <- matrix(c(5, 2, 3, 1, 4,
 0, 2, 3, 4, 1,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 1), 5, 5)
family <- matrix(1, 5, 5)
par <- matrix(c(0, 0.2, 0.9, 0.5, 0.8,
 0, 0, 0.1, 0.6, 0.9,
 0, 0, 0, 0.7, 0.5,
 0, 0, 0, 0, 0.8,
 0, 0, 0, 0, 0), 5, 5)

define RVineMatrix object
RVM <- RVineMatrix(Matrix, family, par)

normalise the RVine
RVineMatrixNormalize(RVM)
```

---

**RVineMatrixSample**  \textit{Random sampling of R-Vine matrices}

Description

Sample R-Vine matrices based on the algorithm of Joe et al. (2011).

Usage

\texttt{RVineMatrixSample(d, size = 1, naturalOrder = FALSE)}

Arguments

- \texttt{d}  Dimension of the R-Vine matrices.
- \texttt{size}  Number of matrices to sample.
- \texttt{naturalOrder}  Should the matrices be in the natural order (default: \texttt{naturalOrder = FALSE}).
Value

A list of length size with each element containing one R-Vine matrix.

Note

For some reason, our implementation of Joe et al.’s algorithm always returns a star in the first tree. To fix this, we sample a vine matrix of dimension d + 1 and remove the first tree afterwards.

Author(s)

Thibault Vatter

References


See Also

RVineMatrix(), RVineMatrixCheck()

Examples

# Matrix and sample sizes
d <- 10
size <- 5

# Sample R-vine matrices
RVM <- RVineMatrixSample(d, size)
sapply(RVM, RVineMatrixCheck)

# Sample R-vine matrices in the natural order
RVM <- RVineMatrixSample(d, size, naturalOrder = TRUE)
sapply(RVM, RVineMatrixCheck)

RVineMLE

Maximum Likelihood Estimation of an R-Vine Copula Model

Description

This function calculates the maximum likelihood estimate (MLE) of the R-vine copula model parameters using sequential estimates as initial values (if not provided).
Usage

RVineMLE(
  data,
  RVM,
  start = RVM$par,
  start2 = RVM$par2,
  maxit = 200,
  max.df = 30,
  max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)),
  grad = FALSE,
  hessian = FALSE,
  se = FALSE,
  ...
)

Arguments

data An N x d data matrix (with uniform margins).

RVM An RVineMatrix() object including the structure and the pair-copula families and parameters (if known).

start Lower triangular d x d matrix with zero diagonal entries with starting values for the pair-copula parameters (optional; otherwise they are calculated via RVineSeqEst(); default: start = RVM$par).

start2 Lower triangular d x d matrix with zero diagonal entries with starting values for the second parameters of pair-copula families with two parameters (optional; otherwise they are calculated via RVineSeqEst(); default: start2 = RVM$par2).

maxit The maximum number of iteration steps (optional; default: maxit = 200).

max.df Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30; for more details see BiCopEst()).

max.BB List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas (default: max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1))).

grad If RVineMatrix only contains one parameter copula families or the t-copula the analytical gradient can be used for maximization of the log-likelihood (see RVineGrad(); default: grad = FALSE).

hessian Logical; whether the Hessian matrix of parameter estimates is estimated (default: hessian = FALSE). Note that this is not the Hessian Matrix calculated via RVineHessian() but via finite differences.

se Logical; whether standard errors of parameter estimates are estimated on the basis of the Hessian matrix (see above; default: se = FALSE).

... Further arguments for optim (e.g. factr controls the convergence of the "L-BFGS-B" method, or trace, a non-negative integer, determines if tracing information on the progress of the optimization is produced.)

For more details see the documentation of optim().
Value

- **RVM**: `RVineMatrix()` object with the calculated parameters stored in `RVM$par` and `RVM$par2`. Additional information about the fit is added (e.g., log-likelihood, AIC, BIC).
- **value**: Optimized log-likelihood value corresponding to the estimated pair-copula parameters.
- **convergence**: An integer code indicating either successful convergence (`convergence = 0`) or an error:
  - `1` = the iteration limit `maxit` has been reached
  - `51` = a warning from the "L-BFGS-B" method; see component `message` for further details
  - `52` = an error from the "L-BFGS-B" method; see component `message` for further details
- **message**: A character string giving any additional information returned by `optim()`, or `NULL`.
- **counts**: A two-element integer vector giving the number of calls to `fn` and `gr` respectively. This excludes those calls needed to compute the Hessian, if requested, and any calls to `fn` to compute a finite-difference approximation to the gradient.
- **hessian**: If `hessian = TRUE`, the Hessian matrix is returned. Its calculation is on the basis of finite differences (output of `optim()`).

Note

`RVineMLE` uses the L-BFGS-B method for optimization.
If the analytical gradient is used for maximization, computations may be up to 10 times faster than using finite differences.

Author(s)

Ulf Schepsmeier, Jeffrey Dissmann

References


See Also

`RVineSeqEst()`, `RVineStructureSelect()`, `RVineMatrix()`, `RVineGrad()`, `RVineHessian()`
# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
          0, 2, 3, 4, 1,
          0, 0, 3, 4, 1,
          0, 0, 0, 4, 1,
          0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
        0, 1.1, 1.6, 0.9,
        0, 0, 1.9, 0.5,
        0, 0, 0, 4.8,
        0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                    par = par, par2 = par2,
                    names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# compute the MLE
mle <- RVineMLE(simdata, RVM, grad = TRUE, trace = 0)

# compare parameters
round(mle$RVM$par - RVM$par, 2)
Description

This function computes the values of Blomqvist's beta corresponding to the parameters of an R-vine copula model.

Usage

RVinePar2Beta(RVM, check.pars = TRUE)

Arguments

RVM An RVineMatrix() object. Note that the Student's t-copula is not allowed since the CDF of the t-copula is not implemented (see BiCopCDF() and BiCopPar2Beta()).
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value

Matrix with the same structure as the family and parameter matrices of the RVineMatrix() object RVM where the entries are values of Blomqvist's beta corresponding to the families and parameters of the R-vine copula model given by RVM.

Author(s)

Ulf Schepsmeier

See Also

RVineMatrix(), BiCopPar2Beta

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
          0, 2, 3, 4, 1,
          0, 0, 3, 4, 1,
          0, 0, 0, 4, 1,
          0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
RVinePar2Tau

Kendall’s Tau Values of an R-Vine Copula Model

Description
This function computes the values of Kendall’s tau corresponding to the parameters of an R-vine copula model.

Usage
RVinePar2Tau(RVM, check.pars = TRUE)

Arguments
RVM An RVineMatrix() object.
check.pars logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value
Matrix with the same structure as the family and parameter matrices of the RVineMatrix() object RVM where the entries are values of Kendall’s tau corresponding to the families and parameters of the R-vine copula model given by RVM.

Author(s)
Jeffrey Dissmann

See Also
RVineMatrix(), BiCopPar2Tau()
RVinePDF

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
          0, 2, 3, 4, 1,
          0, 0, 3, 4, 1,
          0, 0, 0, 4, 1,
          0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
        0, 1.1, 1.6, 0.9,
        0, 0, 1.9, 0.5,
        0, 0, 0, 4.8,
        0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                    par = par, par2 = par2,
                    names = c("V1", "V2", "V3", "V4", "V5"))

# compute the Kendall's tau values
tau <- RVinePar2Tau(RVM)

RVinePDF

PDF of an R-Vine Copula Model

Description

This function calculates the probability density function of a d-dimensional R-vine copula.

Usage

RVinePDF(newdata, RVM, verbose = TRUE)
Arguments

newdata  An N x d data matrix that specifies where the density shall be evaluated.

RVM  An RVineMatrix() object including the structure and the pair-copula families and parameters.

verbose  In case something goes wrong, additional output will be plotted.

Details

The density of a d-dimensional R-vine copula with d−1 trees and corresponding edge sets \( E_1, \ldots, E_{d-1} \) is given by

\[
\prod_{\ell=1}^{d-1} \prod_{e \in E_\ell} c_{j(e),k(e)|D(e)}(F(u_{j(e)}|u_{D(e)}), F(u_{k(e)}|u_{D(e)}) | \theta_{j(e),k(e)|D(e)}),
\]

where \( u = (u_1, \ldots, u_d)' \in [0, 1]^d \). Further \( c_{j(e),k(e)|D(e)} \) denotes a bivariate copula density associated to an edge \( e \) and with parameter(s) \( \theta_{j(e),k(e)|D(e)} \). Conditional distribution functions such as \( F(u_{j(e)}|u_{D(e)}) \) are obtained recursively using the relationship

\[
h(u|v, \theta) := F(u|v) = dC_{uv_{j}|v_{-j}}(F(u|v_{-j}), F(v_{j}|v_{-j}))/dF(v_{j}|v_{-j}),
\]

where \( C_{uv_{j}|v_{-j}} \) is a bivariate copula distribution function with parameter(s) \( \theta \) and \( v_{-j} \) denotes a vector with the \( j \)-th component \( v_j \) removed. The notation of h-functions is introduced for convenience. For more details see Dissmann et al. (2013).

The function is actually just a wrapper to RVineLogLik().

Author(s)

Thomas Nagler

References


See Also

BiCopHfunc(), RVineMatrix(), RVineMLE(), RVineAIC(), RVineBIC()

Examples

```r
define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
 0, 2, 3, 4, 1,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
```
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 3,
0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
0, 1.1, 1.6, 0.9,
0, 0, 1.9, 0.5,
0, 0, 0, 4.8,
0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
par = par, par2 = par2,
names = c("V1", "V2", "V3", "V4", "V5"))

# compute the density at (0.1, 0.2, 0.3, 0.4, 0.5)
RVinePDF(c(0.1, 0.2, 0.3, 0.4, 0.5), RVM)

---

**RVinePIT**

*Probability Integral Transformation for R-Vine Copula Models*

**Description**

This function applies the probability integral transformation (PIT) for R-vine copula models to given copula data.

**Usage**

RVinePIT(data, RVM)

**Arguments**

- **data**
  
  An N x d data matrix (with uniform margins).

- **RVM**

  RVineMatrix() objects of the R-vine model.
Details

The multivariate probability integral transformation (PIT) of Rosenblatt (1952) transforms the copula data \( u = (u_1, \ldots, u_d) \) with a given multivariate copula \( C \) into independent data in \([0, 1]^d\), where \( d \) is the dimension of the data set.

Let \( u = (u_1, \ldots, u_d) \) denote copula data of dimension \( d \). Further let \( C \) be the joint cdf of \( u = (u_1, \ldots, u_d) \). Then Rosenblatt’s transformation of \( u \), denoted as \( y = (y_1, \ldots, y_d) \), is defined as

\[
y_1 := u_1, \quad y_2 := C(u_2|u_1), \ldots, y_d := C(u_d|u_1, \ldots, u_{d-1}),
\]

where \( C(u_k|u_1, \ldots, u_{k-1}) \) is the conditional copula of \( U_k \) given \( U_1 = u_1, \ldots, U_{k-1} = u_{k-1}, k = 2, \ldots, d \). The data vector \( y = (y_1, \ldots, y_d) \) is now i.i.d. with \( y_i \sim U[0, 1] \). The algorithm for the R-vine PIT is given in the appendix of Schepsmeier (2015).

Value

An \( N \times d \) matrix of PIT data from the given R-vine copula model.

Author(s)

Ulf Schepsmeier

References


See Also

RVineGofTest()

Examples

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:3], c(1:6))

# PIT data
pit <- RVinePIT(daxreturns[,1:3], RVM)

par(mfrow = c(1,2))
plot(daxreturns[,1], daxreturns[,2]) # correlated data
plot(pit[,1], pit[,2]) # i.i.d. data

cor(pit, method = "kendall")
RVineSeqEst  
Sequential Estimation of an R-Vine Copula Model

Description

This function sequentially estimates the pair-copula parameters of a d-dimensional R-vine copula model as specified by the corresponding `RVineMatrix()` object.

Usage

```r
calling_sequence
```

Arguments

- **data**: An N x d data matrix (with uniform margins).
- **RVM**: An `RVineMatrix()` object including the structure, the pair-copula families and the pair-copula parameters (if they are known).
- **method**: Indicates the estimation method: either maximum likelihood estimation (`method = "mle"`; default) or inversion of Kendall’s tau (`method = "itau"`). For method = "itau" only one parameter families and the Student t copula can be used (family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34 or 36). For the t-copula, `par2` is found by a crude profile likelihood optimization over the interval (2, 10].
- **se**: Logical; whether standard errors are estimated (default: `se = FALSE`).
- **max.df**: Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: `max.df = 30`; for more details see `BiCopEst()`).
- **max.BB**: List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas (default: `max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1))`).
- **progress**: Logical; whether the pairwise estimation progress is printed (default: `progress = FALSE`).
- **weights**: Numerical; weights for each observation (optional).
- **cores**: Integer; if `cores > 1`, estimation will be parallelized within each tree (using `foreach::foreach()`). However, the overhead caused by parallelization is likely to make the function run slower unless sample size is really large and `method = "itau"`. 

Call

```r
RVineSeqEst(
data,
RVM,
method = "mle",
se = FALSE,
max.df = 30,
max.BB = list(BB1 = c(5, 6), BB6 = c(6, 6), BB7 = c(5, 6), BB8 = c(6, 1)),
progress = FALSE,
weights = NA,
cores = 1
)
```
Details

The pair-copula parameter estimation is performed tree-wise, i.e., for each R-vine tree the results from the previous tree(s) are used to calculate the new copula parameters using \texttt{BiCopEst()}. 

Value

An \texttt{RVineMatrix()} object with the sequentially estimated parameters stored in \texttt{RVM$par} and \texttt{RVM$par2}. The object is augmented by the following information about the fit:

\begin{itemize}
  \item \texttt{se, se2} standard errors for the parameter estimates (if \texttt{se = TRUE}); note that these are only approximate since they do not account for the sequential nature of the estimation,
  \item \texttt{nobs} number of observations,
  \item \texttt{logLik, pair.logLik} log likelihood (overall and pairwise)
  \item \texttt{AIC, pair.AIC} Akaike's Information Criterion (overall and pairwise),
  \item \texttt{BIC, pair.BIC} Bayesian's Information Criterion (overall and pairwise),
  \item \texttt{emptau} matrix of empirical values of Kendall's tau,
  \item \texttt{p.value.indeptest} matrix of p-values of the independence test.
\end{itemize}

Note

For a comprehensive summary of the fitted model, use \texttt{summary(object)}; to see all its contents, use \texttt{str(object)}.

Author(s)

Ulf Schepsmeier, Jeffrey Dissmann, Thomas Nagler

See Also

\texttt{RVineMatrix()}, \texttt{BiCop()}, \texttt{BiCopEst()}, \texttt{plot.RVineMatrix()}, \texttt{contour.RVineMatrix()}, \texttt{foreach::foreach()}

Examples

\begin{verbatim}
# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
           0, 2, 3, 4, 1,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
            0, 0, 3, 4, 1,
            0, 0, 0, 4, 1,
            0, 0, 0, 0, 1)
\end{verbatim}
0, 0, 0, 0, 3,
0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
0, 0, 1.1, 1.6, 0.9,
0, 0, 0, 1.9, 0.5,
0, 0, 0, 0, 4.8,
0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))

# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

# sequential estimation
summary(RVineSeqEst(simdata, RVM, method = "itau", se = TRUE))
summary(RVineSeqEst(simdata, RVM, method = "mle", se = TRUE))

RVineSim

Simulation from an R-Vine Copula Model

Description
This function simulates from a given R-vine copula model.

Usage
RVineSim(N, RVM, U = NULL)

Arguments

N       Number of d-dimensional observations to simulate.
RVM     An RVineMatrix() object containing the information of the R-vine copula model. Optionally, a length-N list of RVineMatrix() objects sharing the same structure, but possibly different family/parameter can be supplied.
U       If not NULL(), an (N,d)-matrix of U[0,1] random variates to be transformed to the copula sample.
Value

An N x d matrix of data simulated from the given R-vine copula model.

Author(s)

Jeffrey Dissmann

References


See Also

RVineMatrix(), BiCopSim()

Examples

# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
           0, 2, 3, 4, 1,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
           0, 0, 3, 4, 1,
           0, 0, 0, 4, 1,
           0, 0, 0, 0, 3,
           0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
        0, 1.1, 1.6, 0.9,
        0, 0, 1.9, 0.5,
        0, 0, 0, 4.8,
        0, 0, 0, 0)
par <- matrix(par, 5, 5)

# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
                   par = par, par2 = par2,
                   names = c("V1", "V2", "V3", "V4", "V5"))
# simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

RVineStdError

Standard Errors of an R-Vine Copula Model

Description

This function calculates the standard errors of a d-dimensional R-vine copula model given the Hessian matrix.

Usage

RVineStdError(hessian, RVM)

Arguments

hessian
The Hessian matrix of the given R-vine.

RVM
An RVineMatrix() object including the structure, the pair-copula families, and the parameters.

Value

se
The calculated standard errors for the first parameter matrix. The entries are ordered with respect to the ordering of the RVM$par matrix.

se2
The calculated standard errors for the second parameter matrix.

Note

The negative Hessian matrix should be positive semidefinite. Otherwise NAs will be returned in some entries and the non-NA entries may be wrong. If the negative Hessian matrix is negative definite, then one could try a near positive matrix. The package Matrix provides a function called nearPD to estimate a matrix which is positive definite and close to the given matrix.

Author(s)

Ulf Schepsmeier, Jakob Stoeber

References


Web supplement: Derivatives and Fisher Information of bivariate copulas. [https://mediatum.ub.tum.de/node?id=1119201](https://mediatum.ub.tum.de/node?id=1119201)


See Also

`BiCopDeriv()`, `BiCopDeriv2()`, `BiCopHfuncDeriv()`, `BiCopHfuncDeriv2()`, `RVineMatrix()`, `RVineHessian()`, `RVineGrad()`

Examples

```r
define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
 0, 2, 3, 4, 1,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)

define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
 0, 0, 3, 4, 1,
 0, 0, 0, 4, 1,
 0, 0, 0, 0, 3,
 0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)

define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
 0, 1.1, 1.6, 0.9,
 0, 0, 1.9, 0.5,
 0, 0, 0, 4.8,
 0, 0, 0, 0)
par <- matrix(par, 5, 5)

define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)

define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
 par = par, par2 = par2,
 names = c("V1", "V2", "V3", "V4", "V5"))

simulate a sample of size 300 from the R-vine copula model
set.seed(123)
simdata <- RVineSim(300, RVM)

compute the Hessian matrix of the first row of the data
out2 <- RVineHessian(simdata, RVM)
```
# get the standard errors
RVineStdError(out2$hessian, RVM)

---

**RVineStructureSelect**  
*Sequential Specification of R- and C-Vine Copula Models*

**Description**

This function fits either an R- or a C-vine copula model to a d-dimensional copula data set. Tree structures are determined and appropriate pair-copula families are selected using `BiCopSelect()` and estimated sequentially (forward selection of trees).

**Usage**

```r
RVineStructureSelect(
 data,
 familyset = NA,
 type = 0,
 selectioncrit = "AIC",
 indeptest = FALSE,
 level = 0.05,
 trunclevel = NA,
 progress = FALSE,
 weights = NA,
 treecrit = "tau",
 rotations = TRUE,
 se = FALSE,
 presel = TRUE,
 method = "mle",
 cores = 1
)
```

**Arguments**

- **data**  
  An N x d data matrix (with uniform margins).

- **familyset**  
  An integer vector of pair-copula families to select from. The vector has to include at least one pair-copula family that allows for positive and one that allows for negative dependence. Not listed copula families might be included to better handle limit cases. If `familyset = NA` (default), selection among all possible families is performed. Coding of pair-copula families is the same as in `BiCop()`.

- **type**  
  Type of the vine model to be specified: 0 or "RVine" = R-vine (default) 1 or "CVine" = C-vine C- and D-vine copula models with pre-specified order can be specified using `CDVineCopSelect` of the package CDVine. Similarly, R-vine copula models with pre-specified tree structure can be specified using `RVineCopSelect()`.
RVineStructureSelect

**selectioncrit** Character indicating the criterion for pair-copula selection. Possible choices: selectioncrit = "AIC" (default), "BIC", or "logLik" (see BiCopSelect()).

**indeptest** logical; whether a hypothesis test for the independence of u1 and u2 is performed before bivariate copula selection (default: indeptest = FALSE; see BiCopIndTest()). The independence copula is chosen for a (conditional) pair if the null hypothesis of independence cannot be rejected.

**level** numeric; significance level of the independence test (default: level = 0.05).

**trunclevel** integer; level of truncation.

**progress** logical; whether the tree-wise specification progress is printed (default: progress = FALSE).

**weights** numeric; weights for each observation (optional).

**treecrit** edge weight for Dissman’s structure selection algorithm, see Details.

**rotations** If TRUE, all rotations of the families in familyset are included.

**se** Logical; whether standard errors are estimated (default: se = FALSE).

**presel** Logical; whether to exclude families before fitting based on symmetry properties of the data. Makes the selection about 30\% (on average), but may yield slightly worse results in few special cases.

**method** indicates the estimation method: either maximum likelihood estimation (method = "mle"; default) or inversion of Kendall’s tau (method = "itau"). For method = "itau" only one parameter families and the Student t copula can be used (family = 1,2,3,4,5,6,13,14,16,23,24,26,33,34 or 36). For the t-copula, par2 is found by a crude profile likelihood optimization over the interval (2, 10].

**cores** integer; if cores > 1, estimation will be parallelized within each tree (using foreach::foreach()). Note that parallelization causes substantial overhead and may be slower than single-threaded computation when dimension, sample size, or family set are small or method = "itau".

**Details**

R-vine trees are selected using maximum spanning trees w.r.t. some edge weights. The most commonly used edge weight is the absolute value of the empirical Kendall’s tau, say $\hat{\tau}_{ij}$. Then, the following optimization problem is solved for each tree:

$$\max \sum_{e_{ij} \in \text{in spanning tree}} |\hat{\tau}_{ij}|,$$

where a spanning tree is a tree on all nodes. The setting of the first tree selection step is always a complete graph. For subsequent trees, the setting depends on the R-vine construction principles, in particular on the proximity condition.

Some commonly used edge weights are implemented:

- "tau" absolute value of empirical Kendall’s tau.
- "rho" absolute value of empirical Spearman’s rho.
- "AIC" Akaike information (multiplied by -1).
- "BIC" Bayesian information criterion (multiplied by -1).
- "cAIC" corrected Akaike information criterion (multiplied by -1).
If the data contain NAs, the edge weights in "tau" and "rho" are multiplied by the square root of the proportion of complete observations. This penalizes pairs where less observations are used.

The criteria "AIC", "BIC", and "cAIC" require estimation and model selection for all possible pairs. This is computationally expensive and much slower than "tau" or "rho". The user can also specify a custom function to calculate the edge weights. The function has to be of type function(u1,u2,weights) ... and must return a numeric value. The weights argument must exist, but does not has to be used. For example, "tau" (without using weights) can be implemented as follows:

```r
function(u1,u2, weights)
abs(cor(u1,u2,method = "kendall",use = "complete.obs"))
```

The root nodes of C-vine trees are determined similarly by identifying the node with strongest dependencies to all other nodes. That is we take the node with maximum column sum in the empirical Kendall’s tau matrix.

Note that a possible way to determine the order of the nodes in the D-vine is to identify a shortest Hamiltonian path in terms of weights $1 - |\hat{\tau}_{ij}|$. This can be established for example using the package TSP. Example code is shown below.

### Value

An `RVineMatrix()` object with the selected structure (RV$Matrix) and families (RV$family) as well as sequentially estimated parameters stored in RV$par and RV$par2. The object is augmented by the following information about the fit:

- **se, se2**: standard errors for the parameter estimates; note that these are only approximate since they do not account for the sequential nature of the estimation,
- **nobs**: number of observations,
- **logLik, pair.logLik**: log likelihood (overall and pairwise)
- **AIC, pair.AIC**: Akaike’s Information Criterion (overall and pairwise),
- **BIC, pair.BIC**: Bayesian’s Information Criterion (overall and pairwise),
- **emptau**: matrix of empirical values of Kendall’s tau,
- **p.value.indeptest**: matrix of p-values of the independence test.

### Note

For a comprehensive summary of the vine copula model, use `summary(object)`; to see all its contents, use `str(object)`.

### Author(s)

Jeffrey Dissmann, Eike Brechmann, Ulf Schepsmeier, Thomas Nagler
References


See Also

RVineMatrix(), BiCop(), RVineCopSelect(), plot.RVineMatrix(), contour.RVineMatrix(), foreach::foreach()

Examples

# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
# using only the first 4 variables and the first 250 observations
# we allow for the copula families: Gauss, t, Clayton, Gumbel, Frank and Joe
daxreturns <- daxreturns[1:250, 1:4]
RVM <- RVineStructureSelect(daxreturns, c(1:6), progress = TRUE)

## see the object's content or a summary
str(RVM)
summary(RVM)

## inspect the fitted model using plots
## Not run: plot(RVM) # tree structure
contour(RVM) # contour plots of all pair-copulas

## estimate a C-vine copula model with only Clayton, Gumbel and Frank copulas
CVM <- RVineStructureSelect(daxreturns, c(3,4,5), "CVine")

## determine the order of the nodes in a D-vine using the package TSP
library(TSP)
d <- dim(daxreturns)[2]
M <- 1 - abs(TauMatrix(daxreturns))
hamilton <- insert_dummy(TSP(M), label = "cut")
sol <- solve_TSP(hamilton, method = "repetitive_nn")
order <- cut_tour(sol, "cut")
DVM <- D2RVine(order, family = rep(0,d*(d-1)/2), par = rep(0, d*(d-1)/2))
RVineCopSelect(daxreturns, c(1:6), DVM$Matrix)
Description

Function is deprecated since VineCopula 2.0. Use plot.RVineMatrix() instead.

Usage

RVineTreePlot(
  x,
  tree = "ALL",
  type = 0,
  edge.labels = NULL,
  legend.pos = "bottomleft",
  interactive = FALSE,
  ...)

Arguments

x RVineMatrix object.
tree "ALL" or integer vector; specifies which trees are plotted.
type integer; specifies how to make use of variable names:
  0 = variable names are ignored,
  1 = variable names are used to annotate vertices,
  2 = uses numbers in plot and adds a legend for variable names.
edge.labels character; either a vector of edge labels or one of the following:
  "family" = pair-copula family abbreviation (see BiCopName()),
  "par" = pair-copula parameters,
  "tau" = pair-copula Kendall’s tau (by conversion of parameters)
  "family-par" = pair-copula family and parameters
  "family-tau" = pair-copula family and Kendall’s tau.
legend.pos the x argument for graphics::legend().
interactive logical; if TRUE, the user is asked to adjust the positioning of vertices with his mouse.
... Arguments passed to network::plot.network().

Author(s)

Thomas Nagler

See Also

plot.RVineMatrix()
RVineVuongTest  Vuong Test Comparing Two R-Vine Copula Models

Description

This function performs a Vuong test between two d-dimensional R-vine copula models as specified by their RVineMatrix() objects.

Usage

RVineVuongTest(data, RVM1, RVM2)

Arguments

data  An N x d data matrix (with uniform margins).
RVM1, RVM2  RVineMatrix() objects of models 1 and 2.

Details

The likelihood-ratio based test proposed by Vuong (1989) can be used for comparing non-nested models. For this let \( c_1 \) and \( c_2 \) be two competing vine copulas in terms of their densities and with estimated parameter sets \( \theta_1 \) and \( \theta_2 \). We then compute the standardized sum, \( \nu \), of the log differences of their pointwise likelihoods \( m_i := \log \frac{c_1(u_i|\theta_1)}{c_2(u_i|\theta_2)} \) for observations \( u_i \in [0,1] \), \( i = 1, \ldots, N \), i.e.,

\[
\text{statistic} := \nu = \frac{\frac{1}{n} \sum_{i=1}^{N} m_i}{\sqrt{\sum_{i=1}^{N} (m_i - \bar{m})^2}}.
\]

Vuong (1989) shows that \( \nu \) is asymptotically standard normal. According to the null-hypothesis \( H_0 : E[m_i] = 0 \) \( \forall i = 1, \ldots, N \),

we hence prefer vine model 1 to vine model 2 at level \( \alpha \) if

\[
\nu > \Phi^{-1} \left( 1 - \frac{\alpha}{2} \right),
\]

where \( \Phi^{-1} \) denotes the inverse of the standard normal distribution function. If \( \nu < -\Phi^{-1} \left( 1 - \frac{\alpha}{2} \right) \) we choose model 2. If, however, \( |\nu| \leq \Phi^{-1} \left( 1 - \frac{\alpha}{2} \right) \), no decision among the models is possible.

Like AIC and BIC, the Vuong test statistic may be corrected for the number of parameters used in the models. There are two possible corrections; the Akaike and the Schwarz corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.

Value

statistic, statistic.Akaike, statistic.Schwarz

Test statistics without correction, with Akaike correction and with Schwarz correction.

p.value, p.value.Akaike, p.value.Schwarz

P-values of tests without correction, with Akaike correction and with Schwarz correction.
**Author(s)**

Jeffrey Dissmann, Eike Brechmann

**References**


**See Also**

RVineClarkeTest(), RVineAIC(), RVineBIC()

**Examples**

```r
vine structure selection time-consuming (~ 20 sec)
load data set
data(daxreturns)

select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6))

select the C-vine structure, families and parameters
CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine")

compare the two models based on the data
vuong <- RVineVuongTest(daxreturns[,1:5], RVM, CVM)
vuong$statistic
vuong$statistic.Schwarz
vuong$p.value
vuong$p.value.Schwarz
```

---

**Description**

This function computes the empirical Kendall’s tau using the algorithm by Knight (1966).

**Usage**

`TauMatrix(data, weights = NA)`

**Arguments**

- `data` An N x d data matrix.
- `weights` Numerical; weights for each observation (optional).
Value
Matrix of the empirical Kendall’s taus.

Author(s)
Ulf Schepsmeier

References

See Also
BiCopTau2Par(), BiCopPar2Tau(), BiCopEst()

Examples

data(daxreturns)
Data <- as.matrix(daxreturns)

# compute the empirical Kendall's taus
TauMatrix(Data)

---

VC2copula-deprecated  Deprecated

Description
This functionality is deprecated in 'VineCopula'. Use the package 'VC2copula' instead.

Usage

copulaFromFamilyIndex(family, par, par2 = 0)
surClaytonCopula(param = c(1, 1))
r90ClaytonCopula(param = c(1, 1))
r270ClaytonCopula(param = c(1, 1))
surGumbelCopula(param = c(1, 1))
r90GumbelCopula(param = c(1, 1))
r270GumbelCopula(param = c(1, 1))
joeBiCopula(param = c(1, 1))
surJoeBiCopula(param = c(1, 1))
r90JoeBiCopula(param = c(1, 1))
r270JoeBiCopula(param = c(1, 1))
BB1Copula(param = c(1, 1))
surBB1Copula(param = c(1, 1))
r90BB1Copula(param = c(1, 1))
r270BB1Copula(param = c(1, 1))
BB6Copula(param = c(1, 1))
surBB6Copula(param = c(1, 1))
r90BB6Copula(param = c(1, 1))
r270BB6Copula(param = c(1, 1))
BB7Copula(param = c(1, 1))
surBB7Copula(param = c(1, 1))
r90BB7Copula(param = c(1, 1))
r270BB7Copula(param = c(1, 1))
BB8Copula(param = c(1, 1))
surBB8Copula(param = c(1, 1))
r90BB8Copula(param = c(1, 1))
r270BB8Copula(param = c(1, 1))
tawnT1Copula(param = c(1, 1))
surTawnT1Copula(param = c(1, 1))
r90TawnT1Copula(param = c(1, 1))
r270TawnT1Copula(param = c(1, 1))
tawnT2Copula(param = c(1, 1))
surTawnT2Copula(param = c(1, 1))
r0TawnT2Copula(param = c(1, 1))
r270TawnT2Copula(param = c(1, 1))
vineCopula(RVM, type = "CVine")

**Arguments**

- `family` ...
- `par` ...
- `par2` ...
- `param` ...
- `RVM` ...
- `type` ...
Index

* **correlation**
  RVineCor2pcor, 97

* **partial**
  RVineCor2pcor, 97

* **plot**
  contour.RVineMatrix, 80
  plot.BiCop, 87

* **vine**
  RVineCor2pcor, 97
  RVineMatrixNormalize, 115

as.copuladata, 5
as.copuladata(), 86

B8Copula-class (VC2copula-deprecated), 140
BB1Copula (VC2copula-deprecated), 140
BB1Copula-class (VC2copula-deprecated), 140
BB6Copula (VC2copula-deprecated), 140
BB6Copula-class (VC2copula-deprecated), 140
BB7Copula (VC2copula-deprecated), 140
BB7Copula-class (VC2copula-deprecated), 140
BB8Copula (VC2copula-deprecated), 140
BB8Copula-class (VC2copula-deprecated), 140
BBB8Copula (VC2copula-deprecated), 140
BetaMatrix, 6
BiCop, 7
BiCop(), 8, 11, 17, 19, 21, 23, 24, 27, 30, 36, 38, 40, 41, 43, 44, 49, 51, 58, 63, 64, 66, 67, 70, 71, 73, 88, 94, 96, 128, 133, 136
BiCopCDF, 9
BiCopCDF(), 19, 36, 44, 57, 67, 121
BiCopCheck, 12
BiCopChiPlot, 13
BiCopChiPlot(), 48, 51, 54
BiCopCompare, 15
BiCopCondSim, 17
BiCopDeriv, 20
BiCopDeriv(), 24, 33, 41, 104, 107, 132
BiCopDeriv2, 22
BiCopDeriv2(), 21, 33, 38, 41, 104, 107, 132
BiCopEst, 25
BiCopEst(), 8, 9, 30, 70, 71, 118, 127, 128, 140
BiCopEstList, 28
BiCopGofTest, 31
BiCopGofTest(), 45, 48, 78, 102
BiCopHfunc, 34
BiCopHfunc(), 9, 11, 44, 67, 109, 124
BiCopHfunc1 (BiCopHfunc), 34
BiCopHfunc2 (BiCopHfunc), 34
BiCopHfuncDeriv, 37
BiCopHfuncDeriv(), 21, 24, 38, 41, 104, 107, 132
BiCopHfuncDeriv2, 39
BiCopHfuncDeriv2(), 104, 107, 132
BiCopHinv, 41
BiCopHinv(), 36
BiCopHinv1 (BiCopHinv), 41
BiCopHinv2 (BiCopHinv), 41
BiCopIndTest, 44
BiCopIndTest(), 33, 69, 71, 94, 134
BiCopKDE, 45
BiCopKDE(), 51, 85, 86
BiCopKPlot, 47
BiCopKPlot(), 15, 51, 54
BiCopLambda, 48
BiCopLambda(), 15, 48, 54, 87, 88
BiCopMetaContour, 51
BiCopMetaContour(), 15, 48, 51
BiCopName, 54
BiCopName(), 81, 137
BiCopPar2Beta, 56
BiCopPar2Beta(), 7, 121
BiCopPar2TailDep, 59
BiCopPar2Tail, 62
BiCopPar2Tail(), 26, 27, 45, 61, 75, 122, 140
BiCopPDF, 65
BiCopPDF(), 9, 11, 19, 36, 44
BiCopSelect, 67
BiCopSelect(), 8, 9, 27, 45, 78, 94, 96, 133, 134
BiCopSim, 71
BiCopSim(), 9, 11, 67, 130
BiCopTau2Par, 73
BiCopTau2Par(), 26, 27, 45, 64, 140
BiCopVuongClarke, 75
BiCopVuongClarke(), 33
C2RVine, 78
C2RVine(), 83, 113
contour(), 46, 88
contour.BiCop(plot.BiCop), 87
contour.BiCop(), 9, 51
contour.RVineMatrix, 80
contour.RVineMatrix(), 96, 128, 136
copula(), 89
copulaFromFamilyIndex
(VC2copula-deprecated), 140
D2RVine, 82
D2RVine(), 80, 113
daxreturns, 84
dduCopula,matrix, BB1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, BB6Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, BB7Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, BB8Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, joeBiCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270BB1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270BB6Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270BB7Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270BB8Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270ClaytonCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270GumbelCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270JoeBiCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270TawnT1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r270TawnT2Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90BB1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90BB6Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90BB7Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90BB8Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90ClaytonCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90GumbelCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90JoeBiCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90TawnT1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, r90TawnT2Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, surBB1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, surBB6Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, surBB7Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, surBB8Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, surClaytonCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, surGumbelCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, surJoeBiCopula-method (VC2copula-deprecated), 140
dduCopula,matrix, surTawnT1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, surTawnT2Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, tawnT1Copula-method (VC2copula-deprecated), 140
dduCopula,matrix, tawnT2Copula-method (VC2copula-deprecated), 140
dduCopula, numeric, BB1Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, BB6Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, BB7Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, BB8Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, joeBiCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270BB1Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270BB6Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270BB7Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270BB8Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270ClaytonCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270GumbelCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270JoeBiCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270TawnT1Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, r270TawnT2Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surBB1Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surBB6Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surBB7Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surBB8Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surClaytonCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surGumbelCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surJoeBiCopula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surTawnT1Copula-method
   (VC2copula-deprecated), 140
dduCopula, numeric, surTawnT2Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, BB1Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, BB6Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, BB7Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, BB8Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, joeBiCopula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270BB1Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270BB6Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270BB7Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270BB8Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270ClaytonCopula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270GumbelCopula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270JoeBiCopula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270TawnT1Copula-method
   (VC2copula-deprecated), 140
ddvCopula, matrix, r270TawnT2Copula-method
   (VC2copula-deprecated), 140
INDEX

ddvCopula, numeric, surGumbelCopula-method
(VC2copula-deprecated), 140

ddvCopula, numeric, surJoeBiCopula-method
(VC2copula-deprecated), 140

ddvCopula, numeric, surTawnT1Copula-method
(VC2copula-deprecated), 140

ddvCopula, numeric, surTawnT2Copula-method
(VC2copula-deprecated), 140

ddvCopula, numeric, tawnT1Copula-method
(VC2copula-deprecated), 140

ddvCopula, numeric, tawnT2Copula-method
(VC2copula-deprecated), 140

dexp(), 53
dgamma(), 53
dt(), 53

fitCopula (VC2copula-deprecated), 140

foreach::foreach(), 95, 96, 127, 128, 134, 136

graphics::legend(), 81, 137
graphics::pairs(), 86
graphics::par(), 85

joeBiCopula (VC2copula-deprecated), 140
joeBiCopula-class
(VC2copula-deprecated), 140

kdecopula::kdecop(), 45, 46
kendallDistribution, BB1Copula-method
(VC2copula-deprecated), 140
kendallDistribution, BB6Copula-method
(VC2copula-deprecated), 140
kendallDistribution, BB7Copula-method
(VC2copula-deprecated), 140
kendallDistribution, BB8Copula-method
(VC2copula-deprecated), 140
kendallDistribution, JoeBiCopula-method
(VC2copula-deprecated), 140
kendallDistribution, JoeBiCopula-method
(VC2copula-deprecated), 140

logical(), 89

network::plot.network(), 81, 137
NULL(), 129

optim(), 118, 119

pairs.copuladata, 85
pairs.copuladata(), 6
plot.BiCop, 87
plot.BiCop(), 9, 45, 80, 81
plot.RVineMatrix (contour.RVineMatrix), 80
plot.RVineMatrix(), 96, 128, 136, 137
pobs, 88
pobs(), 6

r270BB1Copula (VC2copula-deprecated), 140
r270BB1Copula-class
(VC2copula-deprecated), 140
r270BB6Copula (VC2copula-deprecated), 140
r270BB6Copula-class
(VC2copula-deprecated), 140
r270BB7Copula (VC2copula-deprecated), 140
r270BB7Copula-class
(VC2copula-deprecated), 140
r270BB8Copula (VC2copula-deprecated), 140
r270BB8Copula-class
(VC2copula-deprecated), 140
r270ClaytonCopula (VC2copula-deprecated), 140
r270ClaytonCopula-class
(VC2copula-deprecated), 140
r270GumbelCopula (VC2copula-deprecated), 140
r270GumbelCopula-class
(VC2copula-deprecated), 140
r270JoeBiCopula (VC2copula-deprecated), 140
r270JoeBiCopula-class
(VC2copula-deprecated), 140
r270TawnT1Copula (VC2copula-deprecated), 140
r270TawnT1Copula-class
(VC2copula-deprecated), 140
r270TawnT2Copula (VC2copula-deprecated), 140
r270TawnT2Copula-class
(VC2copula-deprecated), 140
INDEX

r270TawnT2Copula (VC2copula-deprecated), 140
r270TawnT2Copula-class (VC2copula-deprecated), 140
r90BB1Copula (VC2copula-deprecated), 140
r90BB1Copula-class (VC2copula-deprecated), 140
r90BB6Copula (VC2copula-deprecated), 140
r90BB6Copula-class (VC2copula-deprecated), 140
r90BB7Copula (VC2copula-deprecated), 140
r90BB7Copula-class (VC2copula-deprecated), 140
r90BB8Copula (VC2copula-deprecated), 140
r90BB8Copula-class (VC2copula-deprecated), 140
r90ClaytonCopula (VC2copula-deprecated), 140
r90ClaytonCopula-class (VC2copula-deprecated), 140
r90Gumbel1Copula (VC2copula-deprecated), 140
r90Gumbel1Copula-class (VC2copula-deprecated), 140
r90JoeBiCopula (VC2copula-deprecated), 140
r90JoeBiCopula-class (VC2copula-deprecated), 140
r90TawnT1Copula (VC2copula-deprecated), 140
r90TawnT1Copula-class (VC2copula-deprecated), 140
r90TawnT2Copula (VC2copula-deprecated), 140
r90TawnT2Copula-class (VC2copula-deprecated), 140
rank(), 89
RVineAIC, 90
RVineAIC(), 93, 109, 124, 139
RVineBIC (RVineAIC), 90
RVineBIC(), 93, 109, 124, 139
RVineClarkeTest, 92
RVineClarkeTest(), 77, 78, 91, 139
RVineCopSelect, 94
RVineCopSelect(), 45, 71, 112, 113, 133, 136
RVineCor2pcor, 97
RVineGofTest, 98
RVineGofTest(), 126
RVineGrad, 103
RVineGrad(), 21, 24, 38, 41, 99, 107, 118, 119, 132
RVineHessian, 105
RVineHessian(), 21, 24, 38, 41, 99, 104, 118, 119, 132
RVineLogLik, 108
RVineLogLik(), 36, 44, 91, 124
RVineMatrix, 110
RVineMatrixCheck, 114
RVineMatrixCheck(), 113, 117
RVineMatrixNormalize, 115
RVineMatrixSample, 116
RVineMLE, 117
RVineMLE(), 104, 107, 109, 124
RVinePar2Beta, 120
RVinePar2Beta(), 7
RVinePar2Tau, 122
RVinePcor2cor (RVineCor2pcor), 97
RVinePDF, 123
RVinePIT, 125
RVinePIT(), 100, 102
RVineSeqEst, 127
RVineSeqEst(), 27, 36, 44, 112, 113, 118, 119
RVineSim, 129
RVineSim(), 19, 73, 113
RVineStdError, 131
RVineStructureSelect, 133
RVineStructureSelect(), 45, 71, 84, 95, 112, 113, 119
RVineTreePlot, 137
RVineTreePlot(), 56
RVineVuongTest, 138
RVineVuongTest(), 77, 78, 91, 93
surBB1Copula (VC2copula-deprecated), 140
surBB1Copula-class (VC2copula-deprecated), 140
surBB6Copula (VC2copula-deprecated), 140
surBB6Copula-class (VC2copula-deprecated), 140
surBB7Copula (VC2copula-deprecated), 140
surBB7Copula-class (VC2copula-deprecated), 140
surBB8Copula (VC2copula-deprecated), 140
surBB8Copula-class (VC2copula-deprecated), 140
surClaytonCopula (VC2copula-deprecated), 140
surClaytonCopula-class (VC2copula-deprecated), 140
surGumbelCopula (VC2copula-deprecated), 140
surGumbelCopula-class (VC2copula-deprecated), 140
surJoeBiCopula (VC2copula-deprecated), 140
surJoeBiCopula-class (VC2copula-deprecated), 140
surTawnT1Copula (VC2copula-deprecated), 140
surTawnT1Copula-class (VC2copula-deprecated), 140
surTawnT2Copula (VC2copula-deprecated), 140
surTawnT2Copula-class (VC2copula-deprecated), 140

TauMatrix, 139
TauMatrix(), 7
tawnT1Copula (VC2copula-deprecated), 140
tawnT1Copula-class (VC2copula-deprecated), 140
tawnT2Copula (VC2copula-deprecated), 140
tawnT2Copula-class (VC2copula-deprecated), 140

VC2copula-deprecated, 140
VineCopula (VineCopula-package), 3
vineCopula (VC2copula-deprecated), 140
vineCopula-class (VC2copula-deprecated), 140
vineCopula-method (VC2copula-deprecated), 140
VineCopula-package, 3

wireframe(), 46, 88